S. R. Bakshi, D. Lahiri, and A. Agarwal, Carbon nanotube reinforced metal matrix composites - a review, International Materials Reviews, vol.129, issue.44, pp.41-64, 2010.
DOI : 10.1016/j.aca.2004.03.075

J. N. Coleman, U. Khan, W. J. Blau, and Y. K. , Small but strong: A review of the mechanical properties of carbon nanotube???polymer composites, Carbon, vol.44, issue.9, pp.1624-1652, 2006.
DOI : 10.1016/j.carbon.2006.02.038

J. Cho, A. R. Boccaccini, and M. S. Shaffer, Ceramic matrix composites containing carbon nanotubes, Journal of Materials Science, vol.38, issue.21, pp.1934-1951, 2009.
DOI : 10.1007/s10853-009-3262-9

E. Zapata-solvas, D. Gomez-garcia, and A. Dominguez-rodriguez, Towards physical properties tailoring of carbon nanotubes-reinforced ceramic matrix composites, Journal of the European Ceramic Society, vol.32, issue.12, pp.32-3001, 2012.
DOI : 10.1016/j.jeurceramsoc.2012.04.018

A. Peigney, A. Weibel, and C. Laurent, Carbon nanotubes in novel ceramic matrix nanocomposites, Ceramics International, vol.26, issue.6, pp.179-196, 2011.
DOI : 10.1016/S0272-8842(00)00004-3

URL : https://hal.archives-ouvertes.fr/hal-00957547

J. Sun, L. Gao, M. Iwasa, T. Nakayama, and K. Niihara, Failure investigation of carbon nanotube/3Y-TZP nanocomposites, Ceramics International, vol.31, issue.8, pp.31-1131, 2005.
DOI : 10.1016/j.ceramint.2004.11.010

S. L. Shi and J. Liang, Electronic transport properties of multiwall carbon nanotubes/yttria-stabilized zirconia composites, Journal of Applied Physics, vol.101, issue.2, pp.23708-23709, 2007.
DOI : 10.1063/1.2430700

S. L. Shi and J. Liang, The effect of multi-wall carbon nanotubes on electromagnetic interference shielding of ceramic composites, Nanotechnology, vol.19, issue.25, pp.1-5, 2008.
DOI : 10.1088/0957-4484/19/25/255707

A. Duszova, J. Dusza, K. Tomasek, G. Blugan, and J. Kuebler, Microstructure and properties of carbon nanotube/zirconia composite, Journal of the European Ceramic Society, vol.28, issue.5, pp.1023-1027, 2008.
DOI : 10.1016/j.jeurceramsoc.2007.09.011

J. P. Zhou, Q. M. Gong, K. Y. Yuan, J. J. Wu, Y. F. Chen et al., The effects of multiwalled carbon nanotubes on the hot-pressed 3mol% yttria stabilized zirconia ceramics, Materials Science and Engineering: A, vol.520, issue.1-2, pp.153-157, 2009.
DOI : 10.1016/j.msea.2009.05.014

A. Datye, K. H. Wu, G. Gomes, V. Monroy, H. T. Lin et al., Vanmeensel, Synthesis, microstructure and mechanical properties of yttria stabilized zirconia (3YTZP) ? multi-walled nanotube (MWNTs) nanocomposite by direct in-situ growth of MWNTs on Zirconia particles, Compos. Sci. Technol, pp.70-2086, 2010.

N. Garmendia, I. Santacruz, R. Moreno, and I. Obieta, Zirconia-MWCNT nanocomposites for biomedical applications obtained by colloidal processing, Journal of Materials Science: Materials in Medicine, vol.19, issue.5, pp.1445-1451, 2010.
DOI : 10.1007/s10856-010-4023-7

N. Garmendia, S. Grandjean, J. Chevalier, L. A. Diaz, R. Torrecillas et al., Zirconia???multiwall carbon nanotubes dense nano-composites with an unusual balance between crack and ageing resistance, Journal of the European Ceramic Society, vol.31, issue.6, pp.31-1009, 2011.
DOI : 10.1016/j.jeurceramsoc.2010.12.029

M. Mazaheri, D. Mari, R. Schaller, G. Bonnefont, and G. Fantozzi, Processing of yttria stabilized zirconia reinforced with multi-walled carbon nanotubes with attractive mechanical properties, Journal of the European Ceramic Society, vol.31, issue.14, pp.31-2691, 2011.
DOI : 10.1016/j.jeurceramsoc.2010.11.009

M. Mazaheri, D. Mari, Z. R. Hesabi, R. Schaller, and G. Fantozzi, Multiwalled carbon nanotube/nanostructured zirconia composites: outstanding mechanical properties in a wide range of temperature, Compos. Sci. Technol, pp.71-939, 2011.

M. Mazaheri, D. Mari, and R. Schaller, High temperature mechanical spectroscopy of yttria stabilized zirconia reinforced with carbon nanotubes, physica status solidi (a), vol.23, issue.388, pp.2456-2460, 2010.
DOI : 10.1002/pssa.201026331

N. Garmendia, I. Santacruz, R. Moreno, and I. Obieta, Influence of the Addition of Multiwall Carbon Nanotubes in the Sintering of Nanostructured Yttria-Stabilized Tetragonal Zirconia Polycrystalline, International Journal of Applied Ceramic Technology, vol.32, issue.363, pp.193-198, 2012.
DOI : 10.1111/j.1744-7402.2011.02649.x

R. K. Chintapalli, F. G. Marro, B. Milsom, M. Reece, and M. Anglada, Processing and characterization of high-density zirconia???carbon nanotube composites, Materials Science and Engineering: A, vol.549, pp.50-59, 2012.
DOI : 10.1016/j.msea.2012.03.115

J. Yi, T. Wang, Z. P. Xie, and W. J. Xue, Zirconia-based nanocomposite toughened by functionalized multi-wall carbon nanotubes, Journal of Alloys and Compounds, vol.581, pp.581-452, 2013.
DOI : 10.1016/j.jallcom.2013.06.169

A. Kasperski, A. Weibel, D. Alkattan, C. Estournes, V. Turq et al., Microhardness and friction coefficient of multi-walled carbon nanotube-yttria-stabilized ZrO 2 composites prepared by spark plasma sintering, Scr. Mater, pp.69-338, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00906255

L. Melk, J. J. Rovira, M. L. Antti, and M. Anglada, Coefficient of friction and wear resistance of zirconia???MWCNTs composites, Ceramics International, vol.41, issue.1, pp.41-459, 2015.
DOI : 10.1016/j.ceramint.2014.08.092

L. Melk, J. J. Roviraa, F. García-marro, M. Antti, B. Milsom et al., Nanoindentation and fracture toughness of nanostructured zirconia/multi-walled carbon nanotube composites, Ceramics International, vol.41, issue.2, pp.41-2453, 2015.
DOI : 10.1016/j.ceramint.2014.10.060

W. Wu, Z. Xien, W. J. Xue, and L. Cheng, Toughening effect of multiwall carbon nanotubes on 3Y-TZP zirconia ceramics at cryogenic temperatures, Ceramics International, vol.41, issue.1, pp.41-1303, 2015.
DOI : 10.1016/j.ceramint.2014.09.061

G. D. Zhan, J. D. Kuntz, A. K. Mukherjee, P. X. Zhu, and K. Koumoto, Thermoelectric properties of carbon nanotube/ceramic nanocomposites, Scripta Materialia, vol.54, issue.1, pp.54-77, 2006.
DOI : 10.1016/j.scriptamat.2005.09.003

J. H. Shin and S. H. Hong, Microstructure and mechanical properties of single wall carbon nanotube reinforced yttria stabilized zircona ceramics, Materials Science and Engineering: A, vol.556, pp.382-387, 2012.
DOI : 10.1016/j.msea.2012.07.001

R. Poyato, A. Gallardo-lopez, F. Gutierrez-mora, A. Morales-rodriguez, A. Munoz et al., Effect of high SWNT content on the room temperature mechanical properties of fully dense 3YTZP/SWNT composites, Journal of the European Ceramic Society, vol.34, issue.6, pp.34-1571, 2014.
DOI : 10.1016/j.jeurceramsoc.2013.12.024

B. W. Sheldon and W. A. Curtin, Nanoceramic composites: Tough to test, Nature Materials, vol.64, issue.8, pp.505-506, 2004.
DOI : 10.1016/j.actamat.2003.10.050

G. D. Quinn and R. C. Bradt, On the Vickers Indentation Fracture Toughness Test, Journal of the American Ceramic Society, vol.1, issue.4, pp.90-673, 2007.
DOI : 10.1016/j.tsf.2005.08.342

J. R. Kelly and I. Denry, Stabilized zirconia as a structural ceramic: An overview???, Dental Materials, vol.24, issue.3, pp.289-298, 2008.
DOI : 10.1016/j.dental.2007.05.005

J. Chevalier, What future for zirconia as a biomaterial?, Biomaterials, vol.27, issue.4, pp.535-543, 2006.
DOI : 10.1016/j.biomaterials.2005.07.034

URL : https://hal.archives-ouvertes.fr/hal-00436140

R. H. Hannink, P. M. Kelly, and B. C. Muddle, Transformation Toughening in Zirconia-Containing Ceramics, Journal of the American Ceramic Society, vol.10, issue.10, pp.461-487, 2000.
DOI : 10.1111/j.1151-2916.2000.tb01221.x

J. Chevalier, L. Gremillard, A. V. Virkar, and D. R. Clarke, The tetragonalmonoclinic transformation in zirconia: lessons learned and future trends, J. Am. Ceram. Soc, p.92, 1901.
URL : https://hal.archives-ouvertes.fr/hal-00517678

J. H. Hafner, M. J. Bronikowski, B. R. Azamian, P. Nikolaev, A. G. Rinzler et al., Catalytic growth of single-wall carbon nanotubes from metal particles, Chemical Physics Letters, vol.296, issue.1-2, pp.296-195, 1998.
DOI : 10.1016/S0009-2614(98)01024-0

A. Kasperski, A. Weibel, L. Datas, E. De-grave, A. Peigney et al., Large-Diameter Single-Wall Carbon Nanotubes Formed Alongside Small-Diameter Double-Walled Carbon Nanotubes, The Journal of Physical Chemistry C, vol.119, issue.3, pp.1524-1535, 2015.
DOI : 10.1021/jp509080e

A. Peigney, F. L. Garcia, C. Estournes, A. Weibel, and C. Laurent, Toughening and hardening in double-walled carbon nanotube/nanostructured magnesia composites, Carbon, vol.48, issue.7, pp.1952-1960, 2010.
DOI : 10.1016/j.carbon.2010.01.063

A. Kasperski, A. Weibel, C. Estournes, C. Laurent, and A. Peigney, Preparation-microstructure-property relationships in double-walled carbon nanotubes/alumina composites, Carbon, vol.53, pp.62-72, 2013.
DOI : 10.1016/j.carbon.2012.10.030

URL : https://hal.archives-ouvertes.fr/hal-00857501

E. Flahaut, R. Bacsa, A. Peigney, and C. Laurent, Gram-scale CCVD synthesis of double-walled carbon nanotubes, Chemical Communications, vol.12, issue.12, pp.1442-1443, 2003.
DOI : 10.1039/b301514a

URL : https://hal.archives-ouvertes.fr/hal-00926035

E. Flahaut, A. Peigney, C. Laurent, and A. Rousset, Synthesis of single-walled carbon nanotube???Co???MgO composite powders and extraction of the nanotubes, Journal of Materials Chemistry, vol.10, issue.2, pp.249-252, 2000.
DOI : 10.1039/a908593i

URL : https://hal.archives-ouvertes.fr/hal-00942779

M. J. De-andrade, M. D. Lima, V. Skakalova, C. P. Bergmann, and S. Roth, Electrical properties of transparent carbon nanotube networks prepared through different techniques, physica status solidi (RRL) ??? Rapid Research Letters, vol.74, issue.5, pp.178-180, 2007.
DOI : 10.1002/pssr.200701115

M. I. Mendelsohn, Average Grain Size in Polycrystalline Ceramics, Journal of the American Ceramic Society, vol.35, issue.2, p.443, 1969.
DOI : 10.1016/S0016-0032(29)91451-4

W. F. Brown and J. E. Srawley, Plane Strain Crack Toughness Testing of High Strength Metallic Materials, 1966.
DOI : 10.1520/STP44663S

R. Vidano and D. B. Fischbach, New Lines in the Raman Spectra of Carbons and Graphite, Journal of the American Ceramic Society, vol.35, issue.7, pp.61-74, 1978.
DOI : 10.1016/0008-6223(71)90034-0

T. Ukai, T. Sekino, A. Hirvonen, N. Tanaka, T. Kusunose et al., Preparation and electrical properties of carbon nanotubes dispersed zirconia nanocomposites, pp.661-664, 2006.

F. C. Fonseca, R. Muccillo, D. Z. De-florio, L. O. Ladeira, A. S. Ferlauto et al., Mixed ionic-electronic conductivity in yttriastabilized zirconia/carbon nanotube composites, Appl. Phys. Lett, pp.91-243107, 2007.

C. Laurent, E. Flahaut, and A. Peigney, The weight and density of carbon nanotubes versus the number of walls and diameter, Carbon, vol.48, issue.10, pp.2994-2996, 2010.
DOI : 10.1016/j.carbon.2010.04.010

F. Seichepine, S. Salomon, M. Collet, S. Guillon, L. Nicu et al., A combination of capillary and dielectrophoresis-driven assembly methods for wafer scale integration of carbon-nanotube-based nanocarpets, Nanotechnology, vol.23, issue.9, p.95303, 2012.
DOI : 10.1088/0957-4484/23/9/095303

URL : https://hal.archives-ouvertes.fr/hal-00832109

N. Garmendia, I. Santacruz, R. Morenob, and I. Obieta, Slip casting of nanozirconia/MWCNT composites using a heterocoagulation process, Journal of the European Ceramic Society, vol.29, issue.10, pp.29-1939, 2009.
DOI : 10.1016/j.jeurceramsoc.2008.12.014

M. Muroi, G. Trotter, P. G. Mccormick, M. Kawahara, and M. Tokita, Preparation of nano-grained zirconia ceramics by low-temperature, lowpressure spark plasma sintering, J. Mater. Sci, pp.43-6376, 2008.

Y. Hou, C. Li, L. Wang, and Y. Ding, Investigation into the Mechanical Properties of Nanometric Zirconia Dental Ceramics, Proceedings of International Conference on Mechatronics And Intelligent Materials, pp.31-35, 2011.
DOI : 10.4028/www.scientific.net/AMR.211-212.31

O. Bezdorozhev, H. Borodianska, Y. Sakka, and O. Vasylkiv, Tough yttriastabilized zirconia ceramic by low-temperature spark plasma sintering of long-term stored nanopowders, J. Nanosci. Nanotechnol, pp.11-7901, 2011.

A. Kasperski, A. Weibel, C. Estournes, C. Laurent, and A. Peigney, Multi-walled carbon nanotube-Al 2 O 3 composites: covalent or non-covalent functionalization for mechanical reinforcement, Scr. Mater, pp.75-121, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01130694