N

N

Random Walk Methods for Modeling Hydrodynamic
Transport in Porous and Fractured Media from Pore to
Reservoir Scale
Benoit Noetinger, Delphine R Roubinet, Anna R Russian, Tanguy Le Borgne,
Frederick Delay, Marco Dentz, Jean-Raynald de Dreuzy, Philippe Gouze

» To cite this version:

Benoit Noetinger, Delphine R Roubinet, Anna R Russian, Tanguy Le Borgne, Frederick Delay, et al..
Random Walk Methods for Modeling Hydrodynamic Transport in Porous and Fractured Media from
Pore to Reservoir Scale. Transport in Porous Media, 2016, 115 (2), pp.345 - 385. 10.1007/s11242-
016-0693-z . hal-01449131

HAL Id: hal-01449131
https://hal.science/hal-01449131
Submitted on 30 Jan 2017

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.


https://hal.science/hal-01449131
https://hal.archives-ouvertes.fr

Noname manuscript No.
b(will be inserted by the editor)

Benoit Noetinger et al.

Random walk methods for modeling hydrodynamic
transport in porous and fractured media from pore to
reservoir scale

Benoit Noetinger - Delphine Roubinet -
Jean-Raynald de Dreuzy - Anna Russian -
Philippe Gouze : Tanguy Le Borgne -

- Frederick Delay

Received: date / Accepted: date

Abstract Random walk (RW) or Continuous Time Random Walk (CTRW) are
recurring Monte Carlo methods used to model convective and diffusive transport
in complex heterogeneous media. Many applications can be found, including fluid
mechanic, hydrology, and chemical reactors modeling. These methods are easy to
implement, very versatile and flexible enough to become appealing for many appli-
cations because they generally overlook of deeply simplify the building of explicit
complex meshes required by deterministic methods. RW and CTRW provide a
good physical understanding of the interactions between the space scales of het-
erogeneities and the transport phenomena under consideration. In addition, they
can result in efficient up-scaling methods, especially in context of flow and trans-
port in fractured media. In the present study, we review the applications of RW
or CTRW for several situations coping with various spatial scales, and different
insights into up-scaling applications. RW and CTRW advantages and downsides
are also discussed, thus providing a few avenues for further works and applications.
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1 Introduction

In the early 20 th century, thanks to seminal contributions of major scientists
such as Einstein, Langevin, le Chatelier and Wiener among others, the Random
walk (RW) approach introduced the first quantified depiction of brownian motion
which resulted ii a fruitful microscopic picture of the diffusion mechanism [Scher
et al., 2002a]. The conceptual simplicity of RW associated with its easiness of im-
plementation were conducive to a fast dissemination of associated techniques and
algorithms in many areas of science, from biology and colloidal science to modern
finance, including statistical physics, chemical engineering, and geosciences. Re-
garding the latter topic, many applications can be found in the field of hydrology,
oil and gas industry or subsurface repository of various wastes. As an illustration,
RW techniques can also be used as a direct simulation technique of passive tracer
or pollutant transport in aquifers[Kinzelbach, 1988, Kinzelbach and Uffink, 1991,
Zimmermann et al., 2001, Hoteit et al., 2002b, Delay et al., 2005]. At the labora-
tory scale, the recent advances in the imaging techniques of rock textures provide
high resolution pictures of the pore space [Nunes et al., 2015]. This very exhaus-
tive and complex information needs for post-processing to infer effective transport
properties in porous media such as permeability, porosity, and electrical conduc-
tivity, to mention a few. For example, electrical conductivity was first computed
in using RW by [Kim and Torquato, 1992] and several authors ([Sahimi, 2011] and
reference therein). At the same pore-to-sample scale, RW techniques were also
used to interpret NMR data ([Néel et al., 2011, 2014, Guillon et al., 2013, 2014,
Fleury et al., 2013]). At a larger scale, typically from m to km, a major issue of
various applications, especially those performing flow and transport simulations
over subsurface reservoirs, is in the capability of accounting for the detailed nat-
ural variability of the host medium with the maximum accuracy (some km in the
case of aquifers or oil & gas reservoir). These applications range from a better
understanding of the fate of pollutants in the subsurface, to improving oil and gas
recovery. At the large scale, most calculations are still performed using Finite Vol-
ume, Finite Difference or Finite Element approaches requiring a high resolution
and cumbersome meshing to represent the geometry of the modeled domain. How-
ever, because the size of an elementary mesh can be too large, discrete descriptions
of the domain may also require the availability of effective transport equations at
the scale of the mesh and accounting for eventual unresolved sub-grid scale effects.
In most cases, it is assumed that transport is still ruled by the Advection Disper-
sion Equation (ADE) which is of questionable validity at the small scale [Matheron
and De, 1980, Bouchaud and Georges, 1990, Berkowitz and Scher, 1998, Berkowitz
et al., 2000, Néel et al., 2011, Scher et al., 2002a]. In addition, the parameters as-
sociated with flow and transport are usually poorly known a priori and need to
be assessed by facing model outputs with available data. RW techniques are good
candidates for both identifying sub-grid effects and parameters ([Berkowitz and
Balberg, 1993, Néel et al., 2011]). In particular, obtaining valuable descriptions
of transport in low permeability media concealing widespread heterogeneities in-
volving stagnant zones, adsorption and chemical reactions properties is of major
interest. These highly disordered media can exhibit very rich anomalous transport
properties preventing any classical description relying upon standard Darcy’s law
and ADE. RW methods can for instance represent ” fractional derivative” transport
equation accounting for memory effects over wide time ranges. [Matheron and De,
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1980, O’Shaughnessy and I. Procaccia, 1985, Charlaix et al., 1987, Barker, 1988,
Chang et al., 1990, Bouchaud and Georges, 1990, Metzler et al., 1994, Noetinger
and Gautier, 1998, Metzler and J. Klafter, 2000]. In the extreme case of frac-
tured media, Continuous Time Random Walk (CTRW) or Time Domain Random
Walk (TDRW) algorithms techniques were succesfully applied to determine trans-
fer functions useful for implementing so called dual porosity modelsNoetinger and
Estebenet [2000], Noetinger et al. [2001b,a].

RW algorithms are very well suited to capture the motion and the spreading
of a diffusive set of particles representing a tracer plume in an advecting flow field.
The rather subtle interplay between molecular diffusion and the heterogeneous
velocity field can be simulated directly, providing a clear physical understanding
of the relevant characteristic times and scales prevailing during transport. Ana-
lytical results of the Taylor and Aris [Taylor, 1954, Aris, 1956] dispersion can be
retrieved. In turn, these results can be used to estimate dispersivity in more com-
plex geometries. In the case of spatially varying diffusion coefficients, including
discontinuous cases, the RW may experience some difficulties. To avoid spurious
accumulation of particles in low diffusivity zones, some ”reflection rules” have to
be imposed at the locations of discontinuities. [Kinzelbach, 1988, Kinzelbach and
Uffink, 1991, Hoteit et al., 2002b]. In addition, the algorithm can become ineffi-
cient in low diffusivity zones because the spatial time step needed for an accurate
resolution of transport can become very small. Both issues can be corrected using
suitable time step increments that avoid expansive and unnecessary iterations in
low velocity and low diffusion zones.

Anomalous dispersion effects mainly due the persistence of large scale corre-
lations in a flow field can thus be simulated using CTRW with suitable kernels
[Berkowitz and Scher, 1998, Berkowitz et al., 2000, Néel et al., 2011, Scher et al.,
2002a,b]. . Regarding their numerical part, CTRW methods can be implemented
using structured or unstructured meshes, which allows to tackle the problem of
diffusion in very complex media, including fracture networks [Noetinger and Es-
tebenet, 2000, Noetinger et al., 2001b,a, Roubinet et al., 2010, 2013]. Adsorption
phenomena, as well as chemical reactions can be accounted for. By nature, RW and
CTRW are very well suited for highly parallel computing architectures which can
be useful to perform calculations over complex domains or when moving multiple
reacting species in solution.

RW and CTRW methods provide interesting insights into transport mecha-
nisms that can enlighten us about our understanding of mixing processes in disor-
dered flows. In the case of fractured media, a careful interpretation of the output of
CTRW simulations give efficient and direct tools to parameterize multiple porosity
large scale models by way of a complete determination of transient transfer func-
tions [Noetinger and Estebenet, 2000, Noetinger et al., 2001b,a, Roubinet et al.,
2010, 2013]. These functions can thus help to set up multiple rate transfer models
[Haggerty and Gorelick, 1995]or Multiple Interacting Continua (MINC) models
[Narasimhan and Pruess, 1988]. Characteristic exponents associated with anoma-
lous diffusion/dispersion processes can be estimated using RW methods [Arcan-
gelis et al., 1986, Berkowitz and Scher, 1997, Carthy, 1993b, Koplik et al., 1988,
Bouchaud and Georges, 1990], as well as the REV or mixing lengths, even if large
scale practical simulations still remain the playing field of conventional meshed
models.
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The goal of the present paper is to review the state of the art regarding appli-
cations of RW, TDRW or CTRW to the up scaling of flows and mass transfers in
heterogeneous and fractured media.

The contribution is organized as follows. We first review the underlying theory
of RW and TDRW algorithms for solving an advection diffusion equation. Next,
numerical issues are addressed, from fully coupled advection dispersion diffusion
equations to purely diffusive issues including heterogeneous, fractured media and
the double porosity large scale description. Finally applications from pore to field
scale, including radial flows to a well.

2 Theoretical Background for Random Walk Methods

This section summarizes the basis on which random walk methods to describe
solute transport in heterogeneous media are built on. We start with classical or
discrete time random walks, then briefly review its generalization to continuous
time, the continous time random walk (CTRW) framework. Based on the CTRW
approach, we report the bases of the time domain random walk method (TDRW).
Finally, we review the use of the CTRW as an average transport framwork for
transport in heterogeneous media.

2.1 Classical (Discrete-Time) Random Walks

Classical random walk particle tracking is based on the equivalence between the
Fokker-Planck equation and the equation of motion of solute particles, which move
due to advective and diffusive-dispersive mass transfer. A general Fokker-Planck

equation for the scalar quantity P(x,t) can be written as [Risken, 1996]
OP(x,t
%-FV- [v(x)P(x,t)] + V& V: [B(x)P(x,t)] =0, (1)

where ® denotes the outer and : the inner tensor product. The drift and dispersion
tensor are denoted by v(x) and B(x). As shown in Appendix A, this Fokker-Planck
equation is exactly equivalent to the Langevin equation

B0 — vix(0] + | ZBI0] ) .

where y/B(x) is the square-root of the tensor B(x), (¢) denotes a Gaussian white
noise characterized by zero mean (¢(¢)) = 0 and variance (¢;(t)(;(t')) = 8:;6(t—t').
The angular brackets denote the noise average over all particles. The particle
distribution P(x,t) can be written in terms of the particle trajectories x(¢) as

P(x,t) = (3x - x(t))). (3)
We call this modeling approach also a discrete time random walk because particle
positions are incremented in constant time intervals as

t+dt

X(t+ dt) = x(£) + v[x(O)]dt + \/2B[x(8)] - w(b), w(t):/dt'('(t/). (4)

t
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Note that we use here the Ito interpretation of the stochastic integral [Risken,
1996]. The random increment w(t) has zero mean and variance (w;(t)w;(t)) =
5ijdt.

Solute or heat transport as well as hydraulic head propagation in a heteroge-
neous porous medium, however, is in general not described by a Fokker-Planck
equation of the form (1), but the advection-dispersion equation (ADE) for the
scalar ¢(x,t)

o(x) 60(5;, t + V- [u(x)e(x,t)] = V- [D(x)Ve(x,t)] = 0. (5)

For solute transport ¢(x,t) denotes concentration, ¢(x) porosity and D(x) is the
hydrodynamic dispersion tensor. For hydraulic head propagation, we set the flow
velocity u(x) = 0, ¢(x) denotes specific storage and D(x) denotes the hydraulic
conductivity tensor. It is important to note that c¢(x,t) in (5) is not a conserved
quantity because (5) is not mass conservative. Thus, we define the conserved

P(x,t) = ¢(x)e(x,t). (6)
The latter satisfies the equation
OP(x,t) u(x) P(x,t)]
o +V. {Mp(x,t)} -V l:D(X)V () } =0. (7)

We can reformulate this equation in the form of the Fokker-Planck equation (1)
as
0P (x,t) {u(x) V- D(x)] { ]
%Y Ly (B VP px ) VeV | px, )] =0, (8
o eI R oo 0 =0 )
Through the equivalence between (1) and (2), we find the Langevin equation that
is equivalent to (5) as [Kinzelbach, 1988]

D(x)

dx(t) _ ulx(®)] | V-D[x(t)]  /[2Dx(t)]
dt - ¢x(t)] Px(t)] ¢[x(t)]

The solute concentration ¢(x, t) is given in terms of the particle trajectories through (3)
and (6) as

-C(1). (9)

(3x — x(0)))

e t) = 5

(10)

2.2 Continuous Time Random Walks

We present here a generalization of the previous discrete time random walk picture
to continuous time [Berkowitz et al., 2002, 2006]. The particle position and time
are now incremented at each random walk step as

Xn+1 = Xn + A(Xn), tnt1 = tn + 7(Xn). (11)
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The random space and time increments A(x,) and 7(x,) can in general depend
on the particle position and they can be coupled [Scher and Lax, 1973a], such that
they are characterized by the joined probability density function (PDF) 4 (a, t; x).
Notice that both space and time are continuous variables. The particle density
P(x,t) can be described by the following system of equations [Berkowitz et al.,
2002, Srinivasan et al., 2010]

P(x,1) / dt' R(x, t') / dt"p(t": x) (12a)
R(x,t) = P(x,t)6(t) + [ da [ dt'¢(a,t’;x —a)R(x — a,t —t'). (12b)
Jof

The first equation states that the probability of a particle to be in [x,x + dx]
at time ¢ is equal to the probability R(x,t') that the particle is in [x,x + dx] in
[t',# 4+ dt'] and remains there for the duration of ¢ — #'. The marginal PDF of
transition times is given by

Ut = [ dav(atix) (13)

The second equation can be seen as a Chapman Kolmogorov equation for the
probability density R(x,t). The linear system (12) can be solved for the Laplace
transform of the particle density P(x,t), which gives after some algebra

Ap(a, \;x — a)

AP(x,\) = P(x,0) +/d d}(Ax_a)P(x a,))
Ap(a, A\ x)
/d PSP, (14)

Inverse Laplace transform gives the generalized Master equation [Kenkre et al.,
1973]

dth) /dt /daM(atx—a)P(x—at)

- /dt'/daM(a, fix — a) P(x, 1), (15)
0

where we defined the memory function

Ap(a, A x)

(16)

Under the assumption that M (a,t;x — a) is sharply peaked about 0 the spatial
convolution in (15) may be localized trough a Taylor expansion of the integrand
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about x [Berkowitz et al., 2002] such that

ap(x ) +/dt V- [v(x,t —t)P(x,t)]

- /dt VeV [B(xt—t)Px,t)] + =0, (17)
0

where the dots represent higher order contributions in the moments of M(a,t; x).
We defined the velocity and dispersion kernels v(x,t) and 3(x,t) as

v(x,t) = /daaM(a,t;x), B(x,t) :/daa@aM(a,t;x). (18)

2.3 Time-Domain Random Walks

Time domain random walk (TDRW) methods have been used as efficient alter-
natives to discrete time random walks for the solution of solute transport and
flow problems in heterogeneous media as described by (5). Complementary to the
classical discrete time random walk approach, the TDRW fixes the spatial particle
transition length and asks for the time that is needed to traverse this distance.
Evidently, this approach is in the spirit of the CTRW discussed in the previous
section. In order to elucidate this relation, let us consider the ADE (5) discretized
in space. Using a finite difference or finite volume discretization, it can be written
as as [Delay et al., 2002, Dentz et al., 2012, Russian et al., 2016]

o 20 S biyes 1) = S b, (19)

[i] [i]

where ¢;(t) is the concentration at voxel i. The notation >_[ij] Means summation
over the nearest neighbors of voxel i. The coefficients b;; are given in terms of
the flow velocity and dispersion coefficients as [Gjetvaj et al., 2015, Russian et al.,
2016]

bij = =2 2 =L 41 2
VT T (IUijl+ ) (20)

with the discretization length £&. We assume for simplicity that the discretization
is uniform and all grid cells, or voxels, have the same volume V and surface area
S. The velocity component u;; of u; is the flow velocity at voxel j in direction of
voxel ¢, that is u;; = uj - e;j, where the vector e;; points from voxel j to voxel
i. Thus, u;; > 0 implies that voxel ¢ is downstream from voxel j, and vice versa.
The dispersion coefficient Dij measures the dispersive mass flux between voxels
i and j. It is typically given by a suitable average of the dispersion coefficient in
neighboring voxels [Noetinger and Estebenet, 2000, Dentz et al., 2012].
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In order to see the equivalence with the CTRW approach, we proceed as
in Dentz et al. [2012] and write the generalized Master equation (15) in discrete
space,

WO~ [t S~ [ige = )Py = Myl — )R], @)
0

[i]

where we assume that there are interactions only between nearest neighbors. Fur-
thermore, we set P(x;,t) = P;(t) and M (x; — xj,t;%5) = M;;(t). We assume now
that the transition length and time PDF can be decoupled into v;;(t) = wi;jv; ()
with w;; the probability to make a transition from j to i. We furthermore specify
the exponential transition time PDF [Scher and Lax, 1973a]

¥ (t) = exp(t/7;)/7;. (22)

Thus, Laplace transform of the memory function M;;(t) simplifies to
Wi 4
Mij(t) =2, (23)
7j
The generalized Master equation then reads as

dPi(t)_ Wij o Wji o,
L) 5y ) - 30 P, (21)

lis] 7 lis]

Tj i

Identifying now P;(t) = ¢ici(t) and byj = wijd;/75, (19) and (24) are identical.
This means the discretized ADE (19) can be solved through a TDRW, whose
transition probability in space and transition time are given by

_ byt b

T — < 5 - (25)
Z[ij] bji

2.4 The Continuous Time Random Walk as an Average Transport Approach

The CTRW approach has been used as an upscaling framework to describe average
transport in heterogeneous media [Klafter and Silbey, 1980, Berkowitz et al., 2006].
The pioneering work of Scher and Lax [1973a] and Scher and Lax [1973b] models
the transport of charge carries in impure semiconductors with a CTRW whose
PDF of waiting times reflects trapping in the potential wells created by charged
impurities. This approach allowed for the explanation and prediction of observed
charge currents, or in other words, arrival time distributions, which show heavy
tails characteristic for anomalous transport. Since then, the CTRW has been used
as an approach to model the history-dependent average dynamics in wide range
of fluctuating and disordered systems inlcuding particle transport in pore-scale
and Darcy scale heterogeneous media [Berkowitz and Scher, 1998, 1997, Hatano
and Hatano, 1998, Berkowitz et al., 2000, Cortis and Berkowitz, 2004, Le Borgne
et al., 2008b, De Anna et al., 2013, Kang et al., 2014, Holzner et al., 2015], the
dispersion of light in heterogeneous optical media [Barthelemy et al., 2008], the



10 Benoit Noetinger et al.

description of financial distributions, animal motion, and many more [Klafter and
Sokolov, 2005].

The CTRW as an average transport or upscaling approach for heterogeneous
media, maps the spatial distributions of the fluctuating medium properties into the
(joint) distribution of transition length and times ¢ (a, t). Notice that in general the
joint PDF depends on the spatial position, as in Sections 2.2 and 2.3. This spatial
dependence is here homogenized by the ensemble average as outlined in Scher and
Lax [1973a] and Scher and Lax [1973b]. In order to illustrate this approach, we
adopt the method of Appendix B in Scher and Lax [1973a] for pure diffusion in a
medium characterized by spatially distributed particle traps [see also, Bouchaud
and Georges, 1990, Dentz et al., 2016a]. Our starting point is equation (19) for
a medium that is characterized by constant and isotropic dispersion properties,
but a spatially variable porosity, or retardation coefficient ¢;, which quantifies the
strength of the particle trap. Under these conditions, the coefficients b;; in (20)
simplify to

b= 522 (26)

Thus, the CTRW for this transport system is characterized by the joint transition
PDF

i) = 50s), i) =ep(~t/m)/T,  m=dmp,  (20)

where we defined 7p = ¢2/D; d is the dimension of space. Thus, equations (12)
read for this CTRW

Pit) = / dt' Ry (t') / At (£ (28a)
0

t—t’

Ri(t) = Po(t)8(t) + Z/dt Lot — )Ry (). (28b)

The average transport behavior can now be obtained by an ensemble average over
the disorder, this means here over the distribution over the ¢;. To this end, we
assume that the ¢; at different sites ¢ and j are uncorrelated. Now, we recall that
the R;(t) represents the probability per time that a particle has just arrived at site
i. Thus, it integrates information of all the other sites visited before. We further
recall now that the average number of new sites visited for an isotropic lattice
random walk in d > 3 spatial dimensions increases with the number of random
walk steps [Bouchaud and Georges, 1990]. This means that R;(¢) and 1;(¢) can be
assumed to be statistically independent because it is not very likely that a particle
returns to the same site. Thus, for d = 3 dimensions we can perform the ensemble
average through an integration of (28) over the distribution pg(¢) of point values
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of ¢;, such that we obtain

Pi(t)= [ dt'Ri(t') [ dt"¢(t") (29a)
farm) |

t—t’

Tult) = P50 + Y [t gt — R, 0, (20D)

[i3] o

where the PDF of transition times integrates the disorder distributions as

® exp (— —¢:D )
0(t) = [ depa(e) — 22 (30)
. dTD
0
Recall that the conditions for such an average transport description is that the
disorder experienced by the particle at subsequent steps needs to be independent.

In this spirit, CTRW has been applied to advective and dispersive transport in
heterogeneous media. For advection-dominated transport, the transition time 7 is
related to the advection time over a characteristic length £, which is of the order
of the correlation distance of the particle velocity along a streamline, such that

T = ;, (31)
where v is the particle velocity. The spatial correlation properties of Lagrangian
particle velocities along streamlines, and the representation of transport by CTRW
have been studied for pore and Darcy scale transport [Le Borgne et al., 2008a,b,
Kang et al., 2011, De Anna et al., 2013, Kang et al., 2014]. The relation between
the spatial distribution of hydraulic conductivity and transition times has been
studied in Edery et al. [2014]. The CTRW as an average transport approach has
been used for the interpretation and prediction of a wide range of anomalous and
non-Fickian behaviors observed in geological media [Berkowitz et al., 2006]. In the
following, we briefly summarize the behaviors of breathrough curves and spatial
concentration moments that are obtained in the CTRW framework for a transition
time PDF that decays algebraically as ¥(t) oc t 7177 with 0 < 8 < 2.

2.4.1 Breakthrough Curves

Hydrodynamic transport in natural formations is frequently characterized by break-
through curves, this means first passage time PDFs, or solute fluxes. Both are
essentially the same in the case of advectively dominated transport. The first pas-
sage time t(x1) at a control plane located at z1 can be formulated in terms of
particle trajectories as

t(x1) = inf[t|z(t) > x1]. (32)
The PDF of first passage times then can be written as

f@t 1) = (6]t — t(z1)])- (33)
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For an instantaneous particle injection into an infinite or semi-infinite domain, it
has been found [Berkowitz et al., 2006] that f(¢,z1) scales as the transition time
PDF

)

f(t,m) ot 7. (34)

2.4.2 Spatial Concentration Moments

Other observables that characterize the global plume behavior are the first and
second centered spatial moments of the solute distribution. The first mgl) and
(2)

second m,;’ spatial moments of P(x,t) are defined as

mM(t) = /ddmip(x,t) m®(t) = /ddmixjp(x,t) (35)

In terms of the particle trajectories, they are given by mgl)(t) = (z;(t)) and
mg)(t) = (z;(t) z;(t)). The second centered moments are a measure for the global
plume width, and are defined by

ki (t) = mi (1) — miD (Oym) (1), (36)

For the time behavior of the spatial moments, we distinguish the f-ranges between
0 and 1 and 1 and 2. For 0 < 8 < 1 it has been found that [Berkowitz et al., 2006]

ma(t) ot k11 (t) oc 27 Koo (t) oc tP. (37)
In the range 1 < 8 < 2 the moments behave as
ma(t) o t, k11(t) o 377, Koo (t) o t. (38)

These behaviors are valid in an asymptotic sense if there are time regimes, for
which the transition time PDF shows the power-law behavior (t) o< t~1=# for
0 < B < 2. For 8 > 2 the breakthrough and dispersion behavior is asymptotically
Fickian. Note also that one would expect that there exists a cut-off scale, maybe
linked to the largest velocity scale, after which the transition time PDF decreases
faster than a power-law. Such situations and the transitions form anomalous to
normal transport behaviors have been investigated in [Dentz et al., 2004].

3 Numerical Random Walk Particle Tracking Methods
3.1 Classical Random Walks
The simplest random particle tracking algorithm to solve the ADE (5) is obtained

by time discretization of the Langevin equation (9) using the Ito convention of the
stochastic integral,

x(t + At) = x(t) +
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In the heterogeneous case, including media characterized by discontin-
uous properties, the above formulation has several drawbacks. Intuitively, one can
anticipate spurious phenomena because of the Dirac delta function that appears
in the evaluation of the gradient of discontinuous diffusivity. In the present form
of RW, to account for these diffusivity discontinuities requires the implementation
of quite complex "reflection” rules of the RW at the interface between two media
Kinzelbach and Uffink [1991], Kinzelbach [1988], Zimmermann et al. [2001], Hoteit
et al. [2002b]. A second drawback is that in very low diffusion coefficient zones,
the basic algorithm leads to inefficient small spatial displacements. The particles
remain trapped in low diffusion zones, increasing the effective computational cost
which is proportional to the number of time iterations.

These drawbacks can be avoided by using alternative versions of the basic
RW algorithm. The main idea is using fixed spatial meshes instead of even time
steps. This leads to model diffusion over a fixed lattice or graph that can be
built with standard meshing tools. For its part, the residence time on a given site
becomes a random variable, with the meaning that the resulting algorithm belongs
to a wider class of algorithms, namely the Time Domain Random Walk (TDRW).
These TDRW algorithms are also particularly well suited to implementations on
highly parallel computing resources. An additional interest is that the resulting
formulation is quite close to the classical solutions as that provided by standard
numerical analysis.

3.2 Fully coupled advection-dispersion-diffusion equation

Introducing advective and dispersive terms in the same equation raises specific
numerical issues mostly linked to discontinuities in the dispersion gradient and to
the coupling between the first-order advective term and the second-order diffusive-
dispersive term. Nonetheless, RW methods remain widely used because of their
good numerical properties, irrespective the rate of advection to diffusion-dispersion
and also because they are easily implemented. Time domain variants have drasti-
cally improved the performances of RW methods, especially in heterogeneous me-
dia. At the local scale, hydrodynamic dispersion is generally modeled as a Fickian
diffusion with the diffusion-dispersion coefficient D(x) of equation (1) expressed
as a tensor of components Bear [1973]:

Dy; = (ar|v] + d)di; + (ar — ar) ==

v (40)

where d is the diffusion coefficient, Dy, and Dt are the longitudinal and transverse
dispersivities, v; is the velocity in direction x;, |v| is the norm of the velocity, and
05 is the Kronecker symbol. Along the principal directions of dispersion, this
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expression simplifies into

d+ ap|v] 0 0
D= 0 d+ ar|v| 0 (41)
0 0 d+ag]vl

where the first coordinate is taken along the direction given by the velocity and
the two other directions are in the plane normal to the velocity

Therefore, both the advective and dispersive terms require the determination
of the velocity v at any location the modeled domain, while Eulerian methods only
require the knowledge of velocities at the scale of the mesh cell. When the velocity
field has been obtained numerically from the discretization of the flow equation
over a calculation grid, the velocity is expressed within each mesh cell with appro-
priate methods. If the numerical scheme is based on flow conservative Finite Ele-
ment methods (e.g., Mixed Finite Element, Mixed Hybrid Finite Element) [Brezzi
and Fortin, 1991, Hoteit et al., 2002a, Mosé et al., 1994, Pichot et al., 2010, Roberts
and m. Thomas, 1991], velocity is directly derived from a combination of the finite-
element basis functions [Hoteit et al., 2002b]. With more standard Finite Element
approaches, conservative velocity scheme can still be derived using flux-conserving
sub-cell subdivisions [Cordes and Kinzelbach, 1992, 1996]. For Finite Difference
and Finite Volume schemes, velocities are most commonly calculated within mesh
cells with multi-linear interpolations (linear along the different directions of the
meshing) [Pollock, 1988]. In fact, only the linear interpolation scheme is flux-
conservative. In the specific cases handling regular grids, the linear interpolation
scheme can also be derived from the equivalence between Finite Volume methods
and Mixed Hybrid Finite Element schemes [Chavent and Roberts, 1991]. While
mass-conservative transport schemes require flux-conservative schemes, they do
not impose any condition to the transverse velocity across mesh faces that appear
in general to be discontinuous. Associated with multi-linear interpolation schemes,
shear deformation accumulates in the edges of the mesh cell and is zero outside.
This is a strong limitation when studying solute mixing mechanisms with geo-
metrical and process-based analysis Borgne and T. [2015]. Alternative quadratic
velocity interpolation schemes have been proposed to ensure non-slip boundary
conditions at impervious limits Nunes et al. [2015]. Mass conservation conditions
are no longer fulfilled locally but they are globally, over cell facets. Such type of
interpolation scheme is appropriate in the presence of numerous no-flow boundary
conditions (e.g. at the pore scale).

While classical Eulerian schemes only need the expression of the dispersion D
Zheng and Bennett [2002], random walk methods also require the dispersion gradi-
ent (equation (2)), and thus the velocity gradient. This is an important specificity
of RW methods that conditions the choice of both the numerical schemes and
implementation methods. The main difficulty stems from the discontinuity of the
velocity gradient and hence of the dispersion gradient across cells. We first under-
line that the effect of the discontinuity at the cell facet is not systematically critical
and is sometimes negligible compared with the other effects of transport. This is
the case for heterogeneous permeability fields like the classical multi-Gaussian log-
normal fields for which the transition between high and low flow zones remains
gradual enough Salamon et al. [2006]. While not fully tested, this point was hinted
in previous studies Tompson and Gelhar [1990]. In these conditions of heterogene-
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ity, random walkers are much more dispersed by the velocity field and its gradient
within the mesh cells than by discontinuities at the cell interfaces.

At the other extreme, dispersive effects of discontinuities are critical for the
sharp transitions of velocities tangent to the main flow direction Uffink [1985].
The first methods for handling the dispersion discontinuity were based on reflec-
tion principles approximating the complete solution to the discontinuous interface,
which can be obtained through the method of images. Bechtold et al. [2011], Hoteit
et al. [2002b], Semra et al. [1993], Uffink [1985]. When crossing the interface, ran-
dom walkers are either reflected or transmitted. Starting from the higher dispersion
side, random walkers are more likely reflected than dispersed, thus preventing from
spurious accumulation of particles in the lower dispersive side. While conceptually
simple, these methods raise implementation and performance issues. In multidi-
mensional domains, random walkers can be reflected by several close interfaces,
especially in the vicinity of cell corners. In low flow zones, random walkers may
remain close to the interface and cross it numerous times, with the consequence
of slowing down the algorithm.

TDRW methods are in essence more appealing than RW because their random
walkers stop at the interface before being transferred to neighboring cells Bodin
et al. [2007], Delay and Bodin [2001]. The time of flight to the interface is drawn
from exact or approximate analytical solutions to transport in homogeneous me-
dia. Developed first in one-dimensional media for simulating solute transport in
fracture segments Bodin et al. [2003], Painter and Cvetkovic [2005], TDRW have
been extended to multidimensional media Bodin [2015], Delay et al. [2002]. When
local analytical solutions of the travel time distribution can be obtained, TDRW
methods are highly efficient to couple the advective and diffusive/dispersive trans-
port processes. In the absence of local analytical solutions, alternative methods
have been developed as a mix between ”space-domain” random walk (classical
random walk) and time-domain random walk and trying to combine both the
spatial and temporal advantages. The constant displacement scheme consists in
choosing a spatial scale Az much smaller than the mesh scale 1 and deriving the
time step At from the spatial scale divided the local velocity v Beaudoin et al.
[2007], Wen and Gomez-Hernandez [1996], de Dreuzy et al. [2007]: At = Az /v.
The classical space-domain random walk method is then run once for this time
step At using both advection and dispersion mechanisms. The control by the ve-
locity at the location of the random walker ensures that the mean displacement
remains always equal to Ax. The characteristic number of steps taken within the
mesh cell n can be obviously fixed by choosing Az = [/n. The varying time step
At according to the location in the domain controls evenly over the whole domain
the balance between accuracy and efficiency. This method combines some of the
efficiency of the TDRW method by fixing the mean displacement and the gener-
ality of the classical Space-Domain RW. It also fundamentally respects the flow
structure within the mesh cell because the small displacements correctly follow
the structure of flow lines in each cell. In classical implementations, dispersion dis-
continuities treated by the reflection method is again an issue. It could be solved
by switching to TDRW when the random walker comes close enough to one of the
cell facets. Close to cell corners, only the interface in the direction of the veloc-
ity could be considered. In terms of implementation, RW and TDRW methods are
interesting because they are based on a double particle and space decoupling. Ran-
dom walkers are independent from each other and their behavior remains local.
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Except for velocity gradient discontinuities at interfaces, random walker motions
do not need any other information than the mesh cell properties. The implementa-
tion can be made generic to mesh structures by specifying the transport operator
at the mesh cell scale. Performances can be enhanced with memory-distributed
as well as computation-distributed parallel methods. Memory-distributed meth-
ods are appropriate to large computational domains that cannot be stored on the
hardware managed by a single processor Beaudoin et al. [2006, 2010], Beaudoin
and de Dreuzy [2013], Kaludercic [2004]. Computation-distributed methods are
used for smaller grids when high accuracy requires a huge number of particles
Barker et al. [2012]. Even though implementation costs can be significant, they
might be factorized to any mesh cell type simply because the specificity of the
mesh only appears locally when tracking the random walkers within the mesh
cells.

3.3 Purely diffusive issues
In the case of purely diffusive issues, u(x) = 0, we are led to solve

qﬁ(x)w = V.(DE)Ve(x, 1)) + 5(x, £) (42)

In the hydrogeology practice, or in the oil and gas industry, D(x) is the diffusivity
given by D(x) = %,
of the medium (rock plus fluid). A source term in the form s(x,t) representing
either sources and sinks, or boundaries has been added in the right hand side
of the equation. Note that the equation can describe either tracer, thermal or
pressure diffusion in a porous medium of weak compressibility. The linearity of
this equation allows us to consider the cases where s(x,t) is in the form 6(¢)d§(x —
x0). This means that we are interested in the Green’s function of the previous
equation. To go farther, a first step is to represent properly the heterogeneous (or
fractured) medium by means of a geometrical meshing. In a second step, using a
suitable numerical scheme results in a discrete set of equations to be solved. Finally,
RW methods are used to solve the equations and to glance at some information
concealed in these equations.

w is the fluid viscosity and ¢; the total compressibility

3.8.1 Discretisation of heterogeneous and fractured media

A discretization of the medium can be obtained via any available mesh builder
handling triangular or quadrangular elements (or the corresponding elements in
the three-dimensional case). In the case of bulk heterogeneities such as those gen-
erated by geostatistical methods, any sufficiently refined meshing compared with
the underlying correlation length will capture most of the heterogeneities 3.3.1.

In the case of sharp heterogeneities enclosing discontinuities such as between
different layers, it is assumed that the meshing follows the discontinuities. In the
case of densely fractured media, building conform meshes (i.e. to make it simple
not too much distorted) closely following the discrete network of fractures becomes
quite infeasible 3.3.1.



Random walk methods for modeling hydrodynamic transport from pore to reservoir

17

FaEE

ML

F_

&
g

Fig. 1 An heterogeneous medium and the associated mesh

VAVAVAVAVAVAVAVAVAVAIAVANS

PO <\ N
VAV, ZAVAVAN P ANAVAN|
NANNNSIGSSSSGKAAN AN/
NV VAYAVAVA VAVAVAVAVAVAN VAV ZaVAVANY
YAVAYAVAVA"aVAVAVAVAVAYAN SaVaV beuVaVs
UROOORELOOOCDOEEON
¢ ' Vavia
N AAAAANAIEKARKEIGRK?
s AVAVAVAVAVAVAVAVAAVANVAVAVAVAVAN "4V, Y,
AR IEERk
NVAVAVAVAVAVAVAVAVAVAVAVAY,o A VAVA VAT AV
NSNS AN

NAVVAVAVAVANN 7Y
S0 NVAVAAYAAVAVAR 7AVVVAVAS s

>
»;g ravi NNNNNENNNNRR

NANNLK/
PRI INNOERO0 uﬁ‘;

B U X
R

rectangular
fracture eleme

Fig. 3 Local zoom of the mesh

\
Amuuﬂuwm&pﬁv
VA'éVAVAVAV(éVAVAVA'éVAVAVAVEgEﬂWENAVAV

K
30008
(AVAVAN SSVAVAVz
VaTAVAVAN VAVAVAV.rAV 2 VAV WAV A VAVAVAVsg
‘VAVAVQ";VAVAVAVA'AVA&VAVAWAhgvA
I ARSI
N (Y=
WXIN RISV
VAVAVAVAVAVAVAY

V

nt

\ i‘ (int)
Sfracture

intersection element

matrix element



18 Benoit Noetinger et al.

In the second step, the diffusion equation (42) can be discretized using Finite
Volume or Finite Element methods, yielding usually a linear differential set of
equations in the form of:

Vigi P = S Typ(t) — pilt))
ot j neighbor 4 I (43)

+ fgrid block iS(X, t)dx'

This discretizing step can result in additional geometrical constraints for the mesh-
ing that are beyond the scope of this study. Using for example a Finite Volume
scheme on a Cartesian regular grid of spatial step Az, the discretized version of
this equation in D dimensions for each grid block of size (Az)” can be written as:

(Az)Po; 20 = 5> Ty(ps(t) — pilt))
j neighbor ¢ (44)

+ fgrid block 1 S(X, t)dX

The summation is carried out with respect to index j labeling the nearest neighbors
of the current grid block 1.

It remains to define the so called transmissivities or inter block conductivities
T;; between the two adjacent grid blocks ¢ and j with respect to the underlying
heterogeneous map. A classical choice is the harmonic mean given by:

did;

T =2————
(di + dj)

(45)

where subscript i indicates that the values are evaluated at the center x; of the
i-th grid block. This provides a consistent discretization of (43) ([Carthy, 1993a,b,
1991, 1990]). In the particular case of a fractured porous medium, mixing hydraulic
properties of fractures and matrix, a different choice is usually taken by assigning
diffusion coefficient to meshes i in the form:

[ dm, if Xi € 2,
= {dﬂ if xi € 9f~} (46)

Here, {27 and §2,, represent the fracture and the matrix domains, respectively.
Using a sufficiently refined grid, allows to rely upon standard Euler time discretiza-
tion and solvers to produce accurate solutions of the discretized version of (43)

It is noteworthy that many discretization methods yield linear systems in the
form of (43). Combining various mesh generation methods with compatibles dis-
cretization schemes for the diffusion operator will always render the same gen-
eral form of the discretized equations, the latter simply changing by the sten-
cil of neighbor cells involved in each equation and the formulas of inter-block
transmissivities(45). A rather complete analysis of this last issue can be found in
Romeu and Noetinger [Romeu and Noetinger, 1995]. It was observed that con-
vergence to the solution of the continuous equations can be greatly accelerated
according to the meshing and discrete scheme used. More recently, Wang et al
[Wang et al., 2014, Qu et al., 2014]detailed the local flow field close to the cor-
ners between adjacent grid blocks. These authors were able to justify the general
power law averaging as the rule for generating inter-block coefficients by using the
so called ”finite analytic approach”. It must be kept in mind that in the case of
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extreme contrast, the standard choice of harmonic means (45) can provide severe
underestimations of the large scale diffusion, because the harmonic mean is mainly
controlled by the smallest value. In the case of percolation lattices involving highly
contrasted properties, the percolation threshold might be artificially shifted. In the
sequel, we will no longer come back on the choice of inter-block parameters even
though it is an important feature for solving flow and transport equations.

3.4 Random walk methods for dual-porosity models

Fractured media are generally made of highly conductive fractures present at sev-
eral scales and embedded in a low permeability matrix. This high contrast of
properties led to the introduction of dual-porosity models where matrix and frac-
tures are treated separately and coupled through an exchange term. These models
have been used to simulate various processes, such as fluid flow [Barenblatt and
Zheltov, 1960, Warren and Root, 1963], solute transport [Dershowitz and Miller,
1995, Cvetkovic et al., 2004], and electric current flow [Roubinet and Irving, 2014],
and they can also be associated with Discrete Fracture Network (DFN) approaches
to consider the geometrical complexity of realistic fracture networks [Cacas et al.,
1990, Delorme et al., 2013a]. In the purely diffusive case, these models can be ruled
by the following equation:

(65V8(1) + Vi 1))+ 2001

Here, V¢ and V,, denote the volume fractions of the fractures and the matrix,
respectively, and ¢ ¢, are the associated porosity. Introducing the Laplace trans-
form defined by !

= V.(D(x)Ve(x,1)) + s(x, t). (47)

+oo
a(s) = [ exp(=st)altyi (48)
The Laplace transform of eq (47) yields:
(0£ Vs + dmVin f(s))(sc(x,5) — e(x,t = 0)) = V.(D(x)Ve(x, s)) + s(x,s).  (49)

In some dual-porosity models, RW methods have been used for: (i) up-scaling
the transfer properties required to describe the fracture-matrix interactions, (ii)
directly solving the considered flow or/and transport problem, and (iii) evaluating
the flow or/and transport effective properties. In this section, we describe a few of
these applications distinguishing the dual-porosity models based on a continuous
representation of the fractures (Section 3.5) from models based on an explicit
representation of the DFN (Section 3.5.1).

3.5 Continuum dual-porosity models
Solving fluid flow in fractured porous media can be performed by resorting to a

continuous dual-porosity model, such as the one described in Appendix B. The
model description handled in the present study lets appear transfer functions and

1 In order to simplify notations, functions with ”s” variables correspond to Laplace trans-
forms throughout the rest of the paper.
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coefficients between fracture and matrix continua, denoted f(t) and X, respectively.
Although these functions and coefficients can be determined analytically for sim-
ple cases (expressions (71)-(72)), a numerical evaluation is required for complex
cases. In this context, Noetinger and Estebenet [2000], Noetinger et al. [2001a,b],
Landereau et al. [2001] applied directly a TDRW method (named CTRW in their
papers) to determine these transfer parameters. The key observation Noetinger
and Estebenet [2000], Noetinger et al. [2001a] is that f(¢) can be interpreted as
being the probability density function (pdf) of the first exit time distribution of
a particle initially launched from a random location, then undergoing a random
motion in the matrix and finally exiting in the fracture domain at the matrix
boundary. This function f(¢) may also be identified as the local memory intro-
duced for general mobile-immobile physical and chemical interaction processes
Carrera [1998], Willmann [2008]. The following expansion, which can be verified
explicitly in the few analytical solutions of f(s) provided in the appendix B can
be derived Noetinger and Estebenet [2000], Noetinger et al. [2001a]:

PmVim

fs)=1- 22

s+ o(s). (50)

Recasting the equation in the real domain yields (t) = O+°° tf(t)dt = "b’")\VW There-
fore, the mean residence time of random walkers in the matrix is directly related to
the transfer coefficient introduced in double porosity models. It is possible to show
mathematically that the A coefficient arising from this definition exactly coincides
exactly with the coefficient obtained from large scale averaging or homogenization
theory Noetinger et al. [2001b]. These considerations result in the following algo-
rithm that provides a full determination of the exchange function f(¢) as well as

the parameter a. Without loss of generality, we assume ¢,, = 1.

1. choose the number N of independent particles.

2. To start the i-th particle, choose one matrix node j;with a probability pro-
portional to the volume of the associated grid block, k=1.

3. While the particle has not left the matrix, at step k of the algorithm, displace
the particle from the site “i” to its nearest neighbor site “j”, with a probability
equal to b;;.

4. Update the time counter with the relation:

th =th—1 — %Log(rund).
(2

Here, rand stands for a random number picked from a uniform distribution
over [0,1].

5. If the particle enters a grid block belonging to the fracture region at iteration
k, store the exit time t* = ¢; of the current particle i and launch the i+1 th
particle.

6. Store the N independent exit times t(l),..., V)

7. End.

It is thus easy to obtain an estimation of the histogram of the distribution yielding
f(t). The quantity A can be estimated by means of the relation

Vo . Vm
RS AT

>\:
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Therefore, the above algorithm returns a direct determination of the complete
exchange function; it is very fast and efficient because there is no need of iterations
(particle motions) in the fractures. The algorithm was successfully tested on simple
geometries consisting of a parallel set of fractures and provided good comparison
with existing analytical determinations of both f(¢) and A, fig 3.5. Further tests
on simple DFN’s with some randomness in the fracture characteristics were also
carried out.

|
| —CTRW (FMF)
Jﬁ | — -CTRW (MF)
Sor | Finite Volumes
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Fig. 4 Left: a fractured medium. Right: transfer function by TDRW and by finite differences.

It remains to characterize transfer functions for complex DFN’s. Finding generic
analytical forms generalizing the equations (70,71, 72) and allowing us to account
for very wide distributions of matrix block size remains to be done. At short times,
corresponding to large Laplace parameter s, f(¢) function is sensitive to the frac-
ture’s surface to volume ratio. At larger times, f(¢) samples the whole block size
distribution, making that some fractal and thus ”"anomalous” power law behavior
may be anticipated. This could lead in the real time domain to anomalous trans-
fer kernels equivalent to fractional derivatives Néel et al. [2011, 2014]. There is no
doubt that the preceding TDRW method will be useful to feed the investigations
with numerical results. Figure 3.5 shows a realization of a percolation lattice with
a proportion p = 0.57 of active fractures. In figure 3.5, we plotted the dependence
p — pc of the mean residence time in the matrix (of diffusivity one unit) with
respect to the proportion of active fractures. The different curves correspond to
different mean residence times (¢) that depend on the fracture subnetwork that
was kept, i.e., all the fractures including non-relevant isolated clusters, or only the
percolation backbone. Intermediate curves correspond to different treatments of
the remaining clusters. One can note that keeping the whole set of fractures (red
dots) in 3.5 does not lead to any critical divergence of the mean residence time
close to p.. Further studies should be carried out to get a better characterization
of the associated critical exponents.

Note that random walk methods have also been used in continuum dual-
porosity models to directly model transport in fractured porous media [Liu et al.,
2000, Pan and Bodvarsson, 2002a]. In the previous studies, advection-dispersion
equations are considered in the fracture and matrix continua, and a probability of
transfer between these two continua is defined analytically.
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Fig. 6 Exchange coefficient computed for the percolation network p=0.57

3.5.1 Discrete dual-porosity models

In the preceding paragraph, it was shown that the transfer function f(¢) could
be determined efficiently using TDRW. Once f(t¢) is found applications can be
envisioned by using the double porosity equations (61) or the alternative form
(64). Another option is to keep the details of the DFN explicitly. Some studies
by Chang and Yortsos Chang and Yortsos [1990], Acuna and Yortsos Acuna and
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Yortsos [1995] were carried out in this spirit using two-dimensional DFN close
to the percolation threshold. The matrix to fracture flow was ignored. A three-
dimensional generalization and a solution to include matrix to fracture flow was
proposed in Noetinger and Jarrige [2012],noetinger2015. By introducing the set of
fracture intersections labeled by j, and denoting P; as the average pressure on the
j-th intersection, it is possible to derive the following set of equations:
. 11 ap. j(t) _ 11 p
Vi=1,Nn, > Kij (Vid(t) + Vi f(t)) * —5 = > VT Pi(t). (51)
jeJI(3) jeJ (%)

To simplify notations, both matrix and fracture porosity are here equal to unity.
The quantities K iljl and Tiljl depend explicitly on the shape of the fractures and
can be determined with fast algorithms Khvoenkova and Delorme [2011], Delorme
et al. [2013b]. We identify a discrete form of the set of equations (64) that can
be solved using TDRW with trapping as introduced by Dentz et al Dentz et al.
[2012], equations (26) and (29) (30) and (31) of their contribution. Identification
of the formalism by Dentz et al. and Eq. XX is obtained by stating

1

(Vi + Vi f(s)) = ix5)

(52)
where p(x, s) is the local memory function introduced in Dentz et al. [2012]. To
summarize this section, one can state that TDRW is useful to both:

— determine f(t) using random walkers in the matrix only, the DFN acting as a
boundary
— once f(t) properly known, solving equations 51 to up-scale the DFN.

TDRW methods associated with an explicit representation of the DFN have
also been used to model transport processes in fractured media. Some models
only consider advective displacement in the fractures with the aim of studying
hydrodynamic dispersion in two-dimensional heterogeneous percolation networks
[Rivard and Delay, 2004]. In these studies, binary and log-normally distributed
hydraulic conductivity fields are considered, and the impact of this heterogeneity
on the longitudinal dispersion coefficient is analyzed at the percolation threshold.
In other models, advection-diffusion mechanisms in the fractures and pure diffu-
sion in the matrix are considered, with sometimes a mesh-free representation of
the matrix. This dual-porosity formulation enables one to reduce the numerical
cost and the algorithm complexity related to the meshing step of each simulation.
With these techniques, particles only move in the fractures and their diffusion into
the surrounding matrix is considered via an additional retardation time [Cvetkovic
et al., 2004, Dershowitz and Miller, 1995, Roubinet et al., 2010]. When this retar-
dation time is deduced from analytical solutions, it relies on specific physical and
geometrical assumptions. For example, Dershowitz and Miller [1995] consider a
pure-diffusion equation in matrix blocks of regular shape, whereas Cvetkovic et al.
[2004] make use of retention models based on analytical solutions of fracture-matrix
systems (e.g., Tang et al. [1981]). In the latter case, the matrix surrounding each
fracture is assumed infinite with the meaning that matrix diffusion is not limited
by the presence of nearby fractures. To overcome this limitation, Roubinet et al.
[2010] add the possibility for each particle to transfer from one fracture to another
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by diffusion through the matrix blocks. The method is applicable to heteroge-
neous fractured porous media without restriction on the matrix block geometry
or network density.

The numerical methods previously described have been used to evaluate up-
scaled transport properties and to analyze the impact of structural heterogeneity
on the large-scale transport behavior of fractured media. In Cvetkovic et al. [2004],
Painter and Cvetkovic [2005], Painter et al. [2008], up-scaled transport properties
are first evaluated over small discrete fracture networks, and then used to per-
form large-scale simulations. This efficient two-step method has been applied to
the Aspé Hard Rock Laboratory in Sweden [Cvetkovic et al., 2004, Painter and
Cvetkovic, 2005] and has been extended by accounting for first-order (kinetics)
transformation [Painter et al., 2008]. Other RW methods associated with a DFN
representation have helped to understand the impact of DFN heterogeneity on
large-scale effective transport properties. More precisely, Liu et al. [2007] focus
their study on the dependence with space scale of the effective matrix diffusion
coefficient deduced from field tracer experiments. This scale effect has been ob-
served in numerous characterization studies of fractured rocks, and the numerical
simulations conducted in Liu et al. [2007] showed that this effect was related to
the DFN heterogeneity. Finally, the impact of DFN heterogeneity has also been
studied in Roubinet et al. [2013] by way of numerical transport simulations con-
ducted over synthetic fracture networks with large ranges of hydraulic properties
and matrix block size distribution.

3.6 Measuring Mixing Properties From Random Walk Simulations (Tanguy)

Mixing is one of the key properties of interest when studying transport and re-
action phenomena in heterogeneous porous and fractured media [Kitanidis, 1994,
Dentz, 2011]. While dispersion measures the spatial extent of transported plumes,
mixing quantifies the distribution of concentration of dissolved chemical species
transported in the fluid phase [Borgne and T., 2015]. As such, it measures both
the dilution of plume as it mixes with the resident fluid and the probability of
dissolved reactive species to meet and react [de Simoni, 2005]. Different mixing
measures have been proposed including the dilution index [Kitanidis, 1994], the
intensity of segregation [Danckwerts, 1952] and the scalar dissipation rate [Ottino,
1989]. The latter measures the rate at which concentration gradients are dissipated
under the combined action of advection and diffusion. It can be directly translated
into an effective reaction rate when considering fast reactions [Le Borgne T., 2010,
de Simoni, 2005].

Numerical particle tracking methods are particularly useful to investigate dis-
persion and mixing as they avoid numerical dispersion. However, they are typically
characterized by a significant noise in concentration gradients, whose reduction
requires using a large density of particles. This is an issue to estimate scalar dis-
sipation rates, which is expressed in terms of concentration gradients as,

() = / dxD [Ve]?. (53)

where D is the local diffusion coefficient and ¢ is the local concentration. This
measures of mixing is significantly affected by errors in concentration gradients
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since it depends on the local concentration gradient squared. However, for finite
time injection conditions, i.e. when no additional solute is injected in the domain
when scalar dissipation is measured, one can show that the scalar dissipation rate
is directly linked to the temporal derivative of the concentration squared as,

x(t) = —1/2%/(1@“02. (54)

This expression shows that the scalar dissipation rate is a measure of the decay
of concentration variance as the transported plume is diluted in the resident fluid.
As illustrated in figure 3.6 and discussed in Le Borgne T. [2010], it turns out that
expression 54 is much less sensitive to numerical noise than the classical expression
for scalar dissipation rate (equation 53). This is because it does not require eval-
uating concentration gradients. Based on this method, mixing can be evaluated
efficiently from random walk particle tracking simulation in heterogeneous media
Le Borgne T. [2010]. As illustrated in Figure refFig:scalardissipationrated, hetero-
geneity in permeability is found to induce temporal scalings of the mixing rates
that depart from those expected for homogeneous media. This phenomenon can
be explained by an enhancement of diffusion to due plume stretching by velocity
gradients [Le Borgne et al., 2013].

4 Application from pore to field scale
4.1 Effective flow and transport parameters

A direct application of RW methods is the determination of effective conductivity
(or diffusivity) of heterogeneous media, by means of Einstein relation relating mean
square displacement to the effective coefficient of the diffusion equation (Einstein
[1956]):

R*(t) = ((z(t) — z(t = 0))?) = 2dD(¢)t. (55)

where d is the dimensionality of the system and D(¢) denotes the scaling coefficient
of the diffusion equation under consideration (diffusion, diffusivity or conductiv-
ity). In the case of bulk heterogeneous media, it is possible to show that the con-
vergence of D(t) to its asymptotic value D, is reached once R*(t) > l., where I,
is the permeability correlation length. Physical considerations show that at short
times, R?(t) ~ Dt where D denotes the average diffusivity, because the diffusive
particles sample local homogeneous regions of size l.. The cross-over between both
regimes can provide information of the REV size. This technique has been also
often used to analyze binary media, for instance obtained from X-ray tomographic
images (e.g. Gouze and Luquot [2011]) and measure the effective diffusion and
tortuosity from the asymptotic regime but also to evaluate the surface to volume
ratio from the transient regime (P.N. Sen and Halperin [1994], Sen [2003, 2004]).
I CAN MAKE A FIGURE FOR ILLUSTRATION HERE IF NEEDED.

RW calculations of sample scale effective properties of binarized images of
porous media can be efficiently performed using TDRW approach were the lattice
defining the fixed distance jump of the particle is mapped on the image voxel.
Calculation of Dy from binarized media can be performed by solving a boundary
value problem, mimicking a diffusion experiment, were particles are set at one
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a) Numerical simulation of plume advection and diffusion

! b) Temporal evolution of the scalar dissipation rate in homogeneous media
with RW particle tracking in homgeneous media

X0 plT)
3

1074 [ —— analytcal solution

120 140 160 180 00 220 240 260 280 300

-~ Estimation flom ocal radients
-0~ Estimaton ffom temporal drivative of M)
o
c) Numerical simulation of plume advection and diffusion o 10° 10" 107 10
with RW particle tracking in heterogeneous media t,
(a) 7,=0.8 (b) 7,=2.6 (c) th,=8.2 d) Temporal evolution of the scalar dissipation rate in heterogeneous media
I -4.2
-4
46
4.5
5 =
=
54 =
-5.5
5.8
6 0
0 10 20 30 40 50

X/\

Fig. 7 a. Numerical simulation of the transport of a line of tracer in a homogeneous media
under advection and diffusion with particle tracking. 7p is the characteristic diffusion time
over a pixel of size Az, Tp = A2/D b. Estimation of the scalar dissipation rate from the
local concentration gradients 53 and from the local concentration squared M(t) = [ dzc? 54.
The latter compared much better than the former to the analytical solution for a homoge-
neous media x1p(t) = %. c. Numerical simulation of the transport of a line of tracer

in a heterogeneous media under advection and diffusion with particle tracking. d. Temporal
evolution of scalar dissipation rates estimated for different permeability field variances. Het-
erogeneity in permeability affects the temporal scaling of the scalar dissipation rate and thus
the global mixing rate. Adapted from Le Borgne T. [2010].

boundary and the first passage time monitored at the opposite boundary, but a
more efficient method is to distribute the particle randomly in the pore space
(initial value problem) and apply directly (55) to measure D(t) versus time ¢ and
obtain D, sy from the asymptotic behavior, i.e. at very long times when the particle
motion has averaged over several pores. Practically, it is sometimes difficult to
obtain an asymptotic behavior meaning that the sample do not display a finite
scale heterogeneity or that computations has been stopped to early. For instance
particles may spend a lot of time to reach tiny connected paths in binary media
close to the percolation threshold and anomalous diffusion may be observed Sahimi
[2011], Superdiffusive [1989].

Similarly, RW methods have been used to calculate the effective dispersion of
binarized porous media solving (5) where the steady-state fluid velocity field is
usually obtained solving the Navier-Stokes equation using standard methods such
as finite volume. The geometry of the simulations as well as the boundary and
initial conditions are generally chosen to mimic laboratory tracer tests through
core, i.e. using permeameter-like conditions were a passive tracer is injected at
one side and the tracer breakthrough curve (BTC) monitored at the opposite side.
However pulse injection is usually applied because of it permit much faster compu-
tations (using less particles) than the constant concentration boundary condition
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Fig. 8 Left: three-dimensional visualization of the pore network (blue) and the connected
microporosity (yellow) for a sub-volume of 120% voxels of the (0.8 mm?3) Berea sandstone
sample studied by Gjetvaj et al. [2015]. Right: BTCs for pore-scale mobile-immobile transport
through the Berea sample for different values of the Peclet number computed by TDRW.

usually applied experimentally. In general the size of the domain is bounded by
the computational limit for solving the Navier-Stokes equation and therefore re-
stricted to 3D lattices of size 300 to 1000® that correspond to millimeter-sized
rock samples. Nevertheless this approach is really attractive to study the relations
between the flow field properties and the the dispersion which is usually character-
ized by marked non-Fickian BTCs. Bijeljic and co-authors (Bijeljic B. and Blunt
[2013a,b]) studied the dispersion in carbonate and sandstone rock samples using
binarized X-ray tomographies. They simulated transport by moving particles by
advection along streamlines (previously computed from the flow field) and using
a random walk method with constant particle jump time to describe the molec-
ular diffusion. The authors characterized the heterogeneity in term of a throat
size distribution and results showed that an asymptotic behavior is observed when
particles visited many throats. Conversely, Gjetvaj and co-authors (Gjetvaj et al.
[2015]) investigated the origin of non-Fickian transport using Berea sandstone con-
taining a low fraction of micro-porous cement with pore size below the resolution of
X-ray microtomography technique (Figure 8). They showed that this micro-porous
phase can be conveniently described as an immobile diffuse domain while the so-
lute transport in the resolved macroporosity (the mobile domain) results from the
combination of Navier-Stokes flow and diffusion. Here the transport of the tracer
in both the mobile and immobile domains is modeled using the TDRW approach.
The resulting BTCs for different values of the Peclet number displayed markedly
non-Fickian behaviors triggered by the flow field heterogeneity and the diffusion
in the heterogeneous microporosity. Finally the authors proposed an upscalled 1D
CTRW model that fit the BTCs obtained from the pore scale computations; the
1D CTRW simulations were also performed using a TDRW approach were the
velocity heterogeneity is modeled by a truncated power-law whose characteristic
time scales are related to the characteristic transport times in the mobile zones
and the anomalous diffusion in the microporous phase is modeled as particle trap-
ping events whose occurrence follows a Poisson process proportional to the mobile
transition time and trapping time follows a truncated power-law.
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McCarthy Carthy [1993a,b, 1991, 1990] was the first to carry out TDRW tech-
niques for conductivity up-scaling applications with the computation of large-scale
equivalent permeability. More recently, random walk methods have also been used
to up-scale the transport properties of heterogeneous porous media at several
scales. For example, at the laboratory scale, CTRW methods can be associated
with pore network models to evaluate the effective longitudinal dispersion of rock
samples and to analyze the impact of advection and heterogeneity on this property
[Bijeljic et al., 2004, Bijeljic and Blunt, 2006]. In these studies, the heterogeneity
is considered in terms of a throat size distribution computed for Berea sandstone,
and the results show that an asymptotic behavior is observed only after motion
through many throats is experienced. At a larger scale, permeability heterogeneity
has been represented with a lognormal exponentially correlated distribution and
the flow equation has been discretized with a Finite Difference scheme [de Dreuzy
et al., 2007, Beaudoin et al., 2010, Beaudoin and de Dreuzy, 2013]. In this case,
the evaluation of large-scale effective longitudinal and transversal dispersion is
performed by means of a two-dimensional [Beaudoin et al., 2010, de Dreuzy et al.,
2007] and three-dimensional [Beaudoin and de Dreuzy, 2013] TDRW method. An
additional advantage of TDRW methods for advective-dispersive transport in frac-
tured networks is their capability to separate the transport within the fractures
from mechanisms at fracture intersections. Different assumptions can be applied
at the fracture intersections from complete mixing to streamline routing Berkowitz
[1994], Kosakowski and Berkowitz [1999], Park [2003], resulting in markedly differ-
ent mixing behaviors at the network scale Bruderer and Bernab [2001], de Dreuzy
[2001], Park [2001]. Finally, the up-scaling of transport properties has also been
subject to various attempts for fractured media, as described in Section 3.5.1.

4.2 Interpretation of solute transport experiments

At the laboratory scale, CTRW has been used to interpret transport experiments
have been set up in either flow cells of porous media [Berkowitz et al., 2000], in fully
or partially water saturated conditions, using passive or sorbing tracers [Bromly
and Hinz, 2004, Cortis and Berkowitz, 2004, Hatano and Hatano, 1998], or in
single fissures in granitic core samples using non-sorbing tracers [Jimenez-Hornero
et al., 2005].

Random Walk approaches have been used to interpret field observation of
non-Fickian properties obtained from in situ tracer experiments. One of the most
common manifestation of non-Fickian transport processes is long time break-
through curve tailing (Figure 4.2), that is the slow decay of tracer concentration
at late times observed in many tracer breakthrough curves [Haggerty et al., 2000,
Berkowitz et al., 2006]. This tailing behavior carries information on the underlying
processes that induce non-Fickian transport.

For instance, matrix diffusion is known to impart a strong tailing. As explained
in section 2, this problem can be modeled by in adding a sink-source term to the
Fickian ADE to account for the mass transfers between the mobile domain and
the matrix where transport is controlled by diffusion only (the immobile domain):

qﬁ(x)%ﬁ’t) V- [DVe(x, 1) + ve(x, )] + S(x,£) = 0 (56)
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with
S(x,1) = d)/(x)% / dt' M(x,t —t') c(x, 1), (57)

where ¢ and ¢’ denote the porosity in the mobile and immobile domain respec-
tively and M is the (possibly spatially distributed) memory function that contains
all the information on the mass transfer process, the geometry and the volume frac-
tion of the immobile domain as well as its accessibility to tracer particles issued
from the mobile domain.

Formulations of this sink-source term S(x, t) to model the multiple rates nature
of the mass transfers resulting from the transient diffusion in an homogeneous
immobile domain of simple geometry were given by Haggerty and Gorelick [1995],
Carrera [1998], Haggerty et al. [2000]. In this case tailing of the breakthrough
curves decays as c(t) ~ t~ 1%,

However, natural systems often display dispersed clusters of matrix with het-
erogeneous diffusion properties (see for example figure 8) and different tailing of
the breakthrough curve can be expected. Actually field observations report power
law tailing in breakthrough curves such that c(t) ~ {18 , with power law expo-
nents spanning a broad range within 0 < 8 < 2 [Haggerty et al., 2000] or with
tailing displaying more than one slope such as the single-well injection withdrawal
tracer tests published by Gouze et al. [2008a].

Gouze and co-authors (Gouze et al. [2008b]) computed the memory function
M(t) from X-ray microtomography images. First the authors processed the data
in order to determine the interface between the mobile and the immobile domain
and to evaluate the diffusion coefficient distribution inside the immobile domain.
Then they compute the memory function using a constant time increment RW
approach. The implementation of the calculation is as following. N random walk-
ers uniformly distributed over the mobile-immobile interface are released at the
initial time (¢=0). The diffusion equation is solved by a discretized version of the
Langevin equation (see (39)) and a specific procedure is applied to determine the
trajectory of the random walkers through the heterogeneous pixelized matrix at
each time increment. For ¢ > 0, the mobile-immobile interface is considered as
an absorbing boundary, so the random walkers that jumps outside the immobile
domain are removed. The total number of random walkers inside the immobile
domain N’(t) is recorded until the last particle leaves the immobile domain. The
op. cit. authors showed that the memory function M(t) can be obtained from
the ratio N'(t)/N. Then Gouze et al. [2008a]) compared the memory function
computed at pore scale from the X-ray microtomography imaged rock sample to
the memory function deduced from a set of field scale tracer tests in carbonates
(Gouze et al. [2008a]) where the sample was cored. The authors concluded that
the non-Fickian dispersion measured at meter scale is well explained by microscale
diffusion processes in the matrix for this specific case.

Conversely, Le Borgne and Gouze [2008] developed a specific RW model to ex-
plain the two-slope tailing breakthrough curves measured by Gouze et al. [2008a].
The op. cit. authors implemented a continuous time random walk (CTRW) ap-
proach such as presented in section 2.2 in which the transition time distribution
1(t) was a dual-slope power law distribution. The model best fits the tracer test
data with a transitional regime modeled by v (t) oc t~2 and an asymptotic regime
corresponding the simple homogeneous double-porosity model (i.e. 1(t) oc t~ 1),
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As alternatives to the heterogeneous diffusion modeled by multi-rate mass
transfer or CTRW, different processes have been invoked to explain this range of
exponents, including heterogeneous advection in independent flowpaths, modeled
by stochastic streamtube approaches [Becker and Shapiro, 2003]. Both processes
can be modeled by random walk approaches [Kang et al., 2015, Gjetvaj et al.,
2015].

In the CTRW framework, a power law tailing ¢(t) ~ t =177 can be modeled by
considering a transition time PDF 1(t) ~ t~1=#. Transition to Fickian transport
can be modeled by including a cut off in this power law [Dentz et al., 2004]. While
CTRW approaches generally describe Non-Fickian transport a series a uncorre-
lated motions whose duration may be very long, stochastic streamtube approaches
[Becker and Shapiro, 2003] assume that particle velocities are constant, hence fully
correlated, along each streamline but differ from streamline to streamline. Becker
and Shapiro [2003] have reported that this process leads to a characteristic break-
through curve tailing c¢(t) ~ ¢t~ under convergent tracer test conditions, and
different exponents under push pull conditions, that depend on the push duration.
Kang et al. [2015] have shown that both limiting processes can be modeled by
considering a CTRW model with correlated transition times, whose correlation
can be varied from zero to represent the CTRW model, to infinity to represent a
stochastic streamtube model. It is not always easy to decipher the role of diffu-
sive and advective processes as they can lead to similar power law exponents in
breakthrough curves. As shown by Kang et al. [2015], this uncertainty on process
controlling Non-Fickian transport can be resolved by combining tracer test exper-
iments in different conditions, including cross borehole and push pull tests. Cross
borehole tests are more sensitive to heterogeneous advection processes, while push
pull tests are more sensitive to diffusive processes (Figure 4.2).

1. illustration of convergent and push pull experiments in factured media 2. Breakthrough curves and random walk model
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Fig. 9 1. Illustration of convergent and push pull tracer experiments in fractured media, from
Kang et al. [2015], 2. Breakthrough curves measured at the Ploemeur site (H+ network) under
convergent and push pull conditions, and random walk modeling (dashed lines) with a Markov
Chain CTRW model, from Kang et al. [2015].

4.3 Modeling of transport processes under ambient conditions

RW methods have also been used to improve our understanding of transport pro-
cesses under ambient conditions in natural environments. Numerous of these stud-
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ies have been conducted on fractured rock using TDRW methods within a discrete
dual-porosity framework. Some of these models are described in Section 3.5.1 and
have been used, for example, to describe the migration of radionuclides through
fractured rock at the Aspé Hard Rock Laboratory in Sweden [Cvetkovic et al.,
2004] and the Topopah Spring welded unit in Yucca Mountain [Pan and Bod-
varsson, 2002b]. Other applications target the fractured Laxemar site in Sweden,
which is part of the candidate repositories of spent nuclear fuel [Cvetkovic and
Frampton, 2012], and the Kamaiski experimental mine site in Japan [Dershowitz
and Miller, 1995].

Transport processes have also been modeled with RW methods in the context
of colloidal transport in a shear zone [Kosakowski, 2004], chemical retention times
in water catchments [Scher et al., 2002b], and transport of solute in rivers [Boano
et al., 2007]. CTRW has also been used to understand the observations made in
a heterogeneous alluvial aquifer at the Macrodispersion Experiment (MADE) site
of the Columbus Air Force Base (Mississippi) [Berkowitz and Scher, 1998] and
in a fractured till located on the island of Funen (Denmark) [Kosakowski et al.,
2001]. Finally, CTRW was also used for breakthrough curve analysis of numerical
experiments mimicking transport in fault zones [O’Brien et al., 2003a,b].

4.4 Other applications

As explained in Section 2.4, CTRW has been largely used as average transport
model; in fact the ensemble particle motions in many quenched disordered systems
obey a CTRW dynamic Berkowitz et al. [2006]. For this reason, motivated by the
results of single particle tracking for diffusion in heterogeneous media, CTRW
models has been used to study the question of ergodicity in complex media Bel
and Barkai [2005], He et al. [2008], Barkai et al. [2012], Metzler et al. [2014]. More
recently Dentz et al. [2016b] used TDRW to study the self-averaging properties
and ergodicity of subdiffusion in random media. As seen in Section 2.3, TDRW
is equivalent to the discretized ADE and allows to distinguish between ensemble
particle motion (CTRW) and diffusive random motion in single realization.

For the extension of RW or TDRW methods to simulate reactivity (possibly in
section 3 by extending it to reactivity). Todays, the limits of RW and TDRW meth-
ods are found in the reconstruction of concentration fields and their use for reactive
transport simulations involving non-linear chemical reactions. Some methods have
been developed to reconstruct the concentration field a posteriori from the random
walkers while keeping their independence [Fernandez-Garcia and Sanchez-Vila,
2011]. Others decouple the advective and dispersive terms, simulate the advec-
tive term with a particle tracking method and the dispersive term with Smoothed
Particle Hydrodynamic (SPH) methods Herrera [2009, 2010], Herrera and Beckie
[2013]. Each particle is considered as an elementary volume of water containing
solutes and exchanging mass with the neighboring volumes according to a pre-
scribed kernel interpolation scheme, which is also eventually used to reconstruct
the concentration field. With this method, random walkers remain independent
and dispersive processes stem from the particle positions without feedback of the
concentration field on the particle displacements. Heterogeneous distributions of
particles with rarefaction in low flow zones may critically reduce the accuracy of
calculated concentrations. Increasing the particle number or performing particle
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re-meshing are sometimes necessary and impact performances issues or numerical
diffusion. To summarize, these methods are intermediary between RW, full SPH,
and Particle Strength Exchange (PSE) methods that introduce the influence of
concentration fields on the motion of particles and subsequent interdependence of
the particles Beaudoin [2002, 2003], Monaghan [2005], Tartakovsky and Meakin
[2006]. Like SPH and PSE, RW and TDRW are mesh-free methods that can easily
adapt their resolution to local physical or chemical properties without extensive re-
meshing efforts. When chemistry mostly consists of fluid-rock interactions rather
of reactions in solution, particles can again be taken as water volumes or ”finite
cells” with their embedded solutes chemically interacting with the solid Besnard
[2011], Sun [1999, 2002]. It is especially well suited when dispersion is dominated
by fluid-rock interactions or mobile-immobile types of exchanges Cirpka [2005],
Michalak and Kitanidis [2000]. More generally, appropriate combination of these
Lagrangian-based methods could be well suited to locally separate solute disper-
sion from solute mixing. Dispersion would be simulated as particle movements and
mixing as exchanges between particles. The sharing between dispersion and mix-
ing could be derived from some local properties of the particle position or of the
reconstructed concentration pattern de Dreuzy [2012], Le Borgne [2011], Borgne
and T. [2015]. In this framework, RW and TDRW methods have a strong capac-
ity to integrate detailed physical processes beyond the resolution of the mesh-cell
scale.

Finally, RW methods have been used at the small scale to model heat transfer
[Emmanuel and Berkowitz, 2007] and emulsion transport in porous media [Cortis
and Ghezzehei, 2007]. At a larger scale, additional applications are related to the
interpretation of hydraulic pumping tests in heterogeneous porous media [Cortis
and Knudby, 2006], to the impact of matrix heterogeneity on the residence times
of solutes in fractured media [Robinet et al., 2007], and to the interpretation of
water age data sampled under pumping conditions [Leray et al., 2014].

5 Summary and Conclusions

At present, RW methods are becoming a mature tool allowing to handle effi-
ciently diffusion processes or advection dispersion in porous media having multi-
scale quenched heterogeneities, including complex fracture patterns. The scale of
interest ranges from molecular and microns using X p scan images of pore space to
km’s characterizing field scales. Radially convergent flows can also be accounted
for. These easy to implement class of methods and natural adaptation for HPC
make them a powerful tool for up scaling applications. CTRW and TDRW have
acquired a rigorous probabilistic connection with finite volume methods. It pro-
vides a natural framework for elaborating new theories of normal or anomalous
large scale dispersion as it gives a natural picture of mixing and spreading. It high-
lights the competition between advection, dispersion and the underlying quenched
disorder of the medium. The effect of retention and of chemical reactions can be
modeled. It yields also practical tools that can be used to carried out within real
field studies in order to calibrate some large scale parameters that are needed by
industrial simulators.

Future research may take many directions. Finding some robust parameteriza-
tions of scattering kernels M(a,t;x — a) or of transfer functions f(.) that may
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be related efficiently to the medium’s disorder could be interesting for applica-
tions, [Noetinger and Gautier, 1998, Liu et al., 2000]. Adsorption processes, as
well as chemical reactions could also be simulated at least in the linear regime by
adding a suitable state variable characterizing the state of the particle during its

RW. For example one can consider a two state vector by x(t) — x(¢) [253 }, in
which ¢1(t) = 0 or 1, (c2(t) = 1 — c1(t)) is equal to 1 if the particle is on the
first state, 0 else (c2(t) =1 — ¢1(¢)). Choosing suitable transition probabilities for
the elementary time step in the corresponding Langevin formulation (so allowing
the diffusing particle to change state randomly) provide a direct RW interpreta-
tion of the double porosity equations (61). Is it possible to generalize this kind
of idea for modeling more complex adsorption or chemical reactions is a possible
approach. A big challenge is to be able to generalize RW methods to account for
an explicit coupling between the particle’s concentration and fluid-flow, leading to
viscous fingering patterns. The difficulty is that at a given time the flow depends on
the whole particle’s concentration map, resulting in a fully coupled flow-transport
problem [Saffman and Taylor, 1958, Dagan et al., 1989]. So at first sight, the pic-
ture of independent particles undergoing RW seems to be non relevant. Meanwhile,
the successful RW picture of Diffusion Limited Aggregation (DLA) [Witten and
Sander, 1983, Tang, 1985] corresponding to infinite mobility contrasts fingering
gives some hopes that RW will have several applications even in that kind of is-
sues. In particular it could help setting up macroscopic descriptions of the motion
of unstable interfaces in a random quenched disorder can be helped using a RW
approach using the degrees of freedom describing the front [Ncetinger et al., 2004,
Tallakstad et al., 2009, Teodorovich et al., 2011].

A Langevin equation and Fokker Planck equation

(e = [ P00 (58)
x(t + dt) = x(t) + v[x(t)]dt + /2BxD)] - -w(t) = x(t) + Ax(?) (59)
Fle(t + db)] — flx(t)] = VFIx(0)] - vIx()]dt + ¥ @ Vix(®)] : Blx()]dt.  (60)

B Dual-porosity models

Fractured porous media are characterized by a high property contrast between fractures and
matrix. This leads to introducing a new class of models, starting from the steady state double
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porosity models [Barenblatt and Zheltov, 1960, Warren and Root, 1963] as derived by [Arbogast
et al., 1990, Quintard and Whitaker, 1993] that couple matrix and fracture by means of a linear
exchange term.

OPy(x,
{ ¢V 25D _ D g2p(x, ) + Q(x, 1) (61)

b Vin mlst) — D 2P, (x, 1) — Q(x,1).

Here, ¢V and ¢mVm represent respectively the overall proportions of fracture and matrix
volumes (weighted by the relevant porosity and compressibility). The operation * represents a
convolution operator. The model is closed once the interporosity flux Q(x,t) is expressed as a
function of Pf(x,t) and Pm(x,t). In the steady state case, Q(x,t) is given by:

Q(x,t) = X (Pm(x,t) — Pr(x,1)) . (62)

The transfer coefficient A, reciprocal of a time depends mainly on the geometry of the matrix
blocks. It is proportional to D;,. Its determination from the detailed DFN geometry will be
discussed in Section 3.5.

More general models using memory functions accounting for more details of the diffusion
inside the matrix can be introduced [Odeh, 1965, Daviau, 1986, x. Chen, 1989, Carslaw and
Jaeger, de Swaan, 1976, de Swann and Ramierz-Villa, 1993]. These models belongs to the
general class of Multiple Rate Mass Transfer Models (MRMT) models or Multiple Interacting
Continua (MINC) [Narasimhan and Pruess, 1988, Haggerty and Gorelick, 1995, r. Dreuzy
et al., 2013]. These models correspond to quite different formulations of the same physics
differ through the formulation of the exchange term. The latter appears as a time convolution
expressed by:

Q(X,t) — G(t) * d(Pm(xvt;;Pf(x;t))

d(Pm (x,7)—Ps(x,T
:fOtG’(t—T)<( ( ;T (7))

) dr. (63)

In all cases, the exchange kernel G(t) is scaled by a parameter A which depends only on the
geometry of the matrix blocks. It was shown in [Landereau et al., 2001, Babey et al., 2015] that
Multiple porosity models, MRTM models and transient models are equivalent and correspond
to different formulations of the same idea.

In most cases, the term D., V2 Py, (x,t) may be neglected in the double porosity equations
(61), so Pr,(x,t) may be eliminated from the equations to provide the following generic form:

(65Vy(t) + 6mVin f(1)) » 220050

The quantity f(¢) is the time dependent exchange function. Introducing he average pressure
in the fractures < Py > (t) solution of the following initial value problem:

= V.(DyVPs(x,1)). (64)

0P (x,t)

8 LY = V(D) Py (x, 1)) (65)
VXG.QfPf(x,tZO) =1 (66)
VX € 2m Pr(x,t =0) =0 (67)
1
< P> ()= — / dxP;(x, ) (68)
1271 Sy
It is possible to show the following relation in the Laplace domain:
\%

<Pr>(s)= #sYs (69)

s(drVi + dmVin f(s))

The practical interest of introducing the f(s) function is that it can be shown that the general
solution of a double porosity system (61) can be directly related to a solution of a single
porosity equation replacing the argument s of the single porosity solution by the argument
5(¢f Vi + sémVim f(s)). The large amount of analytical single porosity solutions that are well
known is sufficient for most practical situations. This means that all the double porosity
behavior is captured by f(s), which appears to be a renormalized apparent storativity. The

initial value problem (68) defining < ]Sf > (t) has in turn a simple RW interpretation. The
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quantity < Py > (t) corresponds to the average proportion of particle undergoing RW (with
diffusivity D,,) that belongs to the fractures at time ¢ given they was released at a random
location in the fractures at time ¢t = 0. It was shown by Noetinger, Estebenet and Landereau
In the steady state case, the function f(s) is given by :

A
T = Vs 70

It appears that A is a characteristic diffusion time in the matrix. Explicit expressions may be
given for f(s) for either a layered medium, or for spherical blocks:

A 3Vins
= tanh . 71
76 =\ 5 tanh | 2 ()
— for the spherical case
f(s)= A 1/ 15vmscotanh\/ 15Vims 1 (72)
55Vim A A

These generic forms, or others can be used for large scale applications, solving (64) using any
numerical approach. It remains to be able to evaluate the transfer coefficient A or the full f(t)
function. This is the objective of Section 3.5.

— for the layered case

C The TDRW algorithm

Once the diffusion equation (42) has been discretized to get (43),we implement the random
walk algorithm as McCarthy did [Carthy, 1993a] first. A detailed derivation of the correctness
of the algorithm, as well as its generalization accounting for the presence of traps is presented
in Dentz et al [Dentz et al., 2012].

As preliminary step, from the transmissivities we can compute transition probabilities b;;
by the definition :

T.,
Bi= Y. Ty, and b = B (73)
7

j neighbor 4

The following relation is satisfied :

Jj neighbor 4

Thereafter, the TDRW algorithm can be presented as follows :

1. choose the number N of independent walks, and a simulation time tpqz
2. Choose at random one starting node “i” according to the source term s(x,t = 0), k=1.

3. at step k of the algorithm, displace the particle from the site “i” to its nearest neighbor
site labeled by “j”, with a probability equal to b;;.
4. Update the time counter with the relation :

Ax?

tp =tp_1 — Ln(rand).

K3

Here, rand is a number picked at random from the uniform distribution over [0, 1].
5. If tp, < tmaz, k=k—+ 1,7 =7 return to 3.
do this loop N times to simulate the Brownian motions of N independent particles.
7. End.

&
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At the end of the simulation, the user obtains N arrays containing the jump times ¢; and
the associated particles positions x(¢). These files can be post processed to compute the
statistical quantities of interest, as will be shown later. McCarthy [Carthy, 1993a] showed that
the probabilities P;(t) of the particle to be at grid block i at time t obey the discrete equation
(43). When the source term s(x,t) has the Dirac form, the initial position of the particle
corresponds to the grid block in which the source is located. The continuous time character
comes from the random character of the jump times.

The main practical interest of this algorithm is that at each iteration, the particle does move
to one of its connected neighbors and does never stay at the same node, avoiding unnecessary
iterations. The jump time distribution is an exponential distribution whose mean value given

2
by AB—” corresponds to a typical diffusion time over the considered grid block.
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