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Abstract—This paper deals with a new classification
techniques for power quality analysis. Specifically, the
proposed technique aims at discriminating between four
classes, where each class depends on the number of
non-zero symmetrical components. By reformulating the
classification problem as a pure model order selection one,
we propose a classifier based on Information Theoretical
Criteria. It yields the highest statistical performances.
The performances of this proposed classifier are evaluated
using Monte Carlo simulations with synthetic three-phase
signals. Simulation results illustrate the effectiveness of
the proposed classifier for power quality disturbances
classification.

Index Terms—Power Quality Disturbances, Detection
and Classification, Symmetrical Components, Unbalanced
Power System, Smart Grid Monitoring.

I. INTRODUCTION

In the last decade, renewable energy sources have
undergone a rapid expansion due to the growing need for
cleaner and more sustainable energies [1]–[6]. Despite
its ecological benefit, the massive introduction of inter-
mittent and decentralized renewable energy sources in
the energy mix has raised new technical challenges. For
example, the use of intermittent energy sources may in-
troduce grid instability that can lead, in the worst case, to
the system blackout. To overcome this difficulty, modern
energy management systems continuously monitor the
grid state and trigger appropriate operations is needed.
These modern systems relies on the combination of
information and communication technologies with power
electronic engineering, and they are usually subsumed
under the generic term of ”smart grid”.

This work was supported by Brest Métropole and ISEN Brest.

A key role of a smart grid is to allow the electrical
grid to be more flexible, more efficient, and meeting
Power Quality standards. Among these requirements,
Power Quality (PQ) is of main concern since any distur-
bance can prevent end-user equipment from operating
properly [7]. PQ disturbances can have different char-
acteristics and consequences for end-user equipments.
They are usually divided into several classes such as
sag, swell, transient, fluctuation, and interruption [7].
Voltage sags and swells are the most important events in
voltage supply because they can degrade the performance
and efficiency of customer loads. In particular, voltage
sags and swells can lead to various problems such as
instabilities and failure of electrical equipments, and
can produce million-dollar losses in commercial and
industrial consumers [8]. To minimize their economical
impacts, it becomes imperative to integrate advanced
algorithms for the detection and classification of voltage
sags and swells.

Several techniques have been proposed in the literature
to detect three-phase unbalance and/or classify voltage
sags and swells. Regarding the detection of three-phase
unbalance, the references [1], [9] describe two tech-
niques based on hypothesis tests. The classification of
PQ disturbances have also been investigated in several
papers [10]–[14]. In [10] and [13], two voltage classifiers
based on symmetrical components (S-C) and three-phase
voltage magnitudes and their phase angles (TP-TA) are
respectively proposed. Both classifiers identify the six
voltage sags type Ca, Cb, Cc, Da, Db, and Dc [10].
The classifier described in [10], [11] compares the six
RMS values of phase and phase-to-phase voltages after
removing the zero sequence component. this six-phases
classifier identifies also voltage sags type Ca, Cb, Cc, Da,



Db, and Dc. Despite their simplicity, these techniques are
very sensitive to large variations in magnitude or phase-
angle jump under various voltage unbalance conditions
and they do not cover all sags types proposed in [15].
In [16], the authors have proposed a technique based
on space vector representation in the complex plane
and zero sequence voltage. This technique provides a
complete dip and swell type classification. Other clas-
sifiers based on pattern recognition techniques, such as
Artificial Network or Support Vector Machine, have also
been presented in [17]–[23]. However, these supervised
classifiers have relative high computational complexity
and their performances critically depend on the quality
and size of the training database.

This paper proposes a new method devoted for PQ
disturbance classification. Similarly to the technique
described in [9], the proposed classifier is based on
model order selection [24]. Nevertheless, while the
method in [9] mainly focuses on the detection problem,
the proposed technique addresses the classification one.
Specifically, the proposed classifier is able to identify
the number of non-zero symmetrical components, and to
classify the signal into 4 classes. The first class includes
signals with both null zero- and negative-sequences. The
second and third class include signals with null zero- and
negative-sequence, respectively. Finally, the fourth class
includes signals with non-null symmetrical components.

II. SIGNAL MODEL AND CLASSIFICATION

This section presents the three-phase signal and phasor
models. Based on the phasor model, we also describe the
proposed 4-classes classification.

A. Three-Phase Signals Model

In a three-phase power system, the signal on phase m
(m = 0, 1, 2) can be expressed as [25]

xm[n] = am cos (nw0 + ϕm) + bm[n], (1)

where am and ϕm correspond to the amplitude and
phase angle, respectively, ω0 denotes the normalized
angular frequency, and bm[n] refers to the additive noise.
The parameters am and ϕm are usually described more
compactly by introducing the complex phasor. Mathe-
matically, the phasor on phase m is defined as

cm , ame
jϕm . (2)

Without loss of generality, we assume that the
voltage sensors record N consecutive samples (n =
0, 1 · · · , N − 1). By using a matrix form, the recorded

samples can be written as

x = (I33 ⊗ A) c̃ + b, (3)

where ⊗ corresponds to the Kronecker product and

− x and b are 3N×1 column vectors that correspond
to the recorded and noise samples, respectively.
These vectors are defined as

x =



x0[0]

...

x0[N − 1]

x1[0]

...

x1[N − 1]

x2[0]

...

x2[N − 1]



b =



b0[0]

...

b0[N − 1]

b1[0]

...

b1[N − 1]

b2[0]

...

b2[N − 1]



, (4)

− A , [<e(ak) =m(ak)] is a N × 2 real-valued
matrix where ak is a N×1 complex-values column
vector defined as

ak =


1

ejw0

...

ej(N−1)w0 .

 (5)

− c̃ is a 6 × 1 real-valued column vector depending
on the unknown phasors c0, c1, and c2. This vector
is defined as

c̃ =



a0 cos(ϕ0)

−a0 sin(ϕ0)

a1 cos(ϕ1)

−a1 sin(ϕ1)

a2 cos(ϕ2)

−a2 sin(ϕ2)


. (6)

B. Phasor Model

It is usually convenient to decompose the three com-
plex phasors into a more synthetic base. In this subsec-
tion, we propose to decompose the phasors c0, c1, and
c2 into a basic composed of 3 symmetrical components
called: the zero-sequence, z0, positive-sequence, z1, and
negative-sequence, z2. The three phasors can be ex-
pressed according to the three symmetrical components



through the Fortescue Transform asc0c1
c2

 =

1 1 1

1 e4jπ/3 e2jπ/3

1 e2jπ/3 e4jπ/3


z0z1
z2

 . (7)

The main benefit of the symmetrical components relies
on the fact that, under nominal conditions and balanced
faults, the symmetrical components are sparse i.e. z0 =
z2 = 0. Based on the symmetrical components, we
consider 4 different classes:
− C1: The zero and negative sequences are equal to

0 i.e. z0 = z2 = 0.
− C2: The zero sequence is equal to 0 i.e. z0 = 0.
− C3: The negative sequence is equal to 0 i.e. z2 = 0.
− C4: All sequences are different from 0.
For the 4 proposed classes, the real-valued vector

containing the real and imaginary parts of the three
phasors in (3) can also be expressed according to the
real and imaginary parts of the symmetrical components.
Indeed, the vector c̃ can be expressed as

c̃ = Wk s̃k, (8)

where Wk and s̃k depend on the class number. The
expressions of Wk and s̃k for the classes C1, C2, C3, and
C4 are provided in Table I, where Qk are 2× 2 matrices
defined by

Qk =

[
<e(e2jkπ/3) =m(e2jkπ/3)

=m(e2jkπ/3) −<e(e2jkπ/3)

]
. (9)

C. General Signal Model

By using (3) and (8), the signal model can be de-
scribed under the general form

x = Mk s̃k + b, (10)

where k corresponds to the class number and

Mk = (I33 ⊗ A)Wk. (11)

The goal of this paper is to estimate the class number,
k (k = 1, 2, 3, 4), from the three-phase signal x. To
estimate k, we assume that the additive noise is Gaussian
distributed with a zero mean and variance equal to σ2

i.e. b ∼ N (0, σ2I3N ). As the different signal classes
are nested, we propose to reformulate the estimation
problem as a pure model order selection problem. In our
context, the model order refers to the size of the vector
s̃k. Specifically, the size of the vector s̃k is equal to 2
for the class C1, 4 for the classes C2 and C3, and 6 for

TABLE I
EXPRESSIONS OF Wk AND S̃k WITH RESPECT TO THE CLASS Ck .

Class C1 C2 C3 C4
k 1 2 3 4

Wk

Q0

Q1

Q2


Q0 Q0

Q1 Q2

Q2 Q1


Q0 Q0

Q0 Q1

Q0 Q2


Q0 Q0 Q0

Q0 Q1 Q2

Q0 Q2 Q1



s̃k

[
<e(z1)
=m(z1)

] 
<e(z1)
=m(z1)

<e(z2)
=m(z2)



<e(z0)
=m(z0)

<e(z1)
=m(z1)





<e(z0)
=m(z0)

<e(z1)
=m(z1)

<e(z2)
=m(z2)



the class C4.

III. CLASSIFIER BASED ON MODEL ORDER

SELECTION

In this section, we describe the proposed classifier
for the estimation of the class number k. This classifier
is based on model order selection algorithms. Most of
model order selection algorithms is based on Information
theoretic Criterion [24]. Using Information Theoretic
Criterion, the selected class number k is the one that
minimizes the following penalized likelihood function
[26]

k̂ = arg min
k=1,2,3,4

−2 ln p(x,̂̃sk) + γk, (12)

where ln p(x,̂̃sk) denotes the log-likelihood function of
the measurements x for the class k evaluated by replacing
sk by its Maximum Likelihood Estimator ̂̃sk. The term γk
is a penalty function that depends on the total number
of samples and estimated parameters. In the following
paragraphs, we provide explicit expressions for the log-
likelihood function and penalty terms.

A. Expression of ln p(x,̂̃sk)
Under the assumption of a Gaussian noise, it has been

demonstrated in [24] that the log-likelihood function
ln p(x,̂̃sk) is equal to

−2 ln p(x,̂̃sk) = constant +N ln σ̂2k, (13)

where σ̂2k is the Maximum Likelihood Estimator of the
noise variance under the assumption that the signal
comes from the class Ck. The estimator of the noise
variance is given by

σ̂2k =
1

N
||x̃−Mk

̂̃sk||2, (14)



TABLE II
PENALTY FUNCTION WITH RESPECT TO THE CLASS Ck .

Class C1 C2 C3 C4
nk 3 5 5 7

γAICk 6 10 10 14
γBICk 3 ln(3N) 5 ln(3N) 5 ln(3N) 7 ln(3N)

where ̂̃sk corresponds to the Maximum Likelihood Es-
timator of the vector s̃k. As ̂̃sk = (MT

k Mk)
−1MT

k s̃k, it
follows that

σ̂2k = xTP⊥k x, (15)

where P⊥k is the orthogonal projection matrix that
projects any vector x onto the space orthogonal to
that spanned by the columns of Mk. This orthogonal
projector is defined as

P⊥k , I3N −Mk

(
MT
k Mk

)−1 MT
k . (16)

B. Expression of γk

The objective of the penalty term γk is to encourage
simplicity over complexity. Mathematically, this function
penalizes the log-likelihood function with respect to the
number of estimated parameters, nk, and the number of
samples, M . Several penalty terms have been proposed
in the literature based on different motivations [24].
In the study, we evaluate the performance of the two
following penalty terms:

− The Akaike Information Criterion (AIC)

γAICk = 2nk. (17)

− The Bayesian Information Criterion (BIC)

γBICk = nk ln(M). (18)

In the considered model order selection problem, the
number of samples is equal to M = 3N . Furthermore,
for the class k, the number of estimated parameters is
equal lk + 1 where the first term is equal to the size of
s̃k and the second term refers to the estimation of the
noise variance. Finally, the values of the AIC and BIC
criteria for the class C1, C2, C3, and C4 are summed up
in Table II.

C. Proposed Classifier

Based on the previous subsections, we propose a clas-
sifier for selecting the appropriate model. This classifier
is called the ML classifier and it is obtained by using
the exact orthogonal projector P⊥k in (16).

Finally, by using (13) and (15) in (12) and dropping
the terms that do not depend on k, the class number k̂
estimated with the ML classifier is given by

k̂ML = arg min
k=1,2,3,4

N ln
(

xTP⊥k x
)
+ γk. (19)

For the proposed classifier, the AIC or BIC penalty term
can be used (see Table II). Finally, it is worth mentioning
that the proposed classifier is also able to discriminate
between classes with the same number of estimated
parameters such as C2 and C3. Indeed, when two classes
have the same number of estimated parameters, the
estimation of the noise variance, which is contained in
the log term, provides a simple measure of the goodness
of fit.

IV. SIMULATION RESULTS

In this section, the performance of the proposed clas-
sifier is compared with synthetic signals generated from
Matlab. Its performance is evaluated using both the AIC
or BIC penalty term.

The performance of the ML classifier is quantified
through the average probability of correct detection.
The average probability of correct detection is estimated
using Nmc = 1500 Monte Carlo simulations for each
class. In each simulation, the signal is generated from
the model defined in (1) with ω0 = 2πf0/Fs, where the
fundamental frequency f0 = 50Hz and the sampling
frequency Fs = 48 ∗ f0 = 2400Hz. Amplitudes and ini-
tial phases parameters of the three-phase power system
are given by Table III. Then, the average probability of
correct detection is estimated as follows

P̂a =
1

4Nmc

4∑
k=1

Nc∑
n=1

δ(k − k̂[n]), (20)

where k̂[n] is the estimated class for the nth trial and
δ(l) is the Kronecker delta which is equal to 1 if l = 1
and zero elsewhere. In the next subsections, the average
probability of correct detection is analyzed for different
signal lengths, N , and Signal to Noise Ratio (SNR)
where the SNR is defined as

η =
1

6σ2

2∑
k=0

a2k. (21)

A. Average Probability of Correct Detection Versus
Number of Samples

Figure 1 shows the influence of the number of samples
on the average probability of correct detection when the



TABLE III
SIMULATION PARAMETERS

C1 C2 C3 C4
a0 0.5 1 0.5 1

a1 0.5 0.66 1.32 0.5

a2 0.5 0.66 1.32 0.5

ϕ0 −20◦ −20◦ −20◦ −20◦
ϕ1 −140◦ −159.10◦ −159.10◦ −140◦
ϕ2 100◦ 119.11◦ 119.11◦ 100◦
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Fig. 1. Average probability of correct detection versus samples
number for SNR = 15dB.
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Fig. 2. Average probability of correct detection versus SNR for N =
128.

SNR is equal to SNR = 15dB. We observe that the
performance of the proposed classifier increases as the
samples number increases.

Regarding the penalty factors, we observe that for
large N BIC penalty term lead to an average probability
of correct classification equal to 1. For the AIC classifier,
we observe that P̂a is not exactly equal to 1 even for large
N . For small N , we also note that the AIC has a faster
response time than the BIC penalty term.

B. Average Probability of Correct Detection Versus Sig-
nal to Noise Ratio

Figure 2 presents the influence of the SNR on P̂a. In
this simulation, the number of samples N = 128. For the
BIC ML classifier, we see that the average probability
of correct detection is equal to 1 when the SNR is large.
For the AIC classifier, we observe that P̂a is not exactly
equal to 1 even for large SNRs.

V. CONCLUSION

This paper dealt with the classification of power
quality disturbances in three-phase unbalanced power
systems. The proposed classifier is based on Information
Theoretical Criteria and can discriminate between 4
classes, where each class has a particular number of non-
zero symmetrical components.

Simulation results have shown that among the two
considered Information Theoretical Criteria, the BIC one
outperforms the AIC in terms of average probability of
correct detection for a large number of samples and
SNRs.

The implementation of the proposed classifier requires
the use of linear algebra libraries for matrix inversion.
Future work will be directed to the reduction of the com-
putational complexity by using a suboptimal symmetrical
components estimator.

REFERENCES

[1] M. Sun, S. Demirtas, and Z. Sahinoglu, “Joint voltage and phase
unbalance detector for three phase power systems,” IEEE Signal
Processing Letters, vol. 20, no. 1, pp. 11–14, January 2013.

[2] H. Gharavi and R. Ghafurian, Smart grid: The electric energy
system of the future. IEEE Press, June 2011.

[3] A. R. Bergen, Power Systems Analysis. Pearson Education
India, July 2000.

[4] K. D. McBee and M. G. Simoes, “Utilizing a smart grid
monitoring system to improve voltage quality of customers,”
IEEE Transactions on Smart Grid, vol. 3, no. 2, pp. 738–743,
June 2012.

[5] IEEE, “IEEE approved draft guide for the interoperability
of energy storage systems integrated with the electric power
infrastructure,” IEEE P2030.2/D9.0, pp. 1–136, June 2015.

[6] S. Amin and B. Wollenberg, “Toward a smart grid: power de-
livery for the 21st century,” IEEE Power and Energy Magazine,
vol. 3, no. 5, pp. 34–41, September 2005.



[7] M. H. Bollen, I. Y. Gu, S. Santoso, M. Mcgranaghan, P. A.
Crossley, M. V. Ribeiro, and P. P. Ribeiro, “Bridging the gap
between signal and power,” IEEE Signal Processing Magazine,
vol. 26, no. 4, pp. 12, July 2009.

[8] M. F. McGranaghan, D. R. Mueller, and M. J. Samotyj, “Voltage
sags in industrial systems,” IEEE Transactions on industry
applications, vol. 29, no. 2, pp. 397–403, March-April 1993.

[9] T. Routtenberg and L. Tong, “Networked detection of voltage
imbalances for three-phase power systems,” in Proceedings of
the 2015 IEEE ISIE, Buzios-Rio de janiero (Brazil), pp. 1345–
1350, June 2015.

[10] M. H. Bollen, “Algorithms for characterizing measured three-
phase unbalanced voltage dips,” IEEE Transactions on Power
Delivery, vol. 18, no. 3, pp. 937–944, July 2003.

[11] M. H. Bollen and E. Styvaktakis, “Characterization of three-
phase unbalanced dips (as easy as one-two-three?),” in Proceed-
ings of the 2000 IEEE PES Summer meeting, Orlando (USA),
vol. 1, pp. 81–86, October 2000.

[12] L. Zhan and M. H. Bollen, “Characteristic of voltage dips (sags)
in power systems,” IEEE Transactions on Power Delivery,
vol. 15, no. 2, pp. 827–832, April 2000.

[13] M. Madrigal and B. Rocha, “A contribution for characterizing
measured three-phase unbalanced voltage sags algorithm,” IEEE
Transactions on Power Delivery, vol. 22, no. 3, pp. 1885–1890,
July 2007.

[14] Y. Amirat, M. E. H. Benbouzid, T. Wang, and S. Turri, “An
ensemble empirical mode decomposition approach for voltage
sag detection in a smart grid context,” International Review of
Electrical Engineering, vol. 8, no. 5, pp. 1503–1508, October
2013.

[15] M. H. Bollen, Understanding Power Quality Problems, vol. 3.
IEEE Press New York, October 1999.

[16] V. Ignatova, P. Granjon, and S. Bacha, “Space vector method for
voltage dips and swells analysis,” IEEE Transactions on Power
Delivery, vol. 24, no. 4, pp. 2054–2061, October 2009.
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