K. J. Mackenzie and M. E. Smith, Multinuclear Solid-State Nuclear Magnetic Resonance of Inorganic Materials, 2002.

D. L. Bryce, Calcium binding environments probed by 43 Ca NMR spectroscopy, Dalton Trans, vol.39, pp.8593-8602, 2010.

I. L. Moudrakovski and . In, Annual Reports on NMR Spectroscopy, pp.129-240, 2013.

R. W. Schurko and M. J. Jaroszewicz, The Lightest Metals: Science and Technology from Lithium to Calcium, pp.117-172, 2015.

D. Laurencin and M. E. Smith, Development of 43 Ca solid state NMR spectroscopy as a probe of local structure in inorganic and molecular materials, Prog. Nucl. Magn. Reson. Spectrosc, vol.68, pp.1-40, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00721681

R. Dupree, A. P. Howes, and S. C. Kohn, Natural abundance solid state 43 Ca NMR, Chem. Phys. Lett, vol.276, pp.399-404, 1997.
URL : https://hal.archives-ouvertes.fr/hal-00358171

D. L. Bryce, E. B. Bultz, and D. Aebi, Calcium-43 chemical shift tensors as probes of calcium binding environments. Insight into the structure of the vaterite CaCO 3 polymorph by 43 Ca solid-state NMR spectroscopy, J. Am. Chem. Soc, vol.130, pp.9282-9292, 2008.

J. Xu, Natural-abundance 43 Ca solid-state NMR spectroscopy of bone, J. Am. Chem. Soc, vol.132, pp.11504-11509, 2010.

H. Colas, CaC 2 O 4 Á H 2 O: structural study by a combined NMR, crystallography and modelling approach, CrystEngComm, vol.15, pp.8840-8847, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00881226

C. M. Widdifield, I. Moudrakovski, and D. L. Bryce, Calcium-43 chemical shift and electric field gradient tensor interplay: a sensitive probe of structure, polymorphism, and hydration, Phys. Chem. Chem. Phys, vol.16, pp.13340-13359, 2014.

D. Laurencin, A. Wong, J. V. Hanna, R. Dupree, and M. E. Smith, A highresolution 43 Ca solid-state NMR study of the calcium sites of hydroxyapatite, J. Am. Chem. Soc, vol.130, pp.2412-2413, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00358173

D. Laurencin, Implementation of high resolution 43 Ca solid state NMR spectroscopy: toward the elucidation of calcium sites in biological materials, J. Am. Chem. Soc, vol.131, pp.13430-13440, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00437583

A. Wong, P. M. Aguiar, T. Charpentier, and D. Sakellariou, A low-cost strategy for 43 Ca solid-state NMR spectroscopy, Chem. Sci, vol.2, pp.815-818, 2011.
URL : https://hal.archives-ouvertes.fr/cea-00854020

A. Wong, D. Laurencin, R. Dupree, and M. E. Smith, Two-dimensional 43 Ca-1 H correlation solid-state NMR spectroscopy, Solid State Nucl. Magn. Reson, vol.35, pp.32-36, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00363972

K. M. Burgess, F. A. Perras, I. L. Moudrakovski, Y. Xu, and D. L. Bryce, High sensitivity and resolution in 43 Ca solid-state NMR experiments, Can. J. Chem, vol.93, pp.799-807, 2015.

D. A. Hall, Polarization-enhanced NMR spectroscopy of biomolecules in frozen solution, Science, vol.276, pp.930-932, 1997.

Q. Z. Ni, High frequency dynamic nuclear polarization, Acc. Chem. Res, vol.46, pp.1933-1941, 2013.

A. J. Rossini, Dynamic nuclear polarization surface enhanced NMR spectroscopy, Acc. Chem. Res, vol.46, pp.1942-1951, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00954530

A. Zagdoun, A slowly relaxing rigid biradical for efficient dynamic nuclear polarization surface-enhanced NMR spectroscopy: expeditious characterization of functional group manipulation in hybrid materials, J. Am. Chem. Soc, vol.134, pp.2284-2291, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00699587

F. Blanc, Dynamic nuclear polarization NMR of low-g nuclei: structural insights into hydrated yttrium-doped BaZrO 3, J. Phys. Chem. Lett, vol.5, pp.2431-2436, 2014.

Z. Guo, Selective host-guest interaction between metal ions and metalorganic frameworks using dynamic nuclear polarization enhanced solid-state NMR spectroscopy, Chem. Eur. J, vol.20, pp.16308-16313, 2014.

T. Gutmann, Natural abundance 15 N NMR by dynamic nuclear polarization: fast analysis of binding sites of a novel amine-carboxyl-linked immobilized dirhodium catalyst, Chem. Eur. J, vol.21, pp.3798-3805, 2015.

D. Lee, N. T. Duong, O. Lafon, and G. De-paëpe, Primostrato solid-state NMR enhanced by dynamic nuclear polarization: penta-coordinated Al are only located at the surface of hydrated g-alumina, J. Phys. Chem. C, vol.118, pp.25065-25076, 2014.

F. Blanc, Dynamic nuclear polarization enhanced natural abundance 17 O spectroscopy, J. Am. Chem. Soc, vol.135, pp.2975-2978, 2013.

F. A. Perras, T. Kobayashi, and M. Pruski, Natural abundance 17 O DNP two-dimensional and surface-enhanced NMR spectroscopy, J. Am. Chem. Soc, vol.137, pp.8336-8339, 2015.

M. E. Fleet, Carbonated Hydroxyapatite: Materials, Synthesis, and Applications, 2015.

V. Klimavicius, L. Dagys, and V. Balevicius, Subnanoscale order and spin diffusion in complex solids through the processing of cross-polarization kinetics, J. Phys. Chem. C, vol.120, pp.3542-3549, 2016.

C. Sauvée, Highly efficient, water-soluble polarizing agents for dynamic nuclear polarization at high frequency, Angew Chem. Int. Ed, vol.52, pp.10858-10861, 2013.

A. Lesage, Surface enhanced NMR spectroscopy by dynamic nuclear polarization, J. Am. Chem. Soc, vol.132, pp.15459-15461, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00979332

F. Mentink-vigier, Fast passage dynamic nuclear polarization on rotating solids, J. Magn. Reson, vol.224, pp.13-21, 2012.

K. R. Thurber and R. Tycko, Theory for cross effect dynamic nuclear polarization under magic-angle spinning in solid state nuclear magnetic resonance: the importance of level crossings, J. Chem. Phys, vol.137, p.84508, 2012.

H. Takahashi, Rapid natural-abundance 2D 13 C-13 C correlation spectroscopy using dynamic nuclear polarization enhanced solid-state NMR and matrix-free sample preparation, Angew Chem. Int. Ed, vol.51, pp.11766-11769, 2012.
URL : https://hal.archives-ouvertes.fr/hal-02043242

J. P. Yesinowski and H. Eckert, Hydrogen environments in calcium phosphates: proton MAS NMR at high spinning speeds, J. Am. Chem. Soc, vol.109, pp.6274-6282, 1987.

A. Pines, M. G. Gibby, and J. S. Waugh, Proton-enhanced nuclear induction spectroscopy. A method for high resolution NMR of dilute spins in solids, J. Chem. Phys, vol.56, pp.1776-1777, 1972.

F. A. Perras, J. Viger-gravel, K. M. Burgess, and D. L. Bryce, Signal enhancement in solid-state NMR of quadrupolar nuclei, Solid State Nucl. Magn. Reson. 51, vol.52, pp.1-15, 2013.

D. Iuga, H. Schäfer, R. Verhagen, and A. P. Kentgens, Population and coherence transfer induced by double frequency sweeps in half-integer quadrupolar spin systems, J. Magn. Reson, vol.147, pp.192-209, 2000.

H. Takahashi, Optimization of an absolute sensitivity in a glassy matrix during DNP-enhanced multidimensional solid-state NMR experiments, J. Magn. Reson, vol.239, pp.91-99, 2014.
URL : https://hal.archives-ouvertes.fr/hal-02043248

S. E. Ashbrook and S. Wimperis, Spin-locking of half-integer quadrupolar nuclei in nuclear magnetic resonance of solids: second-order quadrupolar and resonance offset effects, J. Chem. Phys, vol.131, p.194509, 2009.

D. Laurencin, A. Wong, R. Dupree, and M. E. Smith, Natural abundance 43 Ca solid-state NMR characterisation of hydroxyapatite: identification of the two calcium sites, Magn. Reson. Chem, vol.46, pp.347-350, 2008.

D. Laurencin, Probing the calcium and sodium local environment in bones and teeth using multinuclear solid state NMR and X-ray absorption spectroscopy, Phys. Chem. Chem. Phys, vol.12, pp.1081-1091, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00437587

S. Hayashi and K. Hayamizu, Line shapes in CP/MAS NMR spectra of halfinteger quadrupolar nuclei, Chem. Phys. Lett, vol.203, pp.319-324, 1993.

J. E. Roberts, S. Vega, and R. G. Griffin, Two-dimensional heteronuclear chemical shift correlation spectroscopy in rotating solids, J. Am. Chem. Soc, vol.106, pp.2506-2512, 1984.

B. Grünberg, Hydrogen bonding of water confined in mesoporous silica MCM-41 and SBA-15 studied by 1 H solid-state NMR, Chem. Eur. J, vol.10, pp.5689-5696, 2004.

P. Charley and P. Saltman, Chelation of calcium by lactose: its role in transport mechanisms, Science, vol.139, pp.1205-1206, 1963.

K. Fujii and W. Kondo, Calcium glyceroxides formed in the system of calcium oxide-glycerol. With 4 figures, Z. Anorg. Allg. Chem, vol.359, pp.296-304, 1968.

C. E. Bugg, Calcium binding to carbohydrates. crystal structure of a hydrated calcium bromide complex of lactose, J. Am. Chem. Soc, vol.95, pp.908-913, 1973.

M. L. Dheu-andries and S. Pérez, Geometrical features of calciumcarbohydrate interactions, Carbohydr. Res, vol.124, pp.324-332, 1983.

K. Beshah, C. Rey, M. J. Glimcher, M. Schimizu, and R. G. Griffin, Solid state carbon-13 and proton NMR studies of carbonate-containing calcium phosphates and enamel, J. Solid State Chem, vol.84, pp.71-81, 1990.

Y. Hu, A. Rawal, and K. Schmidt-rohr, Strongly bound citrate stabilizes the apatite nanocrystals in bone, Proc. Natl Acad. Sci. USA, vol.107, pp.22425-22429, 2010.

Y. Wang, Water-mediated structuring of bone apatite, Nat. Mater, vol.12, pp.1144-1153, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01289769

E. Davies, Citrate bridges between mineral platelets in bone, Proc. Natl Acad. Sci. USA, vol.111, pp.1354-1363, 2014.

S. R. Stock, The mineral-collagen interface in bone, Calcif. Tissue Int, vol.97, pp.262-280, 2015.

M. J. Duer, The contribution of solid-state NMR spectroscopy to understanding biomineralization: atomic and molecular structure of bone, J. Magn. Reson, vol.253, pp.98-110, 2015.

B. M. Fung, A. K. Khitrin, and K. Ermolaev, An improved broadband decoupling sequence for liquid crystals and solids, J. Magn. Reson, vol.142, pp.97-101, 2000.

C. Gervais, New perspectives on calcium environments in inorganic materials containing calcium-oxygen bonds: a combined computationalexperimental 43 Ca NMR approach, Chem. Phys. Lett, vol.464, pp.42-48, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00358177

A. Bielecki, A. C. Kolbert, and M. H. Levitt, Frequency-switched pulse sequences: homonuclear decoupling and dilute spin NMR in solids, Chem. Phys. Lett, vol.155, pp.341-346, 1989.