Heights on square of modular curves

Abstract : We develop a strategy for bounding from above the height of rational points of modular curves with values in number fields, by functions which are polynomial in the level. Our main technical tools come from effective arakelovian descriptions of modular curves and jacobians. We then fulfill this program in the following particular case: If~$p$ is a not-too-small prime number, let~$X_0 (p )$ be the classical modular curve of level $p$ over $\Q$. Assume Brumer's conjecture on the dimension of winding quotients of $J_0 (p)$. We prove that there is a function $b(p)=O(p^{13} )$ (depending only on $p$) such that, for any quadratic number field $K$, the $j$-height of points in $X_0 (p ) (K)$ which are not lift of elements of $X_0 (p)/w_p (\Q )$, is less or equal to~$b(p)$.
Type de document :
Pré-publication, Document de travail
Liste complète des métadonnées

Contributeur : Pierre Parent <>
Soumis le : vendredi 27 janvier 2017 - 17:22:10
Dernière modification le : jeudi 11 janvier 2018 - 06:21:23

Lien texte intégral




Pierre Parent. Heights on square of modular curves . 2016. 〈hal-01448316〉



Consultations de la notice