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Abstract 25 

This work aims to investigate the aggregate size effect on changes in mineralogical 26 

composition and microstructure of lime-treated compacted soils. Three soil powders with 27 

different maximum aggregate sizes (Dmax = 5, 1 and 0.4 mm) were prepared prior to the 28 

treatment with 2% of lime. X-ray diffraction (XRD), environmental scanning electron 29 

microscope (Env. SEM) coupled with chemical analysis using energy dispersive X-ray 30 

spectrometry (EDX) and mercury intrusion porosimetry (MIP) were used to analyse untreated 31 

and treated samples at various curing times. Crystallized C-S-H on tobermorite form was 32 

identified in the lime-treated soil prepared with large aggregates after one year curing, and an 33 

evident increase in nanopores less than 0.1 µm C-S-Hwas also observed due to C-S-H 34 

creation. By contrast, in the case of smaller aggregates, no obvious C-S-H peaks were 35 

observed by XRD technique after the same curing time, even though some evidence of such 36 

phases are provided by Env. SEM coupled to EDX analysis. But a large amount of 37 

undetectable nanopores less than 6 nm (considering the MIP technical limitation) was 38 

supposed to be formed and could be attributed to the creation of nanocrystallized C-S-H or 39 

poorly-crystallized C-S-H (that may fill the pores larger than 2 µm). Such type of C-S-H 40 

phases occurred when lime was coated in thin layer on the large surface associated to 41 

lime-treated soil prepared with small aggregates. 42 
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1. Introduction 46 

Lime treatment is an effective soil improvement technique widely applied in the field of 47 

construction. It largely modifies the soil geotechnical properties through the physico-chemical 48 

reactions within the lime-soil-water system (Boardman et al., 2001; Russo, 2005; Al-Mukhtar 49 

et al., 2010; Tang et al., 2011; Tran et al., 2014). When quicklime (CaO), soil and water are 50 

mixed together, hydration and ionization of quicklime immediately take place. Then, the Ca
2+

 51 

ions in the pore water released by calcium hydroxide (Ca(OH)2) is adsorbed by ion-exchange 52 

at clay minerals surface. The diffuse hydrous double layer surrounding the clay particles can 53 

be modified by the Ca
2+

 ion-exchange process, resulting in the flocculation-agglomeration of 54 

clay particles (Bell, 1996). These modifications of clay particles induced by lime addition will 55 

largely improve the workability of soil by reducing the plasticity, the swelling and shrinkage 56 

(Bell, 1989; Russo, 2005). In the long-term, the main reactions between lime and clay 57 

minerals are of pozzolanic nature which contributes significantly to the improvement of soil 58 

mechanical behaviour in terms of shear strength, shear modulus, compression strength and 59 

compressibility (Rajasekaran and Narasimha Rao, 2002; Khattab et al., 2007; Consoli et al., 60 

2009; Tang et al., 2011; Dong, 2013). The mechanical improvement is to be attributed to the 61 

creation of cementitious compounds generated by the pozzolanic reaction, coating the soil 62 

particles and bonding them together (Bell, 1996; Onitsuka et al., 2001; Nalbantoglu, 2006).  63 

Mineralogical studies of cementitious compounds have been undertaken in recent years. The 64 

cementitious compounds can be of various forms due to the different mineralogical 65 

composition of soils containing mainly clay minerals such as kaolinite, montmorillonite or 66 

illite, and other minerals like quartz and feldspars. Generally, the main cementitious 67 



 4 

compounds are calcium silicate hydrate (C-S-H), calcium aluminate hydrate (C-A-H) and 68 

calcium alumino-silicate hydrate (C-A-S-H) (Khattab, 2002; Rios et al., 2009; Maubec, 2010; 69 

Al-Mukhtar et al., 2010). For lime-kaolinite mixture, the production of C-S-H, C-A-H and 70 

C-A-S-H was reported by many researchers (Goldberg and Klein, 1952; Eades and Grim, 71 

1960; Glenn and Handy, 1963; Willoughby et al., 1968; Bell 1996). C-S-H and C-A-H were 72 

also detected in the lime-treated montmorillonite (Bell 1996; Hilt and Davidson, 1960). Arabi 73 

and Wild (1989) noted that C-S-H hydrates were present in the lime-treated marls containing 74 

illite, quartz and feldspar. Eades et al. (1962) also identified the production of C-S-H in the 75 

lime-treated quartz.  76 

Even though many studies were performed on lime-treated soils, most of them focused on the 77 

lime-treated soil samples prepared in the laboratory. However, often lower performance of 78 

lime-treated soils and poor durability of lime treatment are observed in the field conditions. 79 

Puppala et al. (2006) reported about 40% lower for stiffness and 20 to 30% lower for strength 80 

in the case of treatment in field. Similar results were reported by other researchers 81 

(Horpibulsuk et al., 2006; Kavak and Akyarh, 2007). Additionally, higher hydraulic 82 

conductivity and swelling potential of lime-treated soils in the field conditions were observed 83 

(Bozbey and Guler, 2006; Cuisinier and Deneele, 2008). There are several factors that can 84 

contribute to this difference between field and laboratory conditions. In addition to the 85 

climatic factors, especially the wetting/drying cycles and freezing/thawing cycles (Pardini et 86 

al., 1996; Guney et al., 2007; Tang et al., 2011; Stoltz et al., 2012), the aggregate size may 87 

play an essential role in the hydro-mechanical behaviour of lime-treated soils (Tang et al., 88 

2011, Wang et al. 2015). The bender elements testing performed on the lime-treated samples 89 
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prepared with different maximum aggregates sizes (Dmax = 5, 2, 1 and 0.4 mm) revealed that 90 

lime-treated soils prepared with larger maximum aggregate size presented a relatively lower 91 

stiffness (Tang et al., 2011). Dong (2013) also indicated that the lime-treated soil prepared 92 

with larger aggregates was more sensitive to wetting/drying cycles. Note that aggregates are 93 

assemblages of adjacent soil particles in which the cohesive forces are larger than the 94 

disrupting force (Kemper and Chepil, 1965). In the field construction, the 95 

scarifying/pulverizing process is performed before the lime treatment to control the soil 96 

aggregate size. However, the size of soil aggregates in the field can still reach several 97 

centimetres, which is much larger than that of soil aggregates prepared in the laboratory 98 

before sample reconstruction. In the laboratory, natural tested soils are usually air-dried, 99 

ground and sieved into few millimetres. For example, Du et al. (2014) who studied the 100 

engineering properties and microstructure of the cement-stabilized contaminated soil, 101 

prepared the samples with kaolin clay which had a maximum aggregate size lower than 2 mm; 102 

while Cai et al. (2015) used reactive magnesia to treat in the laboratory a silty soil with the 103 

same maximum aggregate size. Jiang et al. (2016) also reported that the used soil was first 104 

passed through the sieve with 0.5 mm size prior to treatment.  105 

As the improvement in the mechanical behaviour of soils by lime treatment is proven to be 106 

primarily controlled by the cementitious compounds from the pozzolanic reactions, it is 107 

expected that the different behaviours of treated soils with various aggregate sizes can be also 108 

interpreted from mineralogical analysis. However, no studies have been conducted on this 109 

aspect. This constitutes the main objective of the present work. In this study, three different 110 

maximum aggregates sizes (Dmax = 5, 1 and 0.4 mm) of soil powders were prepared before 111 
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lime treatment. The creation of cementitious compounds was investigated by X-ray diffraction 112 

(XRD). In addition, environmental scanning electron microscope coupled with energy 113 

dispersive X-ray spectrometry (Env. SEM-EDX) and mercury intrusion porosimetry (MIP) 114 

were applied to investigate the microstructure and chemical composition of the treated soils.  115 

2. Materials and methods 116 

The tested soil was taken in Héricourt (France). It is a plastic silt with a clay-size fraction of 117 

27 %. The basic geotechnical properties of this silt given by Wang et al. (2016) are listed in 118 

Table 1. This soil corresponds to a silt of high plasticity (MH) following the Unified Soil 119 

Classification System (USCS). To prepare soil powders with different maximum aggregate 120 

sizes, natural soil was first air-dried, gently ground to crush the block of soil and passed 121 

through three target sieves (their maximum diameters, Dmax, are 5, 1 and 0.4 mm, 122 

respectively). The large aggregates which could not pass through the sieve were ground 123 

manually until all particles passed through, ensuring no changes in mineralogical 124 

compositions during sieving (Tang et al., 2011). Afterwards, soil powders S5, S1 and S0.4 are 125 

obtained, with Dmax equal to 5 mm for S5, 1 mm for S1, and 0.4 mm for S0.4. Figure 1 shows 126 

the aggregate size distributions of the three soil powders, determined by dry sieving. 127 

Quicklime was used in this study and it has a high purity with a CaO content as high as 128 

97.3 %. Particle size analysis shows that 82.7 %, 95.2 % and 100 % of this lime could pass 129 

through 80 µm, 200 µm and 2 mm sieves, respectively (Dong, 2013). A lime content of 2 % 130 

by mass was selected as binder dosage.  131 

The dry soils were firstly mixed thoroughly with 2 % quicklime. Then, distilled water was 132 

added by spray into the dry soil-lime mixture to obtain the target water content (w = 17 %, dry 133 
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side of the optimum according to the proctor curve). Static compaction was performed after a 134 

mellowing period of 1 hour, to prepare soil samples at the target density (ρd = 1.65 Mg/m
3
). 135 

The samples were carefully wrapped by plastic membrane and scotch tape immediately after 136 

compaction. The well-covered sample was stocked in a hermetic box for curing in a chamber 137 

at a temperature of 20±2 °C. Prior to mineralogical and microstructural analyses, the samples 138 

were freeze-dried following the procedure proposed by Delage and Pellerin (1984). 139 

X-ray diffraction (XRD) analysis was performed on both untreated and treated samples. To 140 

prepare soil powder for this analysis, freeze-dried and oven-dried samples were crushed and 141 

ground to pass through a 32 µm sieve. After sieving, soil powders were mixed well manually 142 

in agate mortar and sprinkled gently in XRD sample holder using a 65 µm sieve. The top 143 

layer was removed carefully by cutting the surface with a thin razor blade leading to a smooth 144 

surface without compaction (such preparation allows to decrease the preferential orientation 145 

of clay particles). XRD patterns were obtained using a D8 Advance diffractometer from 146 

Bruker (-configuration, Cobalt anode, E = 35 kV, I = 40 mA, no monochromator, LynxEye 147 

detector). A continuous scan mode, between 3 and 80° 2 theta, at a rate of 1 s per 0.01° 2 theta 148 

was selected. Diffractograms were exploited with EVA program coupled with the ICPdf2 149 

mineralogical database. 150 

Environmental scanning electron microscope (Env. SEM, Quanta 400 from FEI company) 151 

coupled with energy dispersive X-ray spectrometry (EDX from EDAX company) was 152 

employed to observe the microstructure and to study the chemical composition of treated 153 

samples. The EDX probe which provides an order of magnitude of the chemical content of 154 

elements such as Ca, Si and Al was calibrated before the observations. Images were collected 155 
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on fresh fractured surface after freeze-drying. Secondary or back scattered electron mode was 156 

selected in low vacuum mode (no metal coating was applied before observation).  157 

The mercury intrusion porosimetry (MIP) test was carried out on freeze-dried samples. The 158 

applied pressure ranged from 3.4 kPa to 230 MPa. The corresponding mercury intrusion 159 

diameter varied from 0.006 µm to 355 µm. In the analysis, the surface tension of mercury was 160 

taken equal to 0.485 N/m and the contact angle of mercury was taken equal to 130°.  161 

Table 2 presents the test program. All the 2 % lime-treated samples were freeze-dried before 162 

test except a piece of treated sample S1 after 1-year curing that was oven-dried at 105 °C 163 

prior to testing. Untreated soil sample was also tested by XRD to obtain data as reference.  164 

3. Experimental results 165 

3.1. Mineralogical analysis  166 

Figure 2 shows the XRD patterns of untreated soil and lime-treated soil S1 after 1-year curing. 167 

The results illustrate that the main minerals in untreated soil are quartz and clays with the 168 

presence of calcite and feldspars. The identification of clay minerals confirms the presence of 169 

kaolinite (d  7 Å), illite/muscovite (d  10 Å), and montmorillonite (d  12-14 Å). This clay 170 

composition is consistent with previous analyses made by Deneele and Lemaire (2012), who 171 

studied the same soil as that used in this study. The reflections associated with these clay 172 

minerals (with quite similar intensity or position) are also present in the lime-treated soil. For 173 

the lime-treated soil S1 (t = 1 year) after freeze-drying, one new reflection at 2 theta equal to 174 

34.2° (d  3.04 Å) is identified, suggesting creation of the C-S-H phase. This C-S-H phase 175 

would correspond to the main peak of synthetic tobermorite 9 Å with the formula 5Ca0.65SiO2, 176 
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2.5H2O (Pdf file 010-0374) or to the calcium silicate hydrate Ca1.55SiO3.5 xH2O (Pdf file 177 

033-0306). In order to remove the doubt of interpretation related to possible confusion among 178 

the phases of unreacted CaO, C-S-H (tobermorite and other C-S-H forms) and magnesian 179 

calcite, the XRD pattern of treated soil S1 after oven-drying at 105°C was also collected.  180 

The new peak previously observed disappeared which tends to validate the identified C-S-H 181 

phase. Indeed, oven-drying at 105 °C may dehydrate the C-S-H as suggested by Taylor (1997). 182 

Gallé (2001) mentioned also that C-S-H decomposition starts at low temperatures and C-S-H 183 

can be partially dehydrated at 105 °C, and then its crystallized structure disappears. Rio et al. 184 

(2009) also observed that different stages of C-S-H dehydration took place at a temperature in 185 

the range from 100 to 250 °C. If oven-drying at 105 °C can cause C-S-H degradation, it is not 186 

the case for the magnesium calcite. Indeed, this latter remains stable under temperature effect 187 

because decarbonation of calcite occurs at high temperatures (over 700 °C) according to 188 

Collier et al. (2008), Rios et al. (2009) and Al-Mukhtar et al. (2014). If the new peak observed 189 

on XRD pattern was calcite, this peak would remain present whatever the sample preparation. 190 

It was obviously not the case. Moreover, the absence of new peak at d  3.04 Å at short curing 191 

time (after just 1-day curing) allows excluding the presence of unreacted CaO after 1-year 192 

curing.  193 

Except the C-S-H phase, other minerals in the lime-treated soil seem similar to those of the 194 

untreated sample. Note that the crystallized silicate source used to form C-S-H phase could 195 

not be clearly identified by XRD because no clear peak decrease was detected, which would 196 

signify its dissolution.  197 

The effect of curing time and aggregates size can be specifically observed in a smaller range 198 
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from 31° to 39° 2 theta where the C-S-H phase involved on the XRD patterns. The results of 199 

treated samples S5 and S0.4 are illustrated in Figure 3a and 3b. Similarly to S1, S5 (Figure 3a) 200 

also showed an XRD peak associated with the creation of C-S-H in the case of 1-year curing. 201 

However, no sign of C-S-H was detected on the sample after a curing time of t = 60 days. 202 

Surprisingly, no C-S-H reflection was detected on the XRD pattern of treated soil S0.4 after 1 203 

year curing (Figure 3b). This point will be further discussed. 204 

3.2. Microstructure observation and chemical composition analysis 205 

Figures 4a-c present the distribution maps of silicon, aluminium and calcium derived from 206 

EDX coupled with Env. SEM observations on treated soil S1 at a curing time of t = 1 day. The 207 

two first elements belong to aluminosilicates phases such as feldspar and clays.  208 

Areas with high concentration of Si in Figure 4a indicate the presence of quartz grains. The 209 

calcium distribution map (Figure 4c) is established to localize hydrated lime after short curing 210 

time (in this case, Ca
2+

 has not enough time to diffuse homogeneously into soil aggregates) 211 

and the product of lime reaction such as C-S-H (at long time of curing). Even though the 212 

protocol to mix the soil with lime was optimized to cover all the soil aggregates, calcium 213 

seems to be distributed heterogeneously or rather, some aggregates of hydrated lime appears 214 

clearly after 1 day of curing in isolated clusters of several micrometers (Figure 4d). It is 215 

however worth noting that isolated small hydrated lime particles below the micron scale 216 

cannot be distinguished by Env. SEM. The observations do not allow the detection of the 217 

initial soil aggregate border formed by lime coating, whereas slight and continuous borders 218 

composed by lime are expected on EDX mapping. 219 

On lime-treated soil S1 after 1-year curing (Figure 5), the calcium distribution map (Figure 5c) 220 
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helps to localize the new pozzolanic products as shown in Figure 5d. New phases generally 221 

present a typical water sensitive morphology of C-S-H particles characterised by a soft, 222 

porous and rounded texture. Such C-S-H phases can be visually detected by operator on Env. 223 

SEM images, only when their sizes are large enough to be distinguished, due to the limited 224 

resolution of the Env. SEM apparatus applied in this study. If C-S-H phases are present in 225 

particle form (but in a size smaller than 1 µm) or in form of thin gel layer, these C-S-H phases 226 

are invisible for the operator. However, the C-S-H phases may be present by means of either 227 

coating the soil aggregates, or filling the inter-aggregate pores, or binding the adjacent 228 

aggregates together. 229 

Finally, even though the XRD did not detect crystallized C-S-H in the lime-treated soil S0.4 230 

after 1-year curing time, the Env. SEM observation revealed local presence of C-S-H particles 231 

as shown in Figure 6. The low quantities of such large C-S-H particles may explain the result. 232 

Quantitative EDX analyses complete the Env. SEM observations. Spot analysis at E = 20 kV 233 

were performed on areas situated on the EDX mapping in Figures 4 and 5 considering their 234 

high calcium content. Table 3 gives the atomic percentages of the main elements present in 235 

such areas compared to the atomic percentage measured on natural soil before lime addition 236 

and in the areas far from the selected calcium spot. The calculated atomic ratio Ca/Si is equal 237 

to 2.49 in areas rich in Ca
2+

 in soil S1 at t = 1 day while far from such area the Ca/Si ratio is 238 

equal to 0.06 (with Si/Al = 2.16). Far from the calcium rich areas, the Ca/Si ratio remains 239 

stable (or increases slightly to 0.09) even after 1 year of curing. In soil S1 at t = 1 day, the area 240 

rich in calcium is associated with local hydrated lime particles Ca(OH)2. These particles 241 

surround soil aggregates and calcium can be expected to diffuse into these aggregates. Note 242 
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that usual stoechiometries allow the identification of Si/Al ratios close to 1, 2 and 2.35 for 243 

kaolinite, illite and montmorillonite, respectively (and the Ca/Si ratio is normally close to 0.07 244 

in montmorillonite).  245 

After a long time curing (1 year) and for any aggregate size, examination of the chemical 246 

composition given by EDX on the new formed phase corresponding to C-S-H shows a 247 

decrease and an increase of the calcium and silicon contents, respectively, as compared to the 248 

initial spot analysis on hydrated lime particles. The Ca/Si ratio measured on C-S-H particles is 249 

about 0.65-0.63 (while Si/Al is close to 2.16 or 2.32) and this ratio is in accordance with the 250 

composition of synthetic tobermorite 9 Å (Ca0.65SiO2, 2.5H2O) found by XRD. This is also in 251 

agreement with the observations by Brunauer (1962) and El-Hemaly et al. (1977) suggesting a 252 

minimum value of 0.8-0.9 for C-S-H gel produced in the mixture of lime-silica-water. Studies 253 

of crystal structures of "tobermorites" (Merlino et al. 1999, 2000, 2001) showed that 254 

tobermorite is a series between two endmembers, Ca4Si6O15(OH)2·5H2O and Ca5Si6O17·5H2O, 255 

the Ca/Si ratio varying between 0.66 and 0.83. Wild et al. (1986) also stated that hydration of 256 

cement at room temperature created a poorly crystallized C-S-H gel with a high Ca/Si ratio of 257 

about 1.5 but the similar C-S-H gel from the reaction in the lime-silica-water mixture had a 258 

lower Ca/Si ratio. 259 

3.3. Pore size distribution 260 

Results obtained from MIP tests on the lime-treated soils (S5, S1 and S0.4) during a curing 261 

time from 7 to 90 days are presented in Figure 7. Data obtained on soils S5 and S0.4 have 262 

been presented previously in Wang et al. (2015). The pore size distributions of all lime-treated 263 

samples compacted on the dry side of optimum present a bi-modal behaviour with a 264 
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population of macro-pores (inter-aggregate pores) and a population of micro-pores 265 

(intra-aggregate pores). Note that the delimitation of the pore entrance diameter between the 266 

macro-pores and micro-pores is defined as d = 2 µm in this study (Romero et al., 2011). 267 

Generally, macro-pores (larger than 2 µm) are greatly impacted during compaction by the 268 

aggregate size: the larger the aggregate size is, the larger the modal entrance size of the 269 

macro-pores appears while aggregate size has negligible effect on the micro-pores (smaller 270 

than 2 µm) (Wang et al., 2015). As an illustration, the modal size of macro-pores for the 271 

untreated sample S5 is around 73 µm and in comparison, lower value is obtained for the 272 

untreated S0.4 soil with a main pore family around 14 µm. Nevertheless, these untreated 273 

samples with different Dmax values share a similar modal size of micro-pores. The mean value 274 

of the pore entrance diameter of the micro-pore family remains around 0.3-0.4 µm, as seen in 275 

Figure 7. 276 

Lime treatment progressively impacts the microstructure of soil. The quantity of each pore 277 

population was given as the ratio of intruded void ratio to the total void ratio equal to e = 0.68 278 

(Wang et al., 2016), as illustrated in Table 4. For treated soil S5, an increase in the frequency 279 

of the entrance pore diameters between 0.006 and 0.1 µm (defined as “nano-pores” in the 280 

following text for clarity) can be observed in Figure 7a at a curing time of t = 90 days, 281 

compared with that after 7-day curing. Particularly, the nano-porosity of sample S5 after 282 

90-day curing is 27 % larger than that of the sample after 7-day curing. Less change took 283 

place for macro-pores, except a slight decrease in the modal size of macro-pores. The total 284 

intrusion value measured on S5 in Figure 7b seems quite similar for the two curing periods. 285 

As illustrated in Figure 7c, similar results are observed on treated soil S1: after 90-day curing, 286 
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a small increase (around 14 %) in the frequency of nano-pores ranging from 0.006 to 0.1 µm 287 

is detected and the cumulative intrusion curve of S1 at 90 days is similar to that at 7 days. In 288 

the case of sample S0.4, a slight increase of 16 % in the quantity of the nano-pores is also 289 

detected for the sample after 90-day curing, in comparison with the sample at 7-day curing. In 290 

addition, both modal sizes of macro-pores and micro-pores shift slightly to lower values, by 291 

keeping similar shape during curing and decreasing both the quantities of macro-pores and 292 

micro-pores, as seen in Figure 7e. It is worth noting that the total intrusion value of S0.4 at 90 293 

days decreases significantly compared with that at 7 days, induced by a reduction of both the 294 

modal pore entrance size and the quantity of the large macro-pores (in Figure 7f).  295 

4. Discussion 296 

Pozzolanic reactions occur with 2 % lime added to the soil from Héricourt that contains 297 

quartz, feldspar and clays, and these reactions are strongly time-dependent. New crystallized 298 

phase appeared after a long time of curing (at least 1 year) and the main reflection 299 

characterizing this new phase is positioned at 34.2 ° (2 theta CoK) (corresponding to d = 300 

3.04 Å), close to the main peak of calcite that is present in untreated soil. Comparison of XRD 301 

patterns of treated soil S1 after 1-year curing and after oven-drying (at 105 °C) or after 302 

freeze-drying demonstrated that the new peak at d = 3.04 Å corresponds to the crystallized 303 

C-S-H phase (probably at tobermorite 9 Å) (see Figure 2). The chemical analysis on the 304 

C-S-H phase by means of Env. SEM-EDX, gave a Ca/Si ratio equal to 0.63-0.65 for both S1 305 

and S0.4, in agreement with the tobermorite 9 Å composition. No significant reflection 306 

corresponding to C-S-H was detected at a curing time of t = 60 days. This can be explained by 307 

the absence of well crystallized C-S-H or by the low detection limit of XRD technique. 308 
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Indeed, it is difficult to detect any crystalline phase if it is poorly crystallized, amorphous, or 309 

when its quantity is too small, generally below 0.5-1 % (Carter et al., 1987; Mitchell, 1993; 310 

Moon et al., 2004). In other words, very low quantity of well-crystallized C-S-H phase or 311 

amorphous C-S-H gel may be formed at 60 days, whatever the aggregate size.  312 

However, at a long curing time (t = 1 year), the aggregate size seems to impact significantly 313 

on the pozzolanic reactions among the lime-soil-water system. C-S-H phase can be detected 314 

on the treated soil prepared with large aggregates, such as S5 and S1 while crystallised C-S-H 315 

are difficult to be observed by XRD technique on soil with small aggregates (as seen in S0.4) 316 

even though Env. SEM pictures revealed the presence of isolated C-S-H particles in big 317 

clusters as for S0.4. Note that the low frequency of such clusters, or the low degree 318 

crystallisation of C-S-H phase in S0.4, explains why they were not detected by XRD. 319 

Furthermore, when lime powder was mixed with small-sized soil aggregates such as S0.4, a 320 

thin layer of lime-aggregate (named transition zone by Ping et al. (1991)) was expected due to 321 

the large contact surface of small aggregates. On the contrary, lime powders can be locally 322 

concentrated in thick layer on the surface of large aggregates (such as those in S1 and S5) 323 

which induce small contact surface area. This is consistent with the experimental results of 324 

Ping et al. (1991), who studied the aggregate size effect on the transition zone between 325 

granular aggregate and cement paste. The authors reported that the thickness of transition 326 

zone decreases with the decrease of the aggregate size. As curing time increased, this area 327 

where lime is concentrated is in favour of the formation of larger well-crystallized C-S-H 328 

particles. Conversely, a more homogeneous lime distribution in S0.4 should induce either the 329 

creation of a poorly-crystallized or amorphous C-S-H phase or gel, or a nanometric 330 
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well-crystallized C-S-H particle which is hardly detected by XRD. Even though in S0.4, these 331 

C-S-H phases cannot be directly detected by XRD and only localised C-S-H phases were 332 

observed by Env. SEM. The appearance of these C-S-H phases was indirectly confirmed by 333 

Tang et al. (2011) who conducted bender element tests on lime-treated soils with different 334 

aggregate sizes They reported a higher stiffness for the lime-treated soil with Dmax = 0.4 mm 335 

at a long curing, compared to that with Dmax = 5 mm. Comparison with the untreated sample 336 

showed that the treated samples had a higher stiffness, whatever the aggregate size. 337 

Cementitious compounds bond the soil particles together, inducing the increase of the soil 338 

stiffness. 339 

Furthermore, the aggregate size effect on the microstructure of treated soil is also consistent 340 

with previous mineralogical analysis. A relatively larger increase in frequency was observed 341 

for the nano-pores ranging from 0.006 to 0.1 µm on treated soil with large aggregates, 342 

especially for S5 after long curing time. These nano-pores can be attributed to the formation 343 

of well-developed C-S-H phase (a hydrated lamellar structure). This formation was favoured 344 

by the thick coating of lime around soil aggregates or by the local lime concentration in 345 

clusters as observed by Env. SEM. Similar observations were made by Russo and Modoni 346 

(2013) who reported that a pore population of 0.007-0.2 µm was developed in a 347 

lime-stabilised soil at long term. Alvarez et al. (2013) found a small amount of pores below 348 

0.02 µm, ascribed to C-S-H gel pores. In this study, the formation of C-S-H lead to the 349 

creation of nano-pores ranging from 0.006 to 0.1 µm, as observed in the mixture of lime and 350 

soils with large aggregates (S5). Such new nano-porous compounds filled the micro-pores 351 

(0.1 to 2 µm), decreasing the frequency of these micro-pores. However, less quantity of 352 
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nano-pores was found in treated soil S0.4 at the same curing period. While a large reduction 353 

in the total intrusion value of S0.4 at 90 days was identified, indicating that more undetectable 354 

nano-pores were created (their sizes are lower than 0.006 µm that corresponds to the detection 355 

limit of MIP measurement in this study), since the initial void ratio of the sample remains 356 

identical (Wang et al., 2016).. These undetectable nano-pores are mainly associated with 357 

C-S-H phases, which were generated from the pozzolanic reactions in S0.4 sample. This also 358 

agrees with the hypothesis of the formation of nano-crystalline C-S-H or small-sized 359 

amorphous C-S-H gels, which is invisible by XRD technique and whose nano-pores are 360 

undetectable by MIP measurement. Furthermore, these C-S-H phases in S0.4 soil gradually 361 

cover the surface of small soil particles to a large extent, bond the adjacent soil particles 362 

together, and also gradually block some entrances of both macro-pores and micro-pores. This 363 

may explain the small shift of the modal size of both macro-pore and micro-pore populations. 364 

As the new phase filled the pores and blocked the pore entrances, initially un-constricted 365 

pores can become constricted pores, leading to a decrease in the total intrusion value (Wang et 366 

al., 2015). This is in agreement with the observation by Russo and Modoni (2013).  367 

 368 

5. Conclusion 369 

The changes in mineralogical composition and microstructure of a lime-treated compacted 370 

soil during curing were investigated, with emphasis on the effect of aggregate size. On the 371 

basis of the experimental results, some conclusions can be drawn, as follows: 372 

1) XRD peaks of calcium silicate hydrates (C-S-H) on crystallized tobermorite form were 373 
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observed on patterns of freeze-dried lime-treated soil sample with large aggregates (S5 374 

and S1) after 1-year curing, while no such C-S-H was observed at shorter curing times. 375 

Oven-drying at 105°C allowed confirming the mineralogical nature of the new formed 376 

phase as C-S-H.  377 

2) When a given quantity of lime is mixed with large aggregates (S1 and S5),, lime particles 378 

during mixing can be concentrated locally within the mixture in order to form lime 379 

aggregates or thick coating on soil aggregates. Such calcium-rich areas contribute to the 380 

formation of large and detectable C-S-H crystallites as observed by XRD. By contrast, a 381 

diffused distribution of the lime powder was expected in the small soil aggregate-lime 382 

mixture (S0.4).  The low rate of lime aggregation benefits to the development of small 383 

(nano) crystallized C-S-H particles, or poor crystallized C-S-H phases, or amorphous 384 

C-S-H gels..  385 

3) The decrease of population of micro-pores and the increase of nano-pores in frequency 386 

observed in large aggregates lime mixtures (S5 and S1) can be attributed to the formation 387 

of visible crystallized C-S-H pores: the new nano-porous compound filled the micro-pores. 388 

By contrast, the soil with small-sized aggregates S0.4 mixed with lime behaved differently: 389 

very small or nano-sized C-S-H phase homogeneously spread on large soil aggregate 390 

surface was expected around soil aggregates (because of the initial thin coating with lime). 391 

As a result, the nano-sized pores expected to be less than 0.006 µm in the nano-sized 392 

C-S-H particles were too small to be detected by MIP. 393 
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 537 

Table 1 ESEM-EDAX element analysis of S1 at a curing time of t = 1 day, both on the spots where lime 538 

and clay particle located  539 

Element 

Wt % At % K-Ratio 

Lime Clay Lime Clay Lime Clay 

C 6.37 4.28 10.85 7.23 0.0171 0.0068 

O 50.54 49.47 64.67 62.74 0.0959 0.1652 

Na 0.14 0.21 0.12 0.19 0.0004 0.0007 

Mg 0.77 0.73 0.65 0.61 0.0035 0.0036 

Al 3.65 10.18 2.77 7.65 0.021 0.0624 

Si 7.71 22.88 5.62 16.53 0.0529 0.1496 

K 0.39 1.76 0.2 0.91 0.0037 0.015 

Ca 27.38 2.06 13.99 1.04 0.2574 0.0185 

Ti 0.28 0.59 0.12 0.25 0.0022 0.0051 

Fe 2.78 7.83 1.02 2.85 0.0236 0.0683 

 540 

541 
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 542 

Table 2 ESEM-EDAX element analysis of S1 at a curing time of t = 1 year, on the spot where CSH located 543 

Element Wt % At % K-Ratio 

C 3.33 5.61 0.0064 

O 52.49 66.42 0.1295 

Na 0 0 0 

Mg 2.32 1.93 0.0113 

Al 6.83 5.12 0.0407 

Si 16.54 11.92 0.1112 

K 0.41 0.21 0.0037 

Ca 15.55 7.85 0.1421 

Ti 0.17 0.07 0.0014 

Fe 2.37 0.86 0.0203 

 544 

545 
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 546 

Table 3 ESEM-EDAX element analysis of S0.4 at a curing time of t = 1 year, on the spot where CSH 547 

located 548 

Element Wt % At % K-Ratio 

C 7.1 11.32 0.0147 

O 55.15 66.01 0.1435 

Mg 1.89 1.49 0.009 

Al 6.3 4.47 0.0372 

Si 14.2 9.68 0.0953 

K 0.25 0.12 0.0022 

Ca 12.78 6.11 0.1171 

Fe 2.34 0.8 0.0201 

549 
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 550 

Figure 1 Aggregate size distribution of soil S5, S1 and S0.4 551 
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 554 

Figure 2 X-ray diffraction patterns of the untreated soil S1  555 
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 558 

Figure 3 X-ray diffraction patterns of lime-treated soils during curing: (a) S5; (b) S0.4 559 
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 564 

Figure 4 Elementary distribution maps of a lime-treated soil, S1, at a curing time of t = 1 day: (a) Silicium; 565 

(b) Aluminium; (c) Calcium, and SEM picture of the spot in the calcium concentration area  566 
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Figure 5 Element examination by EDAX on lime-treated soil S1 at a curing time of t = 1 day: (a) on the 568 

spot in the calcium concentration area; (b) on the spot in the clay particle area   569 
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 574 

Figure 6 Elementary distribution maps of a lime-treated soil, S1, at a curing time of t = 1 year: (a) Silicium; 575 

(b) Aluminium; (c) Calcium, and SEM picture of the spot in the calcium concentration area 576 
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Figure 7 Element examination by EDAX on lime-treated soil S1 at a curing time of t = 1 year, on the spot 578 

in the calcium concentration area  579 
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 583 

Figure 8 SEM picture of the lime-treated soil, S04, at a curing time of t = 1 year 584 

C-S-HC-S-H

 585 

586 



 38 

 587 

Figure 9 Element examination by EDAX on lime-treated soil S0.4 at a curing time of t = 1 year, on the spot 588 

in the calcium concentration area 589 
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 591 

Figure 10 Pore size distributions and cumulative intrusion curves of lime-treated soils with different 592 

aggregate sizes (S5, S1 and S0.4), obtained by MIP 593 
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