X. Hou, S. Bai, Q. H. Yang, C. Lui, and H. M. Cheng, Multi-step purification of carbon nanotubes, Carbon, vol.40, issue.1, p.81, 2002.
DOI : 10.1016/S0008-6223(01)00075-6

C. Poncharal, Y. Berger, Z. L. Yi, W. A. Wang, and . De-heer, Room Temperature Ballistic Conduction in Carbon Nanotubes, The Journal of Physical Chemistry B, vol.106, issue.47, p.12104, 2002.
DOI : 10.1021/jp021271u

L. Pint, Y. Q. Xu, E. Morosan, and R. H. Hauge, Alignment dependence of one-dimensional electronic hopping transport observed in films of highly aligned, ultralong single-walled carbon nanotubes, Applied Physics Letters, vol.94, issue.18, p.182107, 2009.
DOI : 10.1063/1.3130225

M. Chimowa, E. Sendova, D. Flahaut, S. Churochkin, and . Bhattacharyya, Tuning the electrical transport properties of double-walled carbon nanotubes by semiconductor and semi-metal filling, Journal of Applied Physics, vol.110, issue.12, p.123708, 2011.
DOI : 10.1063/1.3670879

URL : https://hal.archives-ouvertes.fr/hal-00714382

H. Krishnan, R. Yilmaz, C. Vadapoo, and . Marin, Selenium adsorbed single wall carbon nanotubes as a potential candidate for nanoscale interconnects, Applied Physics Letters, vol.97, issue.16, p.163107, 2010.
DOI : 10.1063/1.3499750

T. Shimada and . Sugai, Double-wall carbon nanotube field-effect transistors: Ambipolar transport characteristics, Applied Physics Letters, vol.84, issue.13, p.2412, 2004.
DOI : 10.1063/1.1689404

N. He, J. M. Fujimura, K. J. Lloyd, A. A. Erickson, Q. Talin et al., Carbon Nanotube Terahertz Detector, Nano Letters, vol.14, issue.7, p.3953, 2014.
DOI : 10.1021/nl5012678

K. Zhang, S. S. Bets, Z. Lee, F. Sun, V. L. Mirri et al., Closed-Edged Graphene Nanoribbons from Large-Diameter Collapsed Nanotubes, ACS Nano, vol.6, issue.7, p.6023, 2012.
DOI : 10.1021/nn301039v

J. Burke, Luttinger liquid theory as a model of the gigahertz electrical properties of carbon nanotubes, IEEE Transactions On Nanotechnology, vol.1, issue.3, p.129, 2002.
DOI : 10.1109/TNANO.2002.806823

P. J. Kang, L. N. Burke, K. W. Pfeiffer, and . West, Ballistic transport at GHz frequencies in ungated HEMT structures, Solid-State Electronics, vol.48, issue.10-11, p.2013, 2004.
DOI : 10.1016/j.sse.2004.05.050

. Datta, Electrical Transport in Mesoscopic Systems, 1995.

S. Seichepine, M. Salomon, S. Collet, L. Guillon, G. Nicu et al., A combination of capillary and dielectrophoresis-driven assembly methods for wafer scale integration of carbon-nanotube-based nanocarpets, Nanotechnology, vol.23, issue.9, p.95303, 2012.
DOI : 10.1088/0957-4484/23/9/095303

URL : https://hal.archives-ouvertes.fr/hal-00832109

J. D. Liang, G. Cressler, Y. Niu, G. Lu, D. C. Freeman et al., A simple four-port parasitic deembedding methodology for high-frequency scattering parameter and noise characterization of SiGe HBTs, IEEE Transactions on Microwave Theory and Techniques, vol.51, issue.11, p.2165, 2003.
DOI : 10.1109/TMTT.2003.818580

M. Pozar, Microwave Engineering, 1998.

M. Cuniberti, B. Sassetti, and . Kramer, ac conductance of a quantum wire with electron-electron interactions, Physical Review B, vol.57, issue.3, p.1515, 1998.
DOI : 10.1103/PhysRevB.57.1515

. Chimowa, Dynamic electrical Transport in carbon nanotubes and nanodiamond films, 2014.

K. Yamamoto, S. Sasaoka, and . Watanabe, Universal transition between inductive and capacitive admittance of metallic single-walled carbon nanotubes, Physical Review B, vol.82, issue.20, p.205404, 2010.
DOI : 10.1103/PhysRevB.82.205404

K. Tsutsui, S. Kuno, A. Kurokwa, and . J. Sakai, AC impedance of multi-walled carbon nanotubes, e-Journal of Surface Science and Nanotechnology, vol.5, p.12, 2007.
DOI : 10.1380/ejssnt.2007.12