In situ NMR and electrochemical quartz crystal microbalance techniques reveal the structure of the electrical double layer in supercapacitors - Archive ouverte HAL Accéder directement au contenu
Article Dans Une Revue Nature Materials Année : 2015

In situ NMR and electrochemical quartz crystal microbalance techniques reveal the structure of the electrical double layer in supercapacitors

Résumé

Supercapacitors store charge through the electrosorption of ions on microporous electrodes. Despite major efforts to understand this phenomenon, a molecular-level picture of the electrical double layer in working devices is still lacking as few techniques can selectively observe the ionic species at the electrode/electrolyte interface. Here, we use in situ NMR to directly quantify the populations of anionic and cationic species within a working microporous carbon supercapacitor electrode. Our results showthat charge storage mechanisms are different for positively and negatively polarized electrodes for the electrolyte tetraethylphosphonium tetrafluoroborate in acetonitrile; for positive polarization charging proceeds by exchange of the cations for anions, whereas for negative polarization, cation adsorption dominates. In situ electrochemical quartz crystal microbalance measurements support the NMR results and indicate that adsorbed ions are only partially solvated. These results provide new molecular-level insight, with the methodology offering exciting possibilities for the study of pore/ion size, desolvation and other effects on charge storage in supercapacitors.
Fichier principal
Vignette du fichier
Griffin_16801.pdf (461.37 Ko) Télécharger le fichier
Origine : Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01447659 , version 1 (27-01-2017)

Identifiants

Citer

John M. Griffin, Alexander C. Forse, Wan-Yu Tsai, Pierre-Louis Taberna, Patrice Simon, et al.. In situ NMR and electrochemical quartz crystal microbalance techniques reveal the structure of the electrical double layer in supercapacitors. Nature Materials, 2015, vol. 14 (n° 8), pp. 812-819. ⟨10.1038/NMAT4318⟩. ⟨hal-01447659⟩
157 Consultations
558 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More