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Sparse Hilbert Schmidt Independence Criterion and
Surrogate-Kernel-Based Feature Selection for

Hyperspectral Image ClassiÞcation
Bharath Bhushan Damodaran,Member, IEEE, Nicolas Courty,Member, IEEE, and SŽbastien Lef•vre

Abstract—Designing an effective criterion to select a subset
of features is a challenging problem for hyperspectral image
classi�cation. In this paper, we develop a feature selection method
to select a subset of class discriminant features for hyperspectral
image classi�cation. First, we propose a new class separability
measure based on the surrogate kernel and Hilbert Schmidt
independence criterion in the reproducing kernel Hilbert space.
Second, we employ the proposed class separability measure as an
objective function and we model the feature selection problem
as a continuous optimization problem using LASSO optimization
framework. The combination of the class separability measure
and the LASSO model allows selecting the subset of features
that increases the class separability information and also avoids
a computationally intensive subset search strategy. Experiments
conducted with three hyperspectral data sets and different
experimental settings show that our proposed method increases
the classi�cation accuracy and outperforms the state-of-the-art
methods.

Index Terms—Band selection, class separability measure,
feature selection, Hilbert Schmidt independence criterion (HSIC),
hyperspectral image classi�cation, kernel methods, LASSO,
surrogate kernel (SK).

I. I NTRODUCTION

H YPERSPECTRAL sensors characterize the information
content of the objects under the scene in a large number

of spectral bands. For this reason, it has been considered as
an important data source for many remote sensing applications
(e.g., precision agriculture, land cover/land use mapping, and
mineral exploration) [1]Ð[3]. However, the automatic analysis
of hyperspectral data is a complex task mainly due to high
dimensionality of the hyperspectral data. This causes the
critical issues such as curse of dimensionality, redundant
information, and high volume of the data. Addressing the
above issues is of prime importance to exploit the potentials of
hyperspectral data for real-world applications. Statistical-based
models such as the Gaussian mixture model suffer severely
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due to the curse of dimensionality, leading to an inaccurate
estimation of parameters of the model. One effective way
to tackle these problems is to reduce the dimensionality of
hyperspectral data set without losing the useful information,
and this process has the capability to overcome the feature
space geometrical and statistical limitations of hyperspec-
tral data [4]. Kernel-based methods such as support vector
machine (SVM) have shown to be more effective in handling
high dimensionality of hyperspectral data. However, these
methods could also beneÞt from the dimensionality reduction
methods [5].

In recent years, several attempts have been made to deal
with the dimensionality of the hyperspectral data set using
either feature extraction or feature selection methods. Feature
extraction projects the high-dimensional image into a lower
dimensional subspace [6], [7]. On the other hand, feature
selection (or band selection) picks the best subset of bands
based on a certain criterion [8]Ð[10]. The latter is often
preferable in remote sensing, since the selected bands are
interpretable and usually contain the physical information.
Feature selection methods can be categorized into supervised
methods [5], [13], [14] and unsupervised [11], [12]. In the
unsupervised case, the bands are selected mainly based on fea-
ture clustering [10], [11], independence column selection [15],
and feature ranking [16]. The performance of these methods
might be low compared with that of the supervised case.
However, these unsupervised methods are preferred when no
ground-truth information is available. On the other hand, in the
supervised case, the bands are selected based on wrapper- and
Þlter-based approaches. The former relies on the selection of a
subset of bands, which maximizes the classiÞcation accuracy
in accordance with the underlying classiÞer [5], [9]. The
latter rather selects the subset of bands with respect to the
characteristics of the training data. Thus, the selected bands
by the Þlter-based approaches are independent of the classiÞer,
have better generalization power, and are less computationally
expensive depending on the underlying Þlter used.

Designing the criteria for a Þlter-based supervised feature
selection method is a challenging problem. Several criteria
have been proposed for feature selection, including distance
measures [17], class separability measures [8], [18], informa-
tion measures, and dependence measures [14], [19]. Among
these criteria, the class-separability-based strategies are inter-
esting, since they select the subset of features that maximizes
the class separable information. The JeffriesÐMatusita distance
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measure, Bhattacharya distance, FisherÕs ratio measure are
the most widely used class separability measures for remote
sensing images [20]Ð[22]. These separability measures com-
pute the class separability information between the land cover
classes in the input space. Thus, the above measures might
not be so effective in capturing the nonlinear dependence
relationship between the land cover classes in remote sens-
ing data while compared with working in the reproducing
kernel Hilbert space (RKHS). Moreover, the class separa-
bility information is also used to evaluate the training data
quality (training sample subset selection) in remote sensing
applications [23]. It is known that collecting a sufÞcient
number of training samples to meet the requirements of
Hughes Phenomena is very difÞcult for hyperspectral data
and Þeld spectroradiometer data (typically contains more than
1000 spectral channels). In this scenario, the computation
of conventional class separability information would not be
possible due to inverse of the covariance matrix term involved
in the class separability measures. Therefore, it is of prime
importance to design a class separability measure in the RKHS
to effectively handle the nonlinear dependence of the data and
to avoid singularity problems.

In this paper, we propose a new class separability measure
in the RKHS as the objective function for feature selection.
The proposed measure is deÞned using the Hilbert Schmidt
independence criterion (HSIC) and surrogate kernel (SK)
approach. In [24], the similarity measure using SK was
derived to evaluate the PerTurbo classiÞerÕs performance with
the training data characteristics and the similarity measures
between the classes and the confusion matrix of the classiÞer
showed some homogeneous structure. We build upon this
observation to select the subset offeatures that increases the
diagonal dominance of the similarity matrix, thereby possibly
increasing the diagonal dominance of the confusion matrix.
The proposed class separabilitymatrix is different from the
one in [24], in the sense that we use the HSIC to compare
the similarity between the kernel matrices of two classes.
The applicability of HSIC for feature selection is shown
in [14], [19], and [25]. However, the potential of the HSIC for
deriving class similarity measure has not been explored yet.

Beyond the design of the objective function, another key
issue in feature selection is the search strategy. Generally,
the search-based methods, such as sequential forward and
backward search and evolutionary-based search methods, are
employed to Þnd the subset of the features. These methods
incrementally add or removebands according to a given
criterion and involve a computationally intensive subset search
operation. The LASSO orl1 optimization method has shown
to be able to model the discrete band selection problem as
a continuous optimization problem [26] and thus avoids a
complex subset strategy. Therefore, we adopted in this paper
the LASSO model to select the subset of class discriminant
features. The proposed feature selection method is devel-
oped by coupling the proposed class separability matrix and
the LASSO model into a single uniÞed framework called
HSIC-SK LASSO. A related method to our HSIC-SK LASSO
is given in [26], but the entries in the LASSO model and
their length are different. The length of the input and output

terms of our proposed method is dependent on the number
of classes, i.e.,L2, whereL is the number of classes present
in the image. Conversely, the length of the entries in [26] is
dependent on the number of training samples, i.e.,n2. Let
us observe that for hyperspectral data sets, we generally have
n2 � d, wheren is the number of training samples andd is
the number of bands of hyperspectral data. As such, the model
proposed in [26] might not be computationally feasible for
hyperspectral data sets. Indeed, this model was proposed for
ultrahigh-dimensional data sets.

Our main contributions are thus: 1) development of a new
class separability matrix based on SK and HSIC in the RKHS
and 2) effective design of a LASSO-based framework to select
class separable features for hyperspectral data classiÞcation.
The experiments conducted with three airborne hyperspectral
data sets with different experimental settings show that our
proposed feature selection method outperforms the state-of-
the-art methods and it is computationally more efÞcient than
sequential-search-based methods.

The rest of this paper is organized as follows. Section II
presents the theoretical background of the proposed feature
selection method. Section III proposes the class separabil-
ity measure and the LASSO feature selection framework.
Section IV details the extensive experiments conducted with
the proposed method, including the comparison of some meth-
ods with the state-of-the-art methods. Finally, the conclusion
and some research perspectives are given in Section V.

II. T HEORETICAL BACKGROUND

This section reviews the necessary theoretical background
required for the proposed class separability measure.

Let S = { (x1, y1), (x 2, y2), . . . , ( xn, yn)} � Rd ×
{� 1, . . . , � L } be the training set withN pairs of training
samplesxi and their corresponding class labelsyi and Sl be
the set of all training samples with label� l . The geometric
structure of the samples belonging to the class� l can be
characterized using the geometry of the kernel induced feature
space. The geometry of the class� l can be represented by the
Gram matrix in the RKHS as follows:

Ki j (Sl ) = k(xi , xj ) = �( xi )T.�( xj ) = exp(Š � � xi Š xj � 2)

(1)

where k(., .) is a Gaussian radial basis kernel function,
xi andxj � Sl , � is the mapping from the original space into
RKHS, and� is the bandwidth parameter of the Gaussian
kernel.

A. Surrogate Kernel

MercerÕs theorem states that any positive semideÞnite ker-
nel can be reconstructed from the kernelÕs eigenspectra and
its continuous eigenfunctions [27]. Thus, MercerÕs theorem
provides an explicit way to generate the kernel matrix on any
arbitrary samples. In general, the kernel matrices cannot be
compared directly using standard matrix metrics because they
do not share the same size. The SK approach [28] allows
us to adapt the Gram matrix based on a new set of support
functions, yielding matrices of comparable sizes. The SK [28]
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can be deÞned as follows: letX and Z be any given two
samples andk(.) be a kernel function, thenKX � R|X|×| X| and
KZ � R| Z|×| Z| are the kernel matrices deÞned onX and Z,
respectively, andKX Z � R| X|×| Z| is a kernel matrix deÞned
amongX and Z. The SK of KX on the sampleZ, denoted
by KZ� X, is deÞned as

KZ� X = KZX K Š1
X KX Z. (2)

The kernel matrixKX
1 and its SK KZ� X are built from

the same set of set of eigenvalues and eigenfunctions [28],
and thus KZ� X preserves the key structure of the kernel
matrix KX.

B. Hilbert Schmidt Independence Criterion

Another way to compare the geometry of kernel embeddings
is found in the use of a statistical independence criterion:
the HSIC. It measures the independence between two sets
of random variables [29]. LetX and Z be the two random
variables, from which the samples(x, z) can be drawn from
the probability density function ofX and Z. The nonlin-
ear mapping function is deÞned on each element ofX, as
�( x) � F from x � X to the feature spaceF, such that
the inner product between the features is given by a kernel
function k(x, x

�
) = � �( x), �(x

�
)� , and F is the associated

RKHS. In a similar manner, letG be the RKHS onZ with
kernell (., .) and the mapping function�( z). Then the cross-
covariance operator betweenthese two mapping functions can
be deÞned as a linear operatorCxz : G � F, such that

Cxz = Exz[(�(x ) Š µ x) 	 (�(z ) Š µ z)]


 Exz[�( x) 	 �( z)] Š µ x 	 µ z (3)

where 	 is a tensor product. The HSIC is deÞned as the
squared Hilbert Schmidt norm of (3). It has been shown that
the HSIC can be expressed in terms of kernel [29] and the
empirical estimate of the HSIC is given as follows:

HSIC(Z, F, G) = (m Š 1)Š2tr (K C LC) (4)

where m is the number of observations (samples),C, K ,
L � Rm× m, Ki j = k(xi, xj ), L i j = l (zi , zj ), Ci j = � i j Š mŠ1

(� i j = 1 if i = j , zero otherwise) is the centering matrix, and
tr is the trace operator. The independence between the two
random variables in the Hilbert space can be obtained by (4).

III. PROPOSEDFRAMEWORK

In this section, we propose a new class separability measure
and the LASSO-based feature selection framework.

A. Proposed Similarity Measure in Kernel Hilbert Space

We assume that the samples belonging to different classes
follow different probability distributions. Measuring similarity
between the classes can then be framed as computing the
distances between the probability distributions. LetK(Sl ) and
K(Sl � ) be the kernel matrices of the samples belonging to

1In the implementation, a Tikhonov regularization� = 10Š4 is added to
KX before computing inverse to avoid numerical issues.

the classes� l and � l � in the RKHS as described in (1).
Measuring the distribution of the data in the Hilbert space is
not straightforward, since the kernel-induced feature maps in
the RKHS cannot be expressed explicitly [28], [30]. The kernel
matrix has the capability to uniquely describe the feature space
geometry of the data samples in the RKHS. Therefore, for
two samples (from class� l and � l � ) to have similar feature
space distributions, we require them to have similar kernel
matrices.

Let �( Sl ) and �( Sl � ) be the empirical kernel maps of the
samples belonging to the classes� l and� l � , respectively. If the
two kernel matrices are identical, then their corresponding
empirical kernel maps will alsobe identical. This implies that
the empirical distributions of the data in the kernel induced
feature space will also be equal. In other words

K(Sl ) = K(Sl � ) 
 �( Sl ) = �( Sl � ) (5)


 p(�( Sl )) = p(�( Sl � )) (6)

where p(·) is the probability distribution function in the
Hilbert space. Thus, measuring similarity between the data
distributions in the Hilbert space (feature space) can be viewed
as aligning the two kernel matrices.

In remote sensing images, the spatial distribution of the
classes will be different to each other. As a result, the number
of samples belonging to each class will also be different.
Thus, evaluating the similarity or closeness between the two
kernel matrices is difÞcult, since the kernel matrices of the
different classes may have different dimensions. In order to
overcome this problem, we generate a new kernel matrix
called SK [28]. To compare the kernel matrices of two classes
K(Sl ) and K(Sl � ), we construct the surrogate kernel ofSl
based on the sampleSl � as follows:

K(Sl � � Sl ) = K(Sl � , Sl )K (Sl )
Š1K(Sl , Sl � ) (7)

where K(Sl � � Sl ) is an SK of K(Sl ). Now the similarity
between the class� l and � l � can be evaluated by measuring
the closeness betweenK(Sl � � Sl ) andK(Sl � ). The similarity
between K(Sl � � Sl ) and K(Sl � ) is measured using the
HSIC as

HSIC(� l , � l � ) = (ml � Š 1)Š2tr (K (Sl � � Sl )C K(Sl � )C) (8)

whereml� is the number of the samples in the class� l � and
Ci j = � i j Š mŠ1

l � , in which � i j = 1 if i = j zero otherwise.
The pairwise Hilbert Schmidt class similarity matrix between
the classes is then deÞned as

H =

�

�
�
�
�
�
�

HSIC(� 1, � 1) HSIC(� 1, � 2) · · · HSIC(� 1, � L )

HSIC(� 2, � 1) HSIC(� 2, � 2) · · · HSIC(� 2, � L )
...

...
. . .

...

HSIC(� L , � 1) HSIC(� L , � 2) · · · HSIC(� L , � L )

�

�
�
�
�
�
�

.

(9)

The high values of the matrixH indicate that the classes have
high similarity and the low values indicate that the classes have
less similarity. The pairwise Hilbert Schmidt class similarity
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matrix between the classes computed with thekth feature of
hyperspectral data is given by

H k

=

�

�
�
�
�

HSICk(� 1, � 1) HSICk(� 1, � 2) · · · HSICk(� 1, � L )
HSICk(� 2, � 1) HSICk(� 2, � 2) · · · HSICk(� 2, � L )

...
...

. . .
...

HSICk(� L , � 1) HSICk(� L , � 2) · · · HSICk(� L , � L )

�

�
�
�
�

.

(10)

B. Proposed LASSO Feature Selection Framework

If the features have good class discriminative information,
then matrixH will be a diagonal dominant matrix. Therefore,
the problem is to Þnd the subset of features that maximizes
the diagonal dominance of the matrixH . The sequential-
search-based methods can be employed to Þnd the subset of
features; however, they require a computationally intensive
subset search strategy. Instead, we formulate in this paper, the
discrete band selection problem as a continuous band selection
problem using the LASSO optimization method. We denote
our proposed LASSO-based band selection framework by
HSIC-SK LASSO. It is deÞned as

J(� ) = min
�

1
2

�
�
�
�
�

�I Š
d	

k= 1

	 k H k

�
�
�
�
�

2

F

+ 
 � � � 1 (11)

where �I = 1/ L( I + �) is a target matrix,I is the identity
matrix, � = 10Š4 is a constant,H k is the class separability
measure of thekth feature in the hyperspectral data,� is
the coefÞcient vector of lengthd and nonzero entries of the
� correspond to the selected features retained by HSIC-SK
LASSO, and
 is the scalar value to control the sparsity of
the coefÞcient vector. The Þrst term of (11) is the squared
loss function and the second term is the regularization term.
The lengths of the output term (�I ) and input term (H k) are
dependent on the number of classes present in the image and
they are of lengthL2. The entries of our proposed method
are different from the LASSO model available in [26]. The
ideal kernel and featurewise kernel matrix were used as the
entries in [26], thus leading to a large number of observations
for the LASSO model. The dimensions of output (ideal kernel)
and input (featurewise kernel) terms are of lengthn2, and thus
alwaysn2 � d. Due to this, the existing formulation from [26]
might not be computationally feasible2 for feature selection of
hyperspectral data. Our proposed model does not depend on
the number of training samples but rather on the number of
classes, and thus oftenL2 < d, which is preferable for the
LASSO model.

1) Interpretation of HSIC-SK LASSO:The HSIC-SK
LASSO formulated in (11) aims to identify highly class sepa-
rable features that have large inner product between�I andH k.
Expanding the Þrst term of (11) and expressing in terms of
kernel matrices will provide more insight into our proposed
method. For the simplicity, we assume that kernel matrices are

2We have conducted experiments with the model proposed in the work of
Yamadaet al. [26] using the codes provided by them and we found that the
model did not converge for hyperspectral image feature selection.

centralized, then using (3) the squared loss term in (11) can
be expressed as
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In (12) �, � = 10Š4 are constant3 and K k is the kernel
matrix computed with thekth feature of hyperspectral data.4

The second term in (12) can be interpreted based on class dis-
criminative information of the features; when thekth feature
has less within-class variance and high between-class variance,
this term takes a large value and correspondingly	 k should
also take a large value such that (11) is minimized. On the
contrary to that, when thekth feature is not discriminative,
the second term takes a smaller value, and thus	 k tends to
be eliminated by the regularization term. This implies that
important features that have better class separability tend to be
selected by our proposed HSIC-SK LASSO. The third term
in (12) provides more interesting interpretation as it has the
capability to encode the correlation information between the
features in a classwise manner. The Þrst two kernel matrices
measure correlation between thekth and k�th feature with
respect to class� l and the remaining two entries correspond
to correlation between thekth and k�th features relative to
class� l � . When thek andk�th features are correlated relative
to each class, the third term takes a larger value, so either
of 	 k and 	 k� tends to be zero. On the other hand, when
the features are independent relative to class� l and � l � or
interestingly with either of the classes, then the corresponding
features tends to be retained by our method. Thus, (11) elimi-
nates the correlated features in a classwise manner, which is an
important property of our proposed method. Furthermore, the
second term in (12) can be related to [26], but the third term is
different because our method has the advantage of including
the feature correlation in a classwise manner.

The proposed formulation given in (11) is solved using
the statistical and machine learning toolboxes available in
MATLAB. 5

3� is added in the target matrix (�I ) to include the between-class similarity
in the selection of features.

4The normalizing terms in (12)are ignored for clarity purpose.
5The MATLAB codes of the proposed method will be provided upon

request.
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TABLE I

PAVIA UNIVERSITY TRAINING AND TESTINGSAMPLES

IV. EXPERIMENTAL RESULTS AND DISCUSSION

A. Data Sets

In order to evaluate the proposed HSIC-SK LASSO feature
selection method, experiments have been conducted with real-
world hyperspectral data sets. A detailed description of these
data is provided in the following.

1) Pavia University:The Þrst hyperspectral data considered
here were collected over the University of Pavia, Italy, by the
ROSIS airborne hyperspectral sensor in the framework of the
HySens project managed by DLR (German national aerospace
agency). The ROSIS sensor collects images in 115 spectral
bands in the spectral range from 0.43 to 0.86µm with a spatial
resolution of 1.3 m/pixel. After the removal of noisy bands,
103 bands were selected for experiments. This data contain
610× 340 pixels with nine classes of interest. The training
and testing samples are provided along with data and are used
to perform quantitative evaluation (see Table I).

2) City of Pavia: The second hyperspectral data were col-
lected over the City of Pavia, Italy, by the ROSIS sensor.
The spectral and spatial resolution conÞgurations are similar
to the Pavia University data set. After the removal of noisy
bands, 102 bands were selected for experiments. This data
set contains 1096× 715 pixels with nine classes of interest.
Similar to Pavia University, the City of Pavia data set comes
with some training and testing samples (see Table II).

3) Kennedy Space Center:The third and last hyperspec-
tral data considered here were collected over the Kennedy
Space Center (KSC)6 by the NASA Airborne Visible/Infrared
Imaging Spectrometer (AVIRIS). The AVIRIS sensor collects
images in 224 bands of 10-nm width with center wavelengths
from 400 to 2500 nm. The KSC data, acquired from an
altitude of approximately 20 km, have a spatial resolution
of 18 m. After removing water absorption and low SNR bands,
176 bands were used for the analysis. This data set consists
of 512× 614 pixels with 13 classes of interest. Training and
testing samples made available with this data set are given
in Table III.

6Available online: http://www.csr.utexas.edu/hyperspectral/data/KSC/.

TABLE II

CITY OF PAVIA TRAINING AND TESTINGSAMPLES

TABLE III

KSC TRAINING AND TESTINGSAMPLES

B. Experimental Design

In the proposed HSIC-SK LASSO method, we used radial
basis function (RBF) kernel with kernel width (� ) set to be
the Þfth percentile of pairwise distances (PDs) [31], [32].
The 
 in (11) are varied in the range
 = 10R, where
R = {Š 12,Š11. . . . ,1}, to select a different number of
spectral bands.7 The high 
 value favors to select a more
number of spectral bands and low value favors to select a
less number of spectral bands.

7LASSO may not extract exactly the required number of bands; neverthe-
less, in most of the cases, it is possible to extract exactly or very close to the
required number of spectral bands.
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The effectiveness of the features (bands) selected by the
proposed HSIC-SK LASSO method is assessed by the overall
accuracy of supervised classiÞers. The classiÞers considered
in our experiments are PerTurbo [24], SVM [33], extreme
learning machine (ELM) [34]Ð[36], and naive Bayes classi-
Þer (NBC) [37]. The choice of these classiÞers is motivated
by their demonstrated performances in hyperspectral data
classiÞcation. Besides, our goal is to show the genericity
of the selection strategy within a wide range of classi-
Þers. The RBF is used as the kernel function in the SVM,
PerTurbo, and ELM classiÞers. The SVM parameter cost func-
tion C = 2	 , 	 = {Š 5, Š4, . . . , 15}, and bandwidth� = 2
 ,

 = {Š 15,Š13, . . . , 3}, were automatically tuned with the
grid search method using Þvefold cross validation. Similarly,
the parameters of the PerTurbo classiÞer are automatically
tuned with � = { 10Š6, 10Š5, . . . , 0.99} and � = 2
 , 
 =
{Š 15,Š13, . . . , 3}. The performance of the ELM classiÞer is
independent of the number of hidden neurons [38]. However,
we have tuned here parameters using Þvefold cross validation
for optimal performance. The number of hidden neurons varies
from 100 to 1000.

The experiments are conducted in three different settings.
1) Feature selection is performed on original spectral

bands.
2) Feature selection is performed on the extended multiat-

tribute proÞle (EMAP) [39] of the hyperspectral data.
In order to generate the EMAP features, a princi-
pal component analysis is carried out on the hyper-
spectral data and the Þrst four principal components
(99% of total variance) are retained. The EMAPs are
then generated from these four PCs using four mul-
tiattribute Þlters, namely, area, diagonal of the region
bounding box, moment of inertia, and standard devi-
ation [40], [41]. It leads to a total number of EMAP
features equal to 304.

3) Finally, the feature selection experiment is performed
with randomization of training samples to assess the
stability of selected features.

C. Competitive Methods
We have compared our method with six speciÞc implemen-

tations of two state-of-the-art band selection methods, namely,
kernel dependence measure (KDM) [14], [19] and constrained
band selection (CBS) [16]. The KDM-based feature selection
method was considered, since it works similarly to our princi-
ple using HSIC. It consists of two different strategies using
forward HISC (FOHSIC) and backward HISC (BAHSIC)
search. The CBS was considered since it has been widely
used to compare the performance of band selection methods.
The CBS provides two different approaches named constrained
energy minimization (CEM), and linearly constrained min-
imum variance with four different criteria [band correla-
tion minimization (BCM), band correlation constraint (BCC),
band dependence minimization (BDM), and band dependence
constraint (BDC)]. It has been shown that BCC and BCM
perform identically to BDC and BDM, respectively [16]. Thus,
our experimental framework includes six speciÞc implemen-
tations to compare the results with our proposed method.

Finally, we also report the results obtained using all spectral
bands (full-band) as a baseline.

D. Feature Selection on the Original Spectral Bands
We discuss here the experimental results achieved by the

feature selection methods when applied on the original spectral
bands of the hyperspectral data.

1) Pavia University:For each of the four different classi-
Þers, we report in Fig. 1 the classiÞcation accuracy obtained
with the different feature selection methods on the Pavia
University data set. The classiÞcation accuracy using all
spectral bands of the hyperspectral data is also included as a
baseline (horizontal line) to compare with the feature selection
methods. Fig. 1 reveals that when the most informative bands
are added, the classiÞcation accuracy changes drastically, and
when additional (possibly redundant) bands are added, the
classiÞcation accuracy then changes slowly. The proposed
HSIC-SK LASSO feature selection method outperforms its
competitors with all the four classiÞers. The signiÞcance of the
proposed method is analyzed in two ways: 1) the number of
spectral bands required to approximate full-band classiÞcation
accuracy (i.e., Þrst peak close to the horizontal line) and
2) the percentage of improvement in classiÞcation accuracy
compared with the full-band classiÞcation accuracy and the
number of bands required to achieve the best classiÞcation
accuracy.

When the number of spectral bands required to approxi-
mate full-band accuracy is considered, the proposed method
outperforms the existing feature selection methods and is able
to approximate the full-band classiÞcation accuracy with fewer
spectral bands relative to all the four classiÞers. Indeed, our
method requires only 16% of spectral band for the SVM
classiÞer, 9% for the PerTurbo and ELM classiÞer, and 3%
for NBC to approximate full-band classiÞcation accuracy.
On the other hand, the existing feature selection methods
require a higher number of spectral channels to approximate
full-band accuracy. Moreover, their performance is not consis-
tent over the different classiÞers. To illustrate, these methods
require more than 40% of spectral bands to approximate
the full-band accuracy with three classiÞers (SVM, PerTurbo,
and NBC). Among the competitors, CEMÐBCC/BDM offers a
better performance with three classiÞers compared with other
existing methods.

When the improvement in classiÞcation accuracy is con-
sidered, the proposed method shows about 1Ð7% increase
in classiÞcation accuracy in comparison with the full-band
classiÞcation accuracy. Few of the competitors also improved
the classiÞcation accuracy. However, they require a much more
number of spectral bands to achieve the best performance
compared with our proposed method. Among the classiÞer,
the ELM classiÞer has beneÞted more from our proposed
method, and thus it reaches a similar overall accuracy (80%)
with the SVM classiÞer using all the spectral bands with low
computational complexity.8 The NBC is least beneÞted from

8The computational time of SVM classiÞer (including cross validation) with
all the spectral bands is 716 s, whereas the total computation time of HSIC-
SK LASSO and ELM classiÞers (includingcross validation) with 11 spectral
bands is 359 s.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

DAMODARAN AND LEFéVRE: SPARSE HSIC AND SK-BASED FEATURE SELECTION FOR HYPERSPECTRAL IMAGE CLASSIFICATION 7

0 10 20 30 40 50 60 70 80 90
60

62

64

66

68

70

72

74

76

78

80

O
ve

ra
ll

ac
cu

ra
cy

(E
LM

)

No. of Selected Features
(Pavia University)

HSIC-SK-LASSO
FOHSIC
BAHSIC
CEM-BCC/BDC
CEM-BCM/BDM
LMCV-BCC/BDC
LMCV-BCM/BDM
Fullband

Fig. 1. ClassiÞcation accuracy of the Pavia University data set with different feature selection methods. (a) SVM classiÞer. (b) PerTurbo classiÞer.
(c) ELM classiÞer. (d) NBC.

our proposed method in terms of accuracy improvement, but
it is most beneÞted classiÞer in achieving full-band accuracy
with very few spectral bands. Since it is known that NBC
performs better when the feature are independent, we can thus
derive that our method provides more informative and less
redundant bands.

2) City of Pavia:Fig. 2 reports the classiÞcation accuracies
for the City of Pavia data set with all the considered feature
selection methods and classiÞers. We can observe that our
proposed method outperforms the existing feature selection
methods in two aspects: the minimal number of spectral bands
required to approximate the full-band classiÞcation accuracy
and the improvement in classiÞcation accuracy with fewer
spectral bands. Furthermore, the proposed method performs
better with all the considered state-of-the-art classiÞers. The
existing methods requires a more number of spectral bands to
approximate full-band accuracy and to increase the classiÞca-
tion accuracy. Among the existing methods, kernel dependence
minimization and CEMÐBCM/BDM produce better classiÞca-
tion results. The classiÞcation results of the NBC are worth
to note, since the proposed method is able to approximate
the full-band classiÞcation accuracy with only three spectral
bands.

3) Kennedy Space Center:The classiÞcation accuracies for
the KSC data set are Þnally reported in Fig. 3. We can see that
our method is able to approximate the full-band classiÞcation

accuracy with a minimal number of spectral bands. Fig. 3
reveals that our proposed method outperforms the competitors
with three classiÞers and performs similarly with the PerTurbo
classiÞer. When the improvement in classiÞcation accuracy
is considered, our method outperforms the competitors with
ELM and NBC and performs comparatively equal to the
SVM classiÞer. Moreover, ELM and NBC beneÞted most from
the feature selection methods and improves about 5%Ð8%
accuracy compared with the full-band accuracy. The compar-
ative analysis of feature selection methods highlight that our
proposed method behaves well with the minimal number of
spectral bands, but it decreases the accuracy when a more
number of spectral bands are included. On the other hand,
existing methods have converse behavior to our method. That
is, the accuracy improves when a more number of spectral
bands are included.

E. Interpretation of Selected Features and Computational
EfÞciency of HSIC-SK LASSO Over
Sequential-Search-Based Methods

The selected features by the proposed method and consid-
ered existing methods are reported in Fig. 4. For the Pavia Uni-
versity and Pavia Center data sets, 16 selected spectral bands
are presented in Fig. 4(a) and (b), and for the KSC data set,
20 selected spectral bands are presented in Fig. 4(c). The
longer width of horizontal bar indicates that a more number
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Fig. 2. ClassiÞcation accuracy of the City of Pavia data set with different feature selection methods. (a) SVM classiÞer. (b) PerTurbo classiÞer.
(c) ELM classiÞer. (d) NBC.

of spectral bands are selectedin that particular region of
the spectrum. The visual inspection of Fig. 4 highlights the
potential of our method in selecting the spectral bands from
entire region of the spectrum to adapt diverse natural and man-
made objects in the Pavia University and Pavia Center data
sets, and thus results in nonredundant selection of the features.
On the other hand, the selected bands by existing methods
are concentrated on the particular region of the spectrum.
For the KSC data set, our method selects most of the bands
in the lower region of the spectrum with the combination
of a few bands in higher region of spectrum. The selected
bands in the lower region typically encounter the leaf pigments
and chlorophyll absorption (1Ð30 bands), plant cell structure
(NIR region), and higher region for the soil moisture and leaf
water content. The HSIC-based methods select most of bands
in the NIR region, but it neglects the bands associated with leaf
pigments and leaf water content. The LMCV-BCM favors the
bands in the mid and higher regions of the spectrum and favors
less in the region of chlorophyll absorption and the NIR region.
The comparative analysis of Figs. 1Ð4 demonstrates that the
feature selection methods, which uniformly cover the entire
region of the spectrum, produce good classiÞcation results.

Table IV reports the computational time (in seconds) of our
proposed method and HSIC-based sequential search methods.9

The reported computational time is measured only for the

9The number of selected features mentioned in Table IV may not be exactly
the same for the HSIC-SK LASSO method.

feature selection stage and does not include classiÞcation
step. Table IV shows that our proposed method is compu-
tationally much faster than sequential-search-based methods.
SpeciÞcally, our method is 8×, 48× times faster than the
FOHSIC and BAHSIC10 methods for the Pavia University data
set and this order further increases for the Pavia Center data
set. More interestingly, the computational time difference of
our method is negligible when a more number of features
are selected, whereas the sequential-search-based methods
increases the computational time drastically as the number
of selected features increases. This computational advantage
is due to the potential of our modeling of feature selection
problem as a continuous LASSO optimization problem. Our
proposed method is computationally very efÞcient once the
design matrix is computed. For instance, the computation of
design matrix accounts for 345 s (the value before the plus
sign in HSIC-SK LASSO) for the Pavia University data set
and the selection of features is performed in negligible time.

F. Feature Selection on the Extended Morphological
Attribute ProÞles

Having reported the performance of our method on original
hyperspectral data, we now discuss its performance when
applied on EMAP features. We consider here only the Pavia

10The computational complexity of kernel computations involved in our
proposed method and other HSIC methods is similar.
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Fig. 3. ClassiÞcation accuracy of the KSC data set with different feature selection methods. (a) SVM classiÞer. (b) PerTurbo classiÞer. (c) ELM classiÞer.
(d) NBC.

TABLE IV

COMPUTATIONAL TIME (IN SECONDS) MEASUREDOVER A DIFFERENT NUMBER OF SELECTED FEATURES OF THEPROPOSEDHSIC-SK LASSOAND
HSIC-BASED SEQUENTIAL SEARCH METHODS. FOR THE HSIC-SK LASSO,THE TIME MENTIONED BEFORE THEPLUS SIGN ACCOUNTS FOR

COMPUTING THE DESIGNMATRIX AND AFTER THEPLUS SIGN ACCOUNTS FOR THESELECTION OFFEATURES

University and Pavia Center data sets11 and provide related
results in Table V. ClassiÞcation accuracy is measured for
different numbers of EMAP selected by our method, but
here we present the results only for a few selected EMAPs.
As expected, the classiÞcation accuracy signiÞcantly
increases with the EMAP features compared with the pixel
based classiÞcation. To illustrate, the PerTurbo classiÞer

11The KSC data set is not considered here, since the spatial locations of
training samples are not provided.

achieves 92.8% and 99.15% of classiÞcation accuracy with
the Pavia University and Pavia Center data sets, respectively.
However, we can remark that the classiÞcation accuracy
signiÞcantly decreases with NBC. From Table V, we can
clearly see that our method is able to approximate the original
EMAP classiÞcation accuracy (with 304 EMAP) using only
a much smaller number of EMAP features. More precisely,
original EMAP classiÞcation accuracy is approximated for
the Pavia University data set with about 8% of original
EMAP features with SVM and PerTurbo, 5% with ELM, and



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

10 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING

Fig. 4. Selected spectral bands with different feature selection methods. (a) Pavia University (16 selected spectral bands). (b) Pavia Center (16 selected
spectral bands). (c) KSC (20 selected spectral bands). The color bar indicates the spectral band indexes, the blue patterns denote the lower band indexes and
the red patterns indicate higher spectral band indexes.

TABLE V

CLASSIFICATION PERFORMANCE(OA IN %) OF THE SELECTEDFEATURESWITH THE PROPOSEDHSIC-SK LASSO METHOD
ON THE EMAPsFOR THEPAVIA UNIVERSITY AND PAVIA CENTER DATA SETS

1% with NBC, respectively. Furthermore, the EMAPs selected
by our method are also able to increase the classiÞcation
accuracy when compared to original EMAP. Among the
four classiÞers, the improvement in accuracy is higher in
magnitude with the ELM and NBCs compared with the SVM

and PerTurbo classiÞers (e.g., 14% and 51% with Pavia
University). The analysis of the selected EMAP features
(26 for Pavia University and 15 for Pavia Center) reveals that
Þlters from all the attributes are selected, but it favors only
two set of attributes for both the data sets. Among them,
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Fig. 5. ClassiÞcation accuracy of HSIC-SK LASSO method with different heuristic Gaussian bandwidths on the Pavia University data set. (a) SVM classiÞer.
(b) PerTurbo classiÞer. (c) ELM classiÞer. (d) NBC.

selection highly favored area and standard deviation attributes
for the Pavia University data set, and it highly favored
area and moment of inertia attributes for the Pavia Center
data set.

G. Inßuence of the Gaussian Width on the HSIC-SK
LASSO Method

In this section, we carried out of set of experiments with
two hyperspectral data to investigate the inßuence of the
Gaussian bandwidth parameter on our proposed HSIC-SK
LASSO method. For the inputxi , xj � Rn, the Gaussian RBF
kernel is given asK (xi, xj ) = exp(Š 1/2 � 2� xi Š xj � 2), where
� is the Gaussian kernel width. Many studies showed that the
heuristic approaches can be used to compute� of the Gaussian
kernel, in this case� was set to: 1) the dimension of the
data (in our case, it is one dimension) [14]; 2) the percentile
of PDs [31], [32]; and 3) the median of PDs [19], [42].
Figs. 5 and 6 shows the inßuence of different kernel width on
the proposed method in terms of classiÞcation accuracy, again
with four classiÞers for the Pavia University and KSC data
sets. All the heuristic approaches provided a comparatively
similar accuracy when a more number of features are selected,
but the 5th percentile of PDs approach outperforms other
approaches when a less number features are considered for
both the images.

H. Impact of Variations in the Training Samples on the
Selected Spectral Bands

In section, we analyzed the impact of variations in the
training samples on the selected features. In order to intro-
duce variations in the training samples, we randomly choose
100 samples per class from the ground-truth reference (see the
right column in Tables I and II) for the Pavia University
and Center data sets and 50 samples per class (right column
in Table III) for the KSC data set. The feature selection
experiments are repeated ten times to produce ten subsets
of selected features to analyze the feature stability of feature
selection methods. To quantify the feature selection stability,
we used two types of measures: 1) feature index measure:
Jaccard index [43] and KunchevaÕs stability index (KSI) [44]
and 2) feature value measure: information stability (IS) [45].
The Þrst one measures the amount of overlap between the
feature index values on different subsets, and additionally,
KSI corrects overlapping due to the chance, while the latter
measures IS over different subsets of features. For additional
and implementation details, the reader is referred to [43]Ð[45].

Table VI reports the feature stability measures for ten
selected features computed over ten subsets of selected fea-
tures. Higher values in Table VI indicate more stability in
selected feature subsets. In both feature index and feature value
measures, the original HSIC methods provide better stability
in selected features over the variations in training samples.
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Fig. 6. ClassiÞcation accuracy of HSIC-SK LASSO method with different heuristic Gaussian bandwidths on the KSC data set. (a) SVM classiÞer.
(b) PerTurbo classiÞer. (c) ELM classiÞer. (d) NBC.

TABLE VI

FEATURE STABILITY MEASURESCOMPUTEDOVER TEN SUBSETS OFSELECTED FEATURES FORDIFFERENTFEATURE
SELECTION METHODS. IN EACH SUBSET, THE TOP TEN SELECTED FEATURESARE CONSIDERED

However, the IS measures reveals that though there are vari-
ations in selected features by our method, the information
content on subset of features is more or less the same. In other
words, instead of selecting the same features, our method
selects the nearby features that are valid for hyperspectral data
as nearby spectral frequencies have similar spectral behavior.
Furthermore, on the KSC data set, the original HSIC method
repeats more or less the same set of features over variations in
the training set. However, it selected very correlated features

(for instance, to quantify the correlation, we measured the
average correlation coefÞcient of selected feature values for
the original HSIC method and the measure is 0.49, whereas
that for our method is 0.24). The less stability nature of the
LASSO model is not an unexpected behavior, as LASSO
tends to produce unstable features to the variations in training
set. As a future work, we would like to develop upon this
limitation on the LASSO model to select more stable features,
for instance, by considering elastic netlike strategies.






