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Sparse Hilbert Schmidinbdependence Criterion and
Surrogate-Kernel-Based Feature Selection for
Hyperspectral Image Classibcation

Bharath Bhushan Damodaraviember, IEEE Nicolas CourtyMember, IEEE and SZbastien Lefevre

Abstract—Designing an effective criterion to select a subset due to the curse of dimensionality, leading to an inaccurate
of features is a challenging problem for hyperspectral image estimation of parameters of the model. One effective way
classi cation. In this paper, we develop a feature selection method 1, t5ckje these problems is to reduce the dimensionality of
to select a subset of class discriminant features for hyperspectral h tral dat t without losing th ful inf fi
image classi cation. First, we propose a new class separability yperspec fal gaia Set withot o_slng € useiutiniormadon;
measure based on the surrogate kerel and Hilbert Schmidt and this process has the capability to overcome the feature
independence criterion in the reproducing kernel Hilbert space. space geometrical and statistical limitations of hyperspec-
Second, we employ the proposed class separability measure as anral data [4]. Kernel-based methods such as support vector
objective function and we model the feature selection problem 4 hine (SVM) have shown to be more effective in handling
as a continuous optimization problem using LASSO optimization high di . litv of h tral data. H th
framework. The combination of the class separability measure 9 imensionality or hyperse ra_ . a._ owever, gse
and the LASSO model allows selecting the subset of features Methods could also benept fnathe dimensionality reduction
that increases the class separability information and also avoids methods [5].

a computationally intensive subset search strategy. Experiments  |n recent years, several attempts have been made to deal
conducted with three hyperspectral data sets and different \iih the dimensionality of the hyperspectral data set using
experimental settings show that our proposed method increases ither feat tracti feat lecti thods. Feat
the classi cation accuracy and ouperforms the state-of-the-art either .ea b _ex il (_)r ea_ Hie s_e . |(_)n L _O S- FEAIUIE
methods. extraction projects the high-dimensional image into a lower

. . dimensional subspace [6], [7]. On the other hand, feature

Index Terms—Band selection, class separability measure, lecti band selecti icks the b b f band
feature selection, Hilbert Schmidt independence criterion (HSIC), S€léction (or band selection) picks the best subset of bands
hyperspectral image classi cation, kernel methods, LASSO, based on a certain criterion [8]D[10]. The latter is often
surrogate kernel (SK). preferable in remote sensing, since the selected bands are

interpretable and usually contain the physical information.
|. INTRODUCTION Feature selection methods can be categorized into supervised

YPERSPECTRAL sensors characterize the informati(methOdS [51. [13], [14] and unsupervised [11], [12]. In the
content of the objects under the scene in a large num upervised case, the bands are selected mainly based on fea-

of spectral bands. For this reason, it has been considerec?:%(kg clustering [1(.)]’ [11], independence column selection [15],
an important data source for many remote sensing applicati feature ranking [16]. The performance of thes_e methods
(e.g., precision agriculture, land cover/land use mapping, ht be low compared .W'th that of the supervised case.
mineral exploration) [1]D[3]. However, the automatic analysi owever, the;e unsqperylsed _methods are preferred W.h €n no
of hyperspectral data is a complex task mainly due to hi ound-truth information is available. On the other hand, in the

dimensionality of the hypersatral data. This causes the upervised case, the bands are selected based on wrapper- and

critical issues such as curse of dimensionality, redundzﬁl{er'based approaches. The former relies on the selection of a

information, and high volume of the data. Addressing th%ubset of bands, which maxings the classibcation accuracy

above issues is of prime importance to exploit the potentials'gf accordance with the underlying classiber [3], [9]. The

hyperspectral data for real-world applications. Statistical—baslcg't!iter rather selects the subset of bands with respect 1o the

models such as the Gaussian mixture model suffer sever% racteristics of the training data. Thus, the selected bands
the blter-based approaches are independent of the classiber,

Manuscript received October 20, 2016; accepted December 16, 20b@ve better generalization power, and are less computationally
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measure, Bhattacharya distance, FisherOs ratio measurdeames of our proposed method is dependent on the number
the most widely used class separability measures for remofeclasses, i.e.L.?, wherelL is the number of classes present
sensing images [20]D[22]. These separability measures camthe image. Conversely, the length of the entries in [26] is
pute the class separability information between the land cowdependent on the number of training samples, né., Let
classes in the input space. Thus, the above measures mighbbserve that for hyperspectral data sets, we generally have
not be so effective in capturing the nonlinear dependenog d, wheren is the number of training samples adds
relationship between the land cover classes in remote seti® number of bands of hyperspectral data. As such, the model
ing data while compared with working in the reproducingroposed in [26] might not be computationally feasible for
kernel Hilbert space (RKHS). Moreover, the class separayperspectral data sets. Indeed, this model was proposed for
bility information is also used to evaluate the training dataltrahigh-dimensional data sets.
quality (training sample subset selection) in remote sensingOur main contributions are thus: 1) development of a new
applications [23]. It is known that collecting a sufpbcientlass separability matrix based on SK and HSIC in the RKHS
number of training samples to meet the requirements afhd 2) effective design of a LASSO-based framework to select
Hughes Phenomena is very difbcult for hyperspectral datkass separable features for hyperspectral data classibcation.
and Peld spectroradiometertddtypically contains more than The experiments conducted with three airborne hyperspectral
1000 spectral channels). In this scenario, the computatidata sets with different experimental settings show that our
of conventional class separability information would not bproposed feature selection method outperforms the state-of-
possible due to inverse of the covariance matrix term involvélde-art methods and it is computationally more efpcient than
in the class separability measures. Therefore, it is of prinsequential-search-based methods.
importance to design a class separability measure in the RKHS he rest of this paper is organized as follows. Section I
to effectively handle the nonlinear dependence of the data gmésents the theoretical background of the proposed feature
to avoid singularity problems. selection method. Section Il proposes the class separabil-
In this paper, we propose a new class separability measitye measure and the LASSO feature selection framework.
in the RKHS as the objective function for feature selectiogection IV details the extensive experiments conducted with
The proposed measure is debned using the Hilbert Schnilt proposed method, including the comparison of some meth-
independence criterion (HSIC) and surrogate kernel (Skiils with the state-of-the-art methods. Finally, the conclusion
approach. In [24], the similarity measure using SK waand some research perspectives are given in Section V.
derived to evaluate the PerTurbo classiberOs performance with
the training data characteristics and the similarity measures [l. THEORETICAL BACKGROUND

showed some homogeneous structure. We build upon tigired for the proposed class separability measure.
observation to select the subsetfeatures that increases the | et 5 = {(xq, y1), (X2, ¥2), ..., (Xn, Yn)} RY x

diagonal dominance of the similarity matrix, thereby possibly , 1 pe the training set withN pairs of training
increasing the diagonal dominance of the confusion matriamplesx; and their corresponding class labsisand § be
The proposed class separabilityatrix is different from the ne set of all training samples with label. The geometric
one in [24], in the sense that we use the HSIC to compaggycture of the samples belonging to the classcan be
the similarity between the kernel matrices of two classegnaracterized using the geometry of the kernel induced feature

The applicability of HSIC for feature selection is showrgspace_ The geometry of the classcan be represented by the
in [14], [19], and [25]. However, the potential of the HSIC folg am matrix in the RKHS as follows

deriving class similarity measure has not been explored yet. . .

Beyond the design of the objective function, another keyKij (S) = k(xi, %) = (x)". (%) = exg$S xS x ?)
issue in feature selection is the search strategy. Generally, (1)
the search-based methods, such as sequential forward and . . . . .
backward search and evolutionary-based search methods,vgll?gre K(.,.) s a Gauss'an radial ‘basis _k_ernel func'_uon,
employed to bnd the subset of the features. These meth{| ndx S, s the mapping from the original space |n_to
incrementally add or removéands according to a given S, and is the bandwidth parameter of ihe Gaussian
criterion and involve a computationally intensive subset sear%ﬁmel'
operation. The LASSO dr optimization method has shown
to be able to model the discrete band selection problem AsSurrogate Kernel
a continuous optimization problem [26] and thus avoids a MercerOs theorem states that any positive semidebnite ker-
complex subset strategy. Therefore, we adopted in this papet can be reconstructed from the kernelOs eigenspectra and
the LASSO model to select thailsset of class discriminantits continuous eigenfunctions [27]. Thus, MercerOs theorem
features. The proposed feature selection method is dev@levides an explicit way to generate the kernel matrix on any
oped by coupling the proposed class separability matrix aacbitrary samples. In general, the kernel matrices cannot be
the LASSO model into a single unibed framework calledompared directly using standbmatrix metrics because they
HSIC-SK LASSO. A related method to our HSIC-SK LASSQlo not share the same size. The SK approach [28] allows
is given in [26], but the entries in the LASSO model ands to adapt the Gram matrix based on a new set of support
their length are different. The length of the input and outpdinctions, yielding matrices of comparable sizes. The SK [28]
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can be debned as follows: & and Z be any given two the classes | and | in the RKHS as described in (1).

samples anél(.) be a kernel function, thex ~ RIXIXI Xl and Measuring the distribution of the data in the Hilbert space is
Kz RIZMZl gre the kernel matrices debned ¥nand z, not straightforward, since the kernel-induced feature maps in
respectively, andK x 7 RIXI¥I Zl is a kernel matrix debned the RKHS cannot be expressed explicitly [28], [30]. The kernel

amongX and Z. The SK of Kx on the sampleZ, denoted Matrix has the capability to uniquely describe the feature space

by Kz x, is debned as geometry of the data samples in the RKHS. Therefore, for
&1 two samples (from class; and |) to have similar feature
Kz x= KzxKx Kxz. (2)  space distributions, we require them to have similar kernel

The kernel matrixKy! and its SK Ky x are built from Mmatrices. N
the same set of set of eigenvalues and eigenfunctions [28]-€t ( S) and (' §) be the empirical kernel maps of the

and thusKz x preserves the key structure of the kerngidmples belonging to the classesand | , respectively. If the
matrix K. two kernel matrices are identical, then their corresponding

empirical kernel maps will alsbe identical. This implies that

) ) o the empirical distributions of the data in the kernel induced

B. Hilbert Schmidt Independence Criterion feature space will also be equal. In other words
Another way to compare the geometry of kernel embeddings

is found in the use of a statistical independence criterion: K(S)=K(E§) (9)=1(9) (5)
the HSIC. It measures the independence between two sets p(( ) =p((S) (6)
of random variables [29]. LeX and Z be the two random
variables, from which the sampl€z, z) can be drawn from where p(-) is the probability distribution function in the
the probability density function ofX and Z. The nonlin- Hilbert space. Thus, measugrsimilarity between the data
ear mapping function is debned on each elemenXpfas distributions in the Hilbert space (feature space) can be viewed
(x) F from x X to the feature spac&, such that as aligning the two kernel matrices.
the inner product between the features is given by a kernelln remote sensing images, the spatial distribution of the
function k(x,x) = (x), (x ), and F is the associated classes will be different to each other. As a result, the number
RKHS. In a similar manner, leG be the RKHS onZ with of samples belonging to each class will also be different.
kernell(.,.) and the mapping functior( z). Then the cross- Thus, evaluating the similarity or closeness between the two
covariance operator betweémese two mapping functions cankernel matrices is difbcult, since the kernel matrices of the

be debned as a linear opera@y; : G F, such that different classes may have different dimensions. In order to
. . overcome this problem, we gerate a new kernel matrix
Cxz = Bal((x)S M) V( (z) S ua)l called SK [28]. To compare the kernel matrices of two classes
Exl ()  (2]S ux Kz (3) K(S) and K(S ), we construct the surrogate kernel §f

where is a tensor product. The HSIC is debned as thbeased on the samplg as follows

squared Hilbert Schmidt norm of (3). It has been shown that - S1
the HSIC can be expressed in terms of kernel [29] and the S 5)= K(S. SHKETKE. F) %
empirical estimate of the HSIC is given as follaws where K (S S) is an SK of K(S). Now the similarity
_ & 1152 between the class; and | can be evaluated by measuring

HSICKZ, F, €)= (mS D™"tr(KCLC) “) the closeness betwedi(S S) andK (S ). The similarity
where m is the number of observations (sample€), K, betweenK(§ S) and K(S ) is measured using the
L RM™mM Kij = k(xi,%j), Lij = I(zi, 7), Cij = ij S m°l HSIC as
(ij = 1ifi = ], zero otherwise) is the centering matrix, and L«
tr is the trace operator. The independence between the t#8IC( 1. 1) = (M S 1%%r(K(S  S)CK(S)C) (8)

random variables in the Hilbert space can be obtained by (4).
P y (V\)herem| is the number of the samples in the clags and

1. PROPOSEDERAMEWORK Cj = ij SmPl inwhich jj = 1ifi = j zero otherwise.
: The pairwise Hilbert Schmidt class similarity matrix between
In this section, we propose a new class separability meastig classes is then debned as
and the LASSO-based feature selection framework.

HSIC( 1, 1) HSIC( 1, 2) --- HSIC( 1, L)
A. Proposed Similarity Measure in Kernel Hilbert Space H = HSIC( 2, 1) HSIC( 2, 2) -+ HSIC( 2, )
We assume that the samples belonging to different classes : : ) :
follow different probability distributions. Measuring similarit
g y J oo HSIC( L, 1) HSIG( L, 2) - HSIG( L, 1)

between the classes can then be framed as computing the
distances between the probability distributions. KétS) and ©)

K(S) be the kernel matrices of the samples belonging tane high values of the matrikl indicate that the classes have

1in the implementation, a Tikhonov regularization= 1054 is added to high S'_m'_lar'_ty and the I_OW_Value_s indicate that the Clas_se_s h_ave
Kx before computing inverse to avoid numerical issues. less similarity. The pairwise Hilbert Schmidt class similarity
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matrix between the classes computed with kitte feature of centralized, then using (3) the squared loss term in (11) can

hyperspectral data is given by be expressed as
HK d 2
HSICK( 1, 1) HSIC( 1, 2) ~+ HSIC( 1, 1) 1 g  uk
~ HSICk( 2, 1) HSle( 2, 2) - HS|Ck( 2, L) 2 k=1 F
. : : - : ' d 1 @
' ' ' ' = S A + B
HSICK( 1, 1) HSICY( (, 2) -+ HSICY( (, 1) L 2 Kk Skk
k=1 kk=1
(10)
class separability measure term  correlation measure term
B. Proposed LASSO Feature Selection Framework where
If the features have good class discriminative information, L
then matrixH will be a diagonal dominant matrix. Therefore, Ay = KX(S), KXNS F My
the problem is to bnd the subset of features that maximizes =1 L

the diagonal dominance of the matrid. The sequential-
search-based methods can be employed to bnd the subségk

features; however, they require a computationally intensive L
subset search strategy. Instead, we formulate in this paper, the g, |, = KK(S)KX(S) ¢ KK S KK(S) e (12)
discrete band selection problem as a continuous band selection =1
problem using the LASSO optimization method. We denote 3
our proposed LASSO-based band selection framework byln (12) , = 10°4 are constarftand KK is the kernel
HSIC-SK LASSO. It is debned as matrix computed with théth feature of hyperspectral déta.
d 2 The second term in (12) can be interpreted based on class dis-
J( )= min 1 1 3 CHE 1 (11) Criminative mformaﬂon qf the features; when thth featurg
=1 . ha_ls less within-class variance and high betweep-class variance,
this term takes a large value and correspondinglyshould
wherel = 1/L(l + ) is a target matrix,l is the identity also take a large value such that (11) is minimized. On the
matrix, = 1054 is a constantH¥ is the class separability contrary to that, when th&th feature is not discriminative,

measure of thekth feature in the hyperspectral data,is the second term takes a smaller value, and thusends to
the coefbcient vector of lengith and nonzero entries of thebe eliminated by the regularization term. This implies that
correspond to the selected features retained by HSIC-$portant features that have better class separability tend to be
LASSO, and is the scalar value to control the sparsity oelected by our proposed HSIC-SK LASSO. The third term
the coefbcient vector. The Prst term of (11) is the squargdl(12) provides more interesting interpretation as it has the
loss function and the second term is the regularization tergapability to encode the correlation information between the
The lengths of the output term X and input term H¥) are features in a classwise manner. The brst two kernel matrices
dependent on the number of classes present in the image githsure correlation between théh and k th feature with
they are of lengthL2. The entries of our proposed methodespect to class; and the remaining two entries correspond
are different from the LASSO model available in [26]. Theo correlation between thkth andk th features relative to
ideal kernel and featurewise kernel matrix were used as tfigss | . When thek andk th features are correlated relative
entries in [26], thus leading to a large number of observatiofis each class, the third term takes a larger value, so either
for the LASSO model. The dimensions of output (ideal kernelff | and  tends to be zero. On the other hand, when
and input (featurewise kernel) terms are of lengthand thus the features are independent relative to clagsand | or
alwaysn?  d. Due to this, the existing formulation from [26]interestingly with either of the classes, then the corresponding
might not be computationally feasiBléor feature selection of features tends to be retained by our method. Thus, (11) elimi-
hyperspectral data. Our proposed model does not dependn@ffes the correlated features in a classwise manner, which is an
the number of training samples but rather on the number igiportant property of our proposed method. Furthermore, the
classes, and thus ofte® < d, which is preferable for the second term in (12) can be related to [26], but the third term is
LASSO model. different because our method has the advantage of including
1) Interpretation of HSIC-SK LASSOThe HSIC-SK the feature correlation in a classwise manner.
LASSO formulated in (11) aims to identify highly class sepa- The proposed formulation given in (11) is solved using
rable features that have large inner product betweandHX.  the statistical and machine learning toolboxes available in
Expanding the prst term of (11) and expressing in terms RfATLAB. °
kernel matrices will provide more insight into our proposed

method. For the simplicity, we assume that kernel matrices aré is added in the target matrix  to include the between-class similarity
in the selection of features.
2We have conducted experiments with the model proposed in the work of The normalizing terms in (12re ignored for clarity purpose.
Yamadaet al. [26] using the codes provided by them and we found that the>The MATLAB codes of the proposed method will be provided upon
model did not converge for hyperspectral image feature selection. request.
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TABLE |
PaviA UNIVERSITY TRAINING AND TESTING SAMPLES

TABLE I
CITY OF PAVIA TRAINING AND TESTING SAMPLES

No Class name  Training Testing No

Class name  Training  Testing

1 Asphalt 548 6641 1 Water 824 65971
2 Meadows 540 18649 2 Trees 820 7598
3 Gravel 392 2099 3 Gravel 824 3090
4 Trees 524 3064 4 Trees 808 2685
5 Metal Sheets 265 1345 5  Metal Sheets 820 6584
6 Soil 532 5029 6 Soil 816 9248
7 Bitumen 375 1330 7 Bitumen 808 7287
8 Bricks 514 3682 8 Bricks 1260 42826
9 Shadows 231 947 9 Shadows 476 2863
Total 3921 42776 Total 7456 148152

IV. EXPERIMENTAL RESULTS AND DISCUSSION TABLE Il

A. Data Sets
In order to evaluate the proposed HSIC-SK LASSO feature

KSC TRAINING AND TESTING SAMPLES

selection method, experiments have been conducted with real- No Class name  Training  Testing

world hyperspectral data sets. A detailed description of these

data is provided in the following. 1 Scrub 114 761
1) Pavia University:The brst hyperspectral data considered 2 Willow 36 243

here were collected over the University of Pavia, Italy, by the 3 CP Hammock 18 256

ROSIS airborne hyperspectral sensor in the framework of the

HySens project managed by DLR (German national aerospace 4 CP/Oak 37 252

agency). The ROSIS sensor collects images in 115 spectral 5 Slash Pine 24 161

bands in the spectrall range from48 to 086 um with a spatial 6 Oak/Broadleaf 34 229

resolution of 13 m/pixel. After the removal of noisy bands,

103 bands were selected for experiments. This data contain 6 Hardwood swamp 15 105

610x 340 pixels with nine classes of interest. The training 7 Graminoid marsh 64 431

and testing samples are provided along with data and are used 3 Spartina marsh 78 520

to perform quantitative evaluation (see Table 1). 0 Cattail Marsh 60 04
2) City of Pavia: The second hyperspectral data were col-

lected over the City of Pavia, Italy, by the ROSIS sensor. 10 Salt marsh 62 419

The spectral and spatial resolution conbgurations are similar 11 Mud flats 75 503

to the Pavia University data set. After the removal of noisy 1 Water 139 927

bands, 102 bands were selected for experiments. This data

set contains 1098 715 pixels with nine classes of interest. Total 776 5211

Similar to Pavia University, the City of Pavia data set comes
with some training and testing samples (see Table II).

3) Kennedy Space Centeithe third and last hyperspec- ) .
tral data considered here were collected over the KennddyExperimental Design
Space Center (KS€)py the NASA Airborne Visible/Infrared  |n the proposed HSIC-SK LASSO method, we used radial
Imaging Spectrometer (AVIRIS). The AVIRIS sensor collectpasis function (RBF) kernel with kernel width X set to be
images in 224 bands of 10-nm width with center wavelengtiige bfth percentile of pairwise distances (PDs) [31], [32].
from 400 to 2500 nm. The KSC data, acquired from amhe in (11) are varied in the range = ]_OR, where
altitude of approximately 20 km, have a spatial resolutior = {S 12,S11....,1}, to select a different number of
of 18 m. After removing water absorption and low SNR bandspectral band$.The high value favors to select a more
176 bands were used for the analysis. This data set consiignber of spectral bands and low value favors to select a
of 512x 614 pixels with 13 classes of interest. Training anfkss number of spectral bands.
testing samples made available with this data set are given
in Table IlI.

7LASSO may not extract exactly the required number of bands; neverthe-
less, in most of the cases, it is possible to extract exactly or very close to the

8available online: http://www.csr.ut@s.edu/hyperspectral/data/KSC/. required number of spectral bands.
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The effectiveness of the features (bands) selected by ffieally, we also report the results obtained using all spectral
proposed HSIC-SK LASSO method is assessed by the ovetahds (full-band) as a baseline.
accuracy of supervised classibers. The classibers considered
in our experiments are PerTurbo [24], SVM [33], extremP. Feature Selection on the Original Spectral Bands
learning machine (ELM) [34]D[36], and naive Bayes classi- We discuss here the experimental results achieved by the
ber (NBC) [37]. The choice of these classibers is motivatgégature selection methods when applied on the original spectral
by their demonstrated performances in hyperspectral datands of the hyperspectral data.
classibcation. Besides, our goal is to show the genericityl) Pavia University: For each of the four different classi-
of the selection strategy within a wide range of classkers, we report in Fig. 1 the classibcation accuracy obtained
Pers. The RBF is used as the kernel function in the SVMiith the different feature selection methods on the Pavia
PerTurbo, and ELM classibers. The SVM parameter cost fungniversity data set. The daibcation accuracy using all
tionC= 2, ={S5,54,...,15} and bandwidth = 2 , spectral bands of the hyperspectral data is also included as a
= {S§ 15,513,...,3}, were automatically tuned with thebaseline (horizontal line) to compare with the feature selection
grid search method using bvefold cross validation. Similarlghethods. Fig. 1 reveals that when the most informative bands
the parameters of the PerTurbo classiber are automaticalig added, the classibcation accuracy changes drastically, and
tuned with = {10°6,10°5,...,099}and = 2, = when additional (possibly redundant) bands are added, the
{S15,513,...,3}. The performance of the ELM classiPer iglassipcation accuracy then changes slowly. The proposed
independent of the number of hidden neurons [38]. Howeve{SIC-SK LASSO feature selection method outperforms its
we have tuned here parameters using Pvefold cross validati@mpetitors with all the four classibers. The signibpcance of the
for optimal performance. The number of hidden neurons varipgoposed method is analyzed in two ways: 1) the number of
from 100 to 1000. spectral bands required to approximate full-band classibcation
The experiments are conductedthree different settings. accuracy (i.e., brst peak close to the horizontal line) and
1) Feature selection is performed on original spectr@) the percentage of improvemnt in classiPcation accuracy
bands. compared with the full-band classibcation accuracy and the
2) Feature selection is performed on the extended multiatamber of bands required to achieve the best classiPcation
tribute proble (EMAP) [39] of the hyperspectral dataaccuracy.
In order to generate the EMAP features, a princi- When the number of spectral bands required to approxi-
pal component analysis is carried out on the hypemate full-band accuracy is considered, the proposed method
spectral data and the brst four principal componengsitperforms the existing feature selection methods and is able
(99% of total variance) are retained. The EMAPs am® approximate the full-band classibcation accuracy with fewer
then generated from these four PCs using four mupectral bands relative to all the four classibers. Indeed, our
tiattribute Plters, namely, area, diagonal of the regiomethod requires only 16% of spectral band for the SVM
bounding box, moment of inertia, and standard devilassiber, 9% for the PerTurbo and ELM classiber, and 3%
ation [40], [41]. It leads to a total number of EMAPfor NBC to approximate full-band classibcation accuracy.
features equal to 304. On the other hand, the existing feature selection methods
3) Finally, the feature selection experiment is performa@quire a higher number of eptral channels to approximate
with randomization of training samples to assess thgll-band accuracy. Moreover, their performance is not consis-

stability of selected features. tent over the different classibers. To illustrate, these methods
N require more than 40% of spectral bands to approximate
C. Competitive Methods the full-band accuracy with three classipers (SVM, PerTurbo,

We have compared our method with six specibc implemeand NBC). Among the competitors, CEMDBCC/BDM offers a
tations of two state-of-the-art band selection methods, namedgtter performance with three classibers compared with other
kernel dependence measure (KDM) [14], [19] and constrainegisting methods.
band selection (CBS) [16]. The KDM-based feature selectionWhen the improvement in classibcation accuracy is con-
method was considered, since it works similarly to our princsidered, the proposed method shows about 1D7% increase
ple using HSIC. It consists of two different strategies usinig classibcation accuracy in egarison with the full-band
forward HISC (FOHSIC) and backward HISC (BAHSIC)classibcation accuracy. Few of the competitors also improved
search. The CBS was considered since it has been widgfg classiPcation accuracy. However, they require a much more
used to compare the performance of band selection methagismber of spectral bands to achieve the best performance
The CBS provides two different approaches named constraingspared with our proposed method. Among the classiber,
energy minimization (CEM), and linearly constrained minthe ELM classiber has benebted more from our proposed
imum variance with four different criteria [band correlamethod, and thus it reaches a similar overall accuracy (80%)
tion minimization (BCM), band correlation constraint (BCC)with the SVM classiber using all the spectral bands with low
band dependence minimization (BDM), and band dependenrgsmputational complexit§. The NBC is least benebted from
constraint (BDC)]. It has been shown that BCC and BCM8 ' ' » ' o _
perform identicaly o BDC and BOM, respectively [16]. Thus, /I somputsions tme ot i cessiincino ooss ioeion) win
our experimental framework includes six specibc impleme

: ) 8K LASSO and ELM classibers (includirggoss validation) with 11 spectral
tations to compare the results with our proposed methagnds is 359 s.
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Fig. 1. Classibcation accuracy of the Pavia University data set witlerdiff feature selection methods. (a) SVM classiber. (b) PerTurbo classiper
(c) ELM classiber. (d) NBC.

our proposed method in terms of accuracy improvement, katcuracy with a minimal number of spectral bands. Fig. 3
it is most benebted classiber in achieving full-band accura@veals that our proposed rhet outperforms the competitors
with very few spectral bands. Since it is known that NBQvith three classibers and performs similarly with the PerTurbo
performs better when the feature are independent, we can thlassibPer. When the improvement in classibcation accuracy
derive that our method provides more informative and less considered, our method outperforms the competitors with
redundant bands. ELM and NBC and performs comparatively equal to the
2) City of Pavia: Fig. 2 reports the classiPcation accuracie8VM classiper. Moreover, ELM and NBC benebted most from
for the City of Pavia data set with all the considered featufge feature selection methods and improves about 5%D8%
selection methods and classiPers. We can observe that @¢guracy compared with thelkband accuracy. The compar-
proposed method outperforms the existing feature selectigfive analysis of feature selection methods highlight that our
methods in two aspects: the minimal number of spectral barRf@posed method behaves well with the minimal number of
required to approximate the fuland classibcation accuracyspectral bands, but it decreases the accuracy when a more
and the improvement in clagsiation accuracy with fewer number of spectral bands are included. On the other hand,
spectral bands. Furthermore, the proposed method perfoﬁﬁgting methods have converse behavior to our method. That
better with all the considered stabf-the-art classibers. Theis, the accuracy improves when a more number of spectral
existing methods requires a more number of spectral band$>@nds are included.
approximate full-band accuracy and to increase the classibca-
tion accuracy. Among the existing methods, kernel dependericelnterpretation of Selected Features and Computational
minimization and CEMBBCM/BDM produce better classibcdfPciency of HSIC-SK LASSO Over
tion results. The classibcation results of the NBC are worfiequential-Search-Based Methods

to note, since the proposed method is able to approximaterhe selected features by the proposed method and consid-

the full-band classibcation accuracy with only three specti@led existing methods are reported in Fig. 4. For the Pavia Uni-

bands. versity and Pavia Center data sets, 16 selected spectral bands
3) Kennedy Space Centefhe classibcation accuracies folare presented in Fig. 4(a) and (b), and for the KSC data set,

the KSC data set are Pnally reported in Fig. 3. We can see tB@t selected spectral bandseapresented in Fig. 4(c). The

our method is able to approximate the full-band classibcatitonger width of horizontal bar indicates that a more number
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Fig. 2.  Classibcation accuracy of the City of Pavia data set with diifefeature selection methods. (a) SVM classiber. (b) PerTurbo classiber.
(c) ELM classiber. (d) NBC.

No. of Selected Features

of spectral bands are selectéd that particular region of feature selection stage and doeot include classibcation
the spectrum. The visual inspection of Fig. 4 highlights th&tep. Table IV shows that our proposed method is compu-
potential of our method in selecting the spectral bands fratationally much faster than sequential-search-based methods.
entire region of the spectrum to adapt diverse natural and m&pecibcally, our method is 8x48x times faster than the
made objects in the Pavia University and Pavia Center d&@®HSIC and BAHSIE® methods for the Pavia University data
sets, and thus results in nonredundant selection of the featuses.and this order further increases for the Pavia Center data
On the other hand, the selected bands by existing methads. More interestingly, the computational time difference of
are concentrated on the pattiar region of the spectrum. our method is negligible when a more number of features
For the KSC data set, our method selects most of the barmte selected, whereas the sequential-search-based methods
in the lower region of the spectrum with the combinatioincreases the computational time drastically as the number
of a few bands in higher region of spectrum. The selected selected features increasd$is computational advantage
bands in the lower region typically encounter the leaf pigmenits due to the potential of our modeling of feature selection
and chlorophyll absorption (130 bands), plant cell structyseoblem as a continuous LASSO optimization problem. Our
(NIR region), and higher region for the soil moisture and legfroposed method is computationally very efpcient once the
water content. The HSIC-based methods select most of bandésign matrix is computed. For instance, the computation of
in the NIR region, but it neglestthe bands associated with leaflesign matrix accounts for 345 s (the value before the plus
pigments and leaf water content. The LMCV-BCM favors theign in HSIC-SK LASSO) for the Pavia University data set
bands in the mid and higher regions of the spectrum and faversd the selection of features is performed in negligible time.
less in the region of chlorophyll absorption and the NIR region.
The comparat'lve analysis of F!gs. 1{?4 demonsrates that. It—f.]‘l::eature Selection on the Extended Morphological
feature selection methods, which uniformly cover the ent%ttribute Probles
region of the spectrum, produce good classibcation results.

Table IV reports the computational time (in seconds) of our Having reported the performance of our method on original
proposed method and HSIC-based sequential search méthodgperspectral data, we now discuss its performance when
The reported computational time is measured only for tf@Pplied on EMAP features. We consider here only the Pavia

9The number of selected features mentioned in Table IV may not be exactly®The computational complexity of kernel computations involved in our
the same for the HSIC-SK LASSO method. proposed method and other HSIC methods is similar.
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Fig. 3. Classibcation accuracy of the KSC data set with different featleet®n methods. (a) SVM classiber. (b) PerTurbo classiber. (c) ELMiketass
(d) NBC.

TABLE IV

COMPUTATIONAL TIME (IN SECONDS) MEASURED OVER A DIFFERENTNUMBER OF SELECTED FEATURES OF THEPROPOSEDHSIC-SK LASSOAND
HSIC-BASED SEQUENTIAL SEARCH METHODS. FOR THEHSIC-SK LASSO,THE TIME MENTIONED BEFORE THEPLUS SIGN ACCOUNTS FOR
COMPUTING THE DESIGNMATRIX AND AFTER THEPLUS SIGN ACCOUNTS FOR THESELECTION OF FEATURES

No of Pavia University Pavia Centre KSC
Features | HSIC-SK FOHSIC BAHSIC | HSIC-SK FOHSIC BAHSIC | HSIC-SK FOHSIC BAHSIC
LASSO LASSO LASSO
10 345+06 2934 16808 863+13 16152 91730 20+78 78 723
20 345+08 5642 16293 863+14 30766 88855 20+79 150 716
30 345+08 8230 15473 863+15 43199 84215 20+80 214 704
40 345+09 10023 14343 863+16 54053 77811 20+81 274 688
50 345+12 11769 12887 863+20 63257 69659 20+82 334 667

University and Pavia Center data Sétand provide related achieves 92.8% and 99.15% of classiPcation accuracy with
results in Table V. Classibcation accuracy is measured fitve Pavia University and Pavia Center data sets, respectively.
different numbers of EMAP selected by our method, bidowever, we can remark that the classibcation accuracy
here we present the results only for a few selected EMAPsgnibcantly decreases with NBC. From Table V, we can
As expected, the classibcation accuracy signibcantiearly see that our method is able to approximate the original
increases with the EMAP features compared with the pixEMAP classibcation accuracy (with 304 EMAP) using only
based classibcation. To illustrate, the PerTurbo classiRemuch smaller number of EMAP features. More precisely,
original EMAP classibcation accuracy is approximated for

1iThe KSC data set is not considered here, since the spatial locationstfd¢ Pavia University data set with about 8% of original
training samples are not provided. EMAP features with SVM and PerTurbo, 5% with ELM, and
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(@) (b)

()

Fig. 4. Selected spectral bands with differeatatire selection methods. (a) Pavia University (&ated spectral bands). (b) Pavia Center (llécsed
spectral bands). (c) KSC (20 selected spectral bands). The color bar @sdibat spectral band indexes, the blue patterns denote the lower baxesizahel
the red patterns indicate higher spectral band indexes.

TABLE V

CLASSIFICATION PERFORMANCE(OA IN %) OF THE SELECTED FEATURESWITH THE PROPOSEDHSIC-SK LASSO METHOD
ON THE EMAPSFOR THEPAVIA UNIVERSITY AND PAVIA CENTERDATA SETS

Pavia University Pavia Centre
# of features | SVM | PerTurbo | ELM NB || # of features | SVM | PerTurbo | ELM NB
3| 74.86 78.71 | 70.81 | 67.29 2 | 80.34 75.01 | 82.94 | 75.36
6 | 78.26 80.80 | 82.80 | 19.44 8 | 98.17 99.21 | 96.72 | 92.68
10 | 73.39 7591 | 73.40 | 16.30 10 | 97.42 99.13 | 96.60 | 91.75
15 | 75.57 81.81 | 79.61 | 16.27 15 | 98.83 99.23 | 97.69 | 92.68
20 | 74.48 80.41 | 77.02 | 15.58 20 | 97.75 98.92 | 98.53 | 68.83
26 | 94.25 93.01 | 93.97 | 15.53 26 | 98.58 99.10 | 97.93 | 63.09
31 | 93.21 95.55 | 92.52 | 15.53 31 | 98.66 99.18 | 98.58 | 50.11
36 | 94.96 96.38 | 89.88 | 15.53 36 | 98.78 99.12 | 98.21 | 48.88
304 (all) | 94.99 92.80 | 79.33 | 15.83 304 (all) | 98.88 99.15 | 97.61 | 44.53

1% with NBC, respectively. Furthermore, the EMAPSs selectexhd PerTurbo classibers (e.g., 14% and 51% with Pavia
by our method are also able to increase the classibcatidniversity). The analysis of the selected EMAP features
accuracy when compared toiginal EMAP. Among the (26 for Pavia University and 15 for Pavia Center) reveals that
four classibers, the improvement in accuracy is higher Piters from all the attributes are selected, but it favors only
magnitude with the ELM and NBCs compared with the SVMwo set of attributes for both the data sets. Among them,
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Fig. 5. Classibcation accuracy of HSIC-SK LASSO method with different heuristic Gaussian bandwidths on the Pavia University data set. (a) B&M classi
(b) PerTurbo classiber. (c) ELM classiber. (d) NBC.

selection highly favored area and standard deviation attributésImpact of Variations in the Training Samples on the
for the Pavia University data set, and it highly favore&elected Spectral Bands
area and moment of inertia ahbutes for the Pavia Center . . . .
In section, we analyzed the impact of variations in the

data set. training samples on the selected features. In order to intro-
duce variations in the training samples, we randomly choose
_ 100 samples per class from the ground-truth reference (see the
G. InBuence of the Gaussian Width on the HSIC-SK right column in Tables | and 1) for the Pavia University

LASSO Method and Center data sets and 50 samples per class (right column

In this section, we carried out of set of experiments withh Table Ill) for the KSC data set. The feature selection
two hyperspectral data to investigate the inBuence of tB¥periments are repeated ten times to produce ten subsets
Gaussian bandwidth parameter on our proposed HSIC-Skselected features to analyze the feature stability of feature
LASSO method. For the inpu;, Xj R", the Gaussian RBF selection methods. To quantife feature selection stability,
kernel is given aK (xj, xj) = exp(S 1/2 2 xi S X; 2), where We used two types of measures: 1) feature index measure:

is the Gaussian kernel width. Many studies showed that thaccard index [43] and KunchevaOs stability index (KSI) [44]

heuristic approaches can be used to computéthe Gaussian and 2) feature value measure: information stability (IS) [45].
kernel, in this case was set to: 1) the dimension of theThe Prst one measures the amount of overlap between the

data (in our case, it is one dimension) [14]; 2) the percentifeature index values on different subsets, and additionally,
of PDs [31], [32]; and 3) the median of PDs [19], [42]KSI corrects overlapping due to the chance, while the latter
Figs. 5 and 6 shows the inBuence of different kernel width dReasures IS over different subsets of features. For additional
the proposed method in terms of classiPcation accuracy, agaifl implementation details, the reader is referred to [43]D[45].
with four classibers for the Pavia University and KSC data Table VI reports the feature stability measures for ten
sets. All the heuristic approaches provided a comparativai§lected features computed over ten subsets of selected fea-
similar accuracy when a more number of features are selectéies. Higher values in Table VI indicate more stability in
but the 5h percent"e of PDs approach Outperforms Oth@elected feature subsets. In both feature index and feature value

approaches when a less number features are considerednfgasures, the original HSIC theds provide better stability
both the images. in selected features over theriations in training samples.
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Fig. 6.
(b) PerTurbo classiber. (c) ELM classiber. (d) NBC.
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TABLE VI

FEATURE STABILITY MEASURESCOMPUTEDOVER TEN SUBSETS OFSELECTED FEATURES FORDIFFERENTFEATURE
SELECTIONMETHODS. IN EACH SUBSET, THE TOP TEN SELECTED FEATURESARE CONSIDERED

20 30 40 50

No. Selected Features
(KSC)

(d)

Classibcation accuracy of HSIC-SK LASSO method with different heuristic Gaussian bandwidths on the KSC data set. (a) SVM classiber.

Pavia University Pavia Centre KSC
Feature selection
Methods I KSI IS I KSI IS I KSI IS
HSIC-SK LASSO | 0.2691 | 0.3232 | 0.9228 || 0.3012 | 0.397 | 0.9075 || 0.2184 | 0.2813 | 0.7014
FOHSIC 0.4933 | 0.6111 | 0.9551 || 0.6217 | 0.7367 | 0.9534 || 0.9269 | 0.9517 | 0.9875
BAHSIC 0.5733 | 0.6899 | 0.9634 || 0.6711 | 0.776 | 0.9598 || 0.8886 | 0.9255 | 0.9831
CEM-BCC 0.0602 | -0.0017 | 0.8826 || 0.0673 | 0.018 | 0.8252 || 0.1249 | 0.1017 | 0.724
CEM-BCM 0.0563 | 0.0032 | 0.887 || 0.0553 | -0.0042 | 0.8241 || 0.0971 | 0.0648 | 0.6949

However, the IS measures reveals that though there are véfior instance, to quantify the correlation, we measured the
ations in selected features by our method, the informatiawerage correlation coefpcieaf selected feature values for
content on subset of features is more or less the same. In ottfer original HSIC method and the measure is 0.49, whereas
words, instead of selecting the same features, our methbdt for our method is 0.24). The less stability nature of the
selects the nearby features that are valid for hyperspectral da#e8SO model is not an unexpected behavior, as LASSO
as nearby spectral frequencies have similar spectral behaviends to produce unstable features to the variations in training
Furthermore, on the KSC data set, the original HSIC methgdt. As a future work, we would like to develop upon this
repeats more or less the same set of features over variationbnritation on the LASSO model to select more stable features,
the training set. However, it selected very correlated featuries instance, by considering elastic netlike strategies.









