The Nielsen-Ninomiya theorem, PT-invariant non-Hermiticity and single 8-shaped Dirac cone

Abstract : The Nielsen–Ninomiya theorem implies that any local, Hermitian and translationally invariant lattice action in even-dimensional spacetime possesses an equal number of left- and right-handed chiral fermions. We argue that if one sacrifices the property of Hermiticity while keeping the locality and translation invariance, and imposing invariance of the action under the space-time (PT) reversal symmetry, then the excitation spectrum of the theory may contain a non-equal number of left- and right-handed massless fermions with real-valued dispersion. We illustrate our statement in a simple 1  +  1 dimensional lattice model which exhibits a skewed 8-figure pattern in its energy spectrum. A drawback of the model is that the PT symmetry of the Hamiltonian is spontaneously broken implying that the energy spectrum contains complex branches. We also demonstrate that the Dirac cone is robust against local disorder so that the massless excitations in this PT invariant model are not gapped by random space-dependent perturbations in the couplings.
Liste complète des métadonnées

https://hal.archives-ouvertes.fr/hal-01447422
Contributeur : Maxim Chernodub <>
Soumis le : jeudi 26 janvier 2017 - 19:02:31
Dernière modification le : jeudi 7 février 2019 - 15:27:20

Lien texte intégral

Identifiants

Collections

Citation

M. N. Chernodub. The Nielsen-Ninomiya theorem, PT-invariant non-Hermiticity and single 8-shaped Dirac cone. Journal of Physics A: Mathematical and Theoretical, IOP Publishing, 2017, 50, pp.385001. 〈http://iopscience.iop.org/article/10.1088/1751-8121/aa809a/meta〉. 〈10.1088/1751-8121/aa809a〉. 〈hal-01447422〉

Partager

Métriques

Consultations de la notice

42