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Introduction

Predictively understanding the mechanics of so structures
comprising of slender elastic rods that can deform into loops
and tangles, as well as rationalizing their mechanical response,
is important in many practical problems that span a wide range
of length scales. Examples include, to mention just a few: the
complex physical behavior of DNA strands1–3 and DNA rings,4–6

the inversion of chirality in helical bacterial agella,7 morpho-
genesis of tendril perversion in climbing plants8–10 and damage
due to localized deformation in twisted marine cables.11,12 A
commonality across these various systems is that they can
exhibit geometrically nonlinear behavior. Moreover, rod-like
structures can possess an intrinsic curvature (i.e. they are not
naturally straight) and their elasticity may couple with body
forces such as hydrodynamic loading, electro-magnetic inter-
actions (at small scales), or gravity (at macroscopic scales).
These individual lamentary structures may also be assembled
into larger networks to produce more complex so materials
and structures.

The classic problem of writhing of a thin rod13,14 (quasi-
statically varying the end-to-end displacement or rotation of its
extremities, see Fig. 1) has become a canonical model system in
which to investigate the equilibrium congurations, stability
and spatial localization of contorted lamentary structures.15–18

With particular focus during the 1990's, a large body of work
has addressed the Kirchhoff's analogy, whereby the nonlinear
differential equations for 3D elastica have a one-to-one map to
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those of a spinning top.19 This interpretation has allowed for the
theoretical framework and computational techniques from the
eld of dynamical systems20–22 to be ported to the study of
the mechanical instabilities of thin rods. For example, buckling
of a slender elastic lament under torsion can be attributed to a
Hopf bifurcation,16 and the rod's subsequent post-buckling
congurations can be computed by calculating the associated
bifurcation diagram.

Complex equilibrium states and their transitions during the
writhing of naturally straight elastic rods undergoing large
deections have been explained statically and dynamically
using the framework of Kirchhoff's equations for elastic
rods.16–26 Similarly, several studies rationalized the effect of
intrinsic natural curvature on the inversion of helix handed-
ness9,10,27 or the presence of one-twist-per-wave congurations28

in innitely long twisted circular rods. Recently, more sophis-
ticated numerical models have also considered phenomena
Fig. 1 The writhing experiment. A naturally curved elastomeric rod is clamped
to two concentrically aligned drill chucks, which allow for the end-to-end
displacement or rotation of the extremities to be imposed. Inset: fabrication
process of the rods with custom natural curvature, k0.



with self-contact, in this class of problems.10,12,26,29 Investiga-
tions in this realm, however, tend to be highly theoretical and
experiments are primarily used to qualitatively validate the
demonstrated results,16,25,28 rather than as a tool for discovery
and precision quantication.30–32 Inherent to these theoretical
approaches is a need for simplifying assumptions (e.g. weight-
less, innite length and perfectly straight rods), to ensure
tractability of what, regardless, are already intricate systems
involving a high level of technicality.

Here, we perform precision model experiments, coupled
with our own numerical simulations, to investigate the original
scenario when both a conservative body force (the rod's self-
weight due to gravity, in our case) and intrinsic natural curva-
ture are important ingredients. Our goal is to develop physical
insight and gain a better understanding of practical and natural
systems where the body force cannot be neglected, e.g. gravity in
wires, cables, tubes and pipes. Moreover, these objects typically
need to be spooled for storage and transport, which may irre-
versibly impart a natural curvature that must be treated as an
independent variable.33–35

In our precision model experiments, we custom fabricate
elastomeric rods with a set intrinsic natural curvature, k0, that is
taken as one of the control parameters. The rod sample is then
suspended between two horizontal concentric drill chucks, as
illustrated in Fig. 1, and two sets of complementary experiments
are performed. For different values of k0, the mechanical
response of the thin rod is quantied by quasi-statically varying
either (i) the end-to-end displacement (without rotation) or (ii)
the end-to-end rotation (xing the distance between clamps).

In parallel to the experiments, we also perform simulations
(of the same scenario explored experimentally) using our own
asymptotic numerical continuation method.36 This method
combines a geometrically-exact rod model with a semi-analyt-
ical perturbation technique to perform a continuation of the
equilibrium branches and calculate the underlying bifurca-
tions. Aer a direct comparison against experimental results,
we can then take advantage of the predictive power of our
simulations to explore quantities that cannot be readily
accessed experimentally, such as the role of internal axial forces
on the pattern formation process of the rod.

In both cases of our study (imposed displacement or rota-
tion), we nd that natural curvature does indeed qualitatively
and quantitatively change the nature of the bifurcations and,
consequently, affects the resulting 3D congurations of the
deformed rod. Although a number of aspects of this system
have been addressed in previous studies,5,9,10,28 we uncover the
original effect that weight delays the effect of natural curvature.
Below a critical value kcrit0 , gravity balances the imposed geom-
etry and the heavy rod can be considered as being naturally
straight, albeit with a small imperfection k0. In contrast, above
kcrit0 , the effect of natural curvature is signicant and sufficient
to break the symmetries of the rod's pattern formation.

Our paper is organized as follows. We start by presenting the
experimental apparatus and the computational approach that
we use to investigate both versions of the writhing experiments.
We then rst focus on the case of imposed end-to-end
displacement and rationalize the underlying physical
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ingredients of the writhing problem: elasticity, curvature and
internal forces due to weight. To attest to the strength of the
revealed mechanism, we then explore the second case of
imposed end-to-end rotation through which we uncover similar
trends. We nish by discussing and contrasting both scenarios.
Experimental and numerical setup

We fabricate our rods through casting, by injecting vinyl-
polysiloxane (VPS), an elastomer, into a exible PVC tube of inner
and outer diameters DI ¼ 3.1 mm and DO ¼ 5 mm, respectively.
The PVC mold tube is rst wound around a cylinder of external
radius Re and then injected with VPS, which eventually cross-
links at room temperature [see inset of Fig. 1]. Aer a setting
period of 24 hours, to ensure complete curing of the polymer, the
outer exible PVC pipe is cut to release the inner slender VPS
elastic rod with a constant natural curvature k0¼ 1/(Re + DO/2), in
the range 0 < k0 < 60 m�1, and a circular cross-section R ¼ DI/2¼
1.55 � 0.22 mm. We measure the Young's modulus of the elas-
tomer to be E ¼ 1.30 � 0.06 MPa, a volumic mass r ¼ 1200 �
16 kg m�3 and a Poisson ratio of n z 0.5.

In our experiments, each naturally curved cast rod (L¼ 30 cm
long) is attached between two horizontal concentric drill
chucks. We ensure that the sign of the constant intrinsic
curvature, k0, is such that the rod naturally bends downwards,
in the direction of gravity, g. A photograph of the side view of the
experimental setup is presented in Fig. 1. The boundary
conditions of the rod are set to be rigidly clamped at both ends.
The clamp located at the origin (curvilinear coordinate s ¼ 0) is
completely xed but the other clamp (at s ¼ L) has two degrees
of freedom: it can be rotated of an angle F or moved with a
displacement d towards the xed le extremity [see Fig. 1]. Our
two distinct experimental protocols consist of quasi-statically
varying the displacement, d, (for an end-to-end rotation angle,
F ¼ 0�) or increasing F (for L � d ¼ 22 cm). The resulting
congurations of the rod are quantied through digital imaging
by a camera located above the apparatus (top view). Represen-
tative congurations of these experiments at different values of
the control parameters are shown in Fig. 2.

Our simulations are performed using an original asymptotic
numerical continuation method to compute bifurcations of
equilibria and stability of slender elastic rods.36 In this model,
the 3D kinematics of the rod is treated in a geometrically exact
way and we take into account deformations due to bending and
twisting but assume no stretching (inextensibility condition).
The boundary conditions are ensured to be perfectly clamped at
both ends. For the material properties, we use an isotropic
linear elastic model with the material properties measured
independently in the experiments. The partial differential
equations modeling the rod's equilibria are approximated with
nite differences by discretizing the rod in 200 elements (a
mesh sensitivity study was carried out to ensure that the results
are unaffected by the element size). The subsequent set of
algebraic equilibrium equations are solved with an asymptotic
numerical method that gives interactive access to semi-analyt-
ical equilibrium branches, including state congurations, as
shown in Fig. 2. In parallel, the local stability of equilibria is



Fig. 2 Top views of experimental and numerical equilibrium configurations. (a and b) Case I: increasing values of displacements d/L (for F ¼ 0�). (c and d) Case II:
increasing values of rotation angle F (for d/L¼ 0.27). The experimental pictures have a black background and the simulations have a white background. The simulation
results are rendered to visualize twist by using bi-color rods. Experimental and numerical configurations displayed in (a3), (a4) and (d4) are obtained for slightly different
control parameters since the studied bifurcations are highly sensitive to imperfections. (a) k0 ¼ 16.5 m�1. (b) k0 ¼ 39.3 m�1. (c) k0 ¼ 0 m�1. (d) k0 ¼ 44.8 m�1.
assessed by computing the decay rate, s, of the associated
perturbation. The equilibrium is locally stable or unstable
according to a positive or negative decay rate, respectively. This
continuation method is implemented in the interactive path-
following and bifurcation analysis MATLAB package, ManLab.
We have previously reported a detailed account of our numer-
ical method elsewhere.36,37
Writhing case I – imposed displacement

We start by quasi-statically increasing the dimensionless
displacement, d/L, while xing the end-to-end rotation at F ¼
0�, for rods with different natural curvature, k0. Each experi-
ment is initiated with the clamps separated by L ¼ 30 cm (i.e.
d/L ¼ 0) and terminated as soon as self-contact occurs (beyond
which our numerics fail).

In Fig. 2a and b, we present a sequence of representative
snapshots of the rod at different stages of displacement, for the
experiments and simulations, with excellent agreement found
between the two. Upon increasing d/L, the rod eventually bifur-
cates into an out-of-plane equilibrium conguration that is
qualitatively different for different values of k0 (in Fig. 2a and b,
two representative values of k0 ¼ 16.5 m�1 and k0 ¼ 39.3 m�1

are shown). For low curvature values, e.g. k0 ¼ 16.5 m�1, the
clamped rod has an inectional planar equilibrium shape in the
3

( y, z)-plane, mostly due to its own weight, for a large range of
displacements, d/L [Fig. 2a1 and a2]. At large d/L, when both
clamps approach each other, the rod buckles out of the plane into
an equilibrium state that is anti-symmetric with respect to the
clamp's centerline [Fig. 2a3 and a4], similarly to the secondary
buckling of a weightless clamped rod, previously studied by
others.24,26,32 For a high values of k0¼ 39.3m�1 and at small values
of d/L when the clamps are near their maximum separation
distance, the equilibrium conguration is analogous to the planar
shape observed for k0 ¼ 16.5 m�1 [Fig. 2b1]. When increasing d/L,
however, the rod evolves into an out-of-plane equilibrium shape,
shown in Fig. 2b2–b4, described by two helices with opposite
handedness connected by a transition region where chirality is
inverted, also known as perversion.8–10 In a case of a strong
imposed geometry, the natural imperfection k0¼ 39.3m�1 breaks
the symmetries of the problem described in Fig. 2a.

To further quantify the transition between a planar shape into
an out-of-plane equilibrium conguration, we measure the rod's
maximum transverse displacement, Xmax¼max(|X|), in the (x, y)-
plane (dened in Fig. 2a and b) from the experimental images. In
Fig. 3a and b we plot Xmax as a function of the control parameter
d/L, for the two values of natural curvatures considered above,
k0 ¼ 16.5 m�1 and k0 ¼ 39.3 m�1. As d/L is increased (decreasing
the end-to end distance), the rod undergoes a symmetry-breaking
pitchfork bifurcation for a critical displacement dcrit. Note that



Fig. 3 Maximum transverse displacement, Xmax, as a function of d/L. (a) Case of a
curved elastic rod with k0 ¼ 16.5 m�1. (b) Case of a curved elastic rod with k0 ¼
39.3 m�1. Xmax is illustrated in Fig. 2a and b. Solid/dashed lines represent stable/
unstable semi-analytical branches obtained with simulations. Insets: evolution of
the decay rate, s, with control parameter d/L.

Fig. 4 Influence of natural curvature on case II. (a) Instability threshold dcrit/L as a
function of k0, for F ¼ 0� . A critical curvature kcrit0 z 1/Lgb clearly separates two
different regimes (see text for details). (b) Evolution of tension along the rod just
before dcrit/L for values of k0 in the two different regimes. (c) Critical minimal
tension in the rod at the instability threshold, as function of k0. Dot-dash line from
ref. 26 and solid line from ref. 9.
the pitchfork is qualitatively different for the two values of k0
considered, e.g. Xmax is non-monotonic for low k0.

In parallel to the experiments, our numerical continuation
method gives access to analytical branches of solutions of Xmax,
as well as the associated decay rate s given in the inset of Fig. 3
(only the one branch, out of two, chosen by the experimental
imperfections is plotted). The numerical displacement
threshold, dcrit, is the value at which s becomes negative. We
dene the experimental threshold as the displacement region
where there is a signicant change of slope (larger than 5%) in
the evolution of Xmax, as a function of d/L [see the straight black
line in Fig. 3]. We observe a good overall quantitative agreement
between numerical and experimental data, especially when
comparing the instability threshold dcrit obtained with both
approaches. For k0 ¼ 16.5 m�1, the numerical and experimental
results quantitatively agree and the pitchfork bifurcation leads
to a clear instability threshold dcrit located at a small end-to-end
distance. For k0 ¼ 39.3 m�1, however, there is a signicant
difference between the simulated and experimental data (up to
36%) although the threshold dcrit is still correctly predicted at a
larger end-to-end distance. This discrepancy may be attributed
to the presence of residual internal twist or cross-sectional
ellipticity that emerge in our fabrication process for high values
of k0, or the sensitivity to imperfection of the smooth bifurca-
tion process illustrated in the sequence of representative
snapshots of Fig. 2b2–b4.
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We proceed by further characterizing the inuence of curva-
ture in this writhing case I of imposed displacement. In particular,
we aim to rationalize the pattern formation process by numeri-
cally extracting the internal forces stored in the rod. In Fig. 4a, we
plot the phase diagram of ourmechanical systemwhere the phase
boundary is given by the instability threshold dcrit/L as a function
of k0. The experimental data is in excellent agreement with the
numerical predictions obtained from analyzing the decay rate s.
The phase diagram clearly delimits three regions of equilibrium
congurations: the planar shape represented by the top view at
point A in Fig. 4a, the anti-symmetric out-of-plane conguration
illustrated at point B and the asymmetric state represented at C.
Due to the complexity of behavior, e.g. involving self-contact, in
the neighborhood of the phase boundary that delimits the two
out-of-plane states (dotted line in Fig. 4a is a guide to the eye), we
have decided to leave a detailed and systematic characterization of
this region for a future study.

Another characteristic feature illustrated by Fig. 4a is the
value of k0, denoted kcrit0 , at which there is a sharp change in



slope in the evolution of critical displacement dcrit/L, that
delimits two distinct regimes. Interestingly, this critical curva-
ture is comparable to the inverse of the elastogravity lengthscale
Lgb; the characteristic length above which the pull of gravity
changes the natural shape of a naturally curved hanging
rod.38–40 In our problem, Lgb ¼ (EI/rgS)1/3 ¼ 24.7 cm, where EI ¼
EpR4/4 is the bending modulus of the rod and rS ¼ rpR2 is its
linear mass density. Below the critical curvature kcrit0 z 1/Lgb,
gravity is dominant and the rod behaves as a straight rod with a
small imperfection. Above kcrit0 z 1/Lgb, the effect of curvature
becomes important and dominates the physics of the problem
leading to the inversion of chirality observed in Fig. 2b2–b4.

In Fig. 4b, we represent the evolution of internal normal
forces stored along the rod, immediately prior the onset of
instability at dcrit/L, for two values of intrinsic curvatures k0 ¼
16.5 m�1 and k0 ¼ 39.3 m�1. The internal axial forces prole
along the rods is qualitatively similar in both cases and minima
of forces are located at the mid-point and extremities. However,
for k0 ¼ 16.5 m�1, some parts of the rod are under compression
whereas, for k0 ¼ 39.3 m�1, the whole rod is in tension at the
onset of buckling. In Fig. 4c, we plot the evolution of critical
minimum normal forces at onset of buckling as a function of k0
in the extended range 0 < k0 < 150 m�1. Similarly to Fig. 4a, we
can clearly identify the two regimes separated by kcrit0 in the
evolution of critical axial forces highlighted by the zoom in the
inset of Fig. 4c. This indicates that the mechanical response of
the displacement experiment is dictated by the internal normal
forces. In the rst regime for k0 ( 1/Lgb, the elastic rod buckles
out of the plane due to the compressive internal forces that
eventually arise under large compressive displacements d. The
critical compressive buckling load as a function of the imper-
fection k0 is fairly constant and can be reasonably compared to
the critical buckling load, F crit ¼ �6p2EI/L2 (dotted-dashed line
in Fig. 4c), that has previously been found for a displacement
experiment performed on a weightless nitinol rod with no
intrinsic natural curvature.26,32 For k0 T 1/Lgb, where the effects
of natural curvature become signicant, the bifurcation process
is markedly different. The critical internal axial force evolves
quadratically in terms of k0, qualitatively following the solid line
in Fig. 4c that represents the critical tension, F crit ¼ (1 + n)EIk0

2.
This analytical expression predicts the internal tension below
which a twistless and weightless innitely long elastic lament
with intrinsic curvature k0 bifurcates onto a helix with inverted
chirality.9,10 The convincing agreement between the theoretical
and numerical results in Fig. 4c suggests that the buckling
phenomenon for k0 T 1/Lgb is due to a competition between
elasticity, natural curvature and internal tension which, in our
case, is provided by the rod's weight. We attribute the horizontal
offset between the computed critical minimum tension with the
analytical F crit to the delaying effect of gravity, that overcomes
the destabilizing inuence of natural curvature for k0 ( 1/Lgb.
Writhing case II – imposed rotation

We now want to evaluate the robustness of the delay mecha-
nism uncovered in the previous case I of imposed displacement
by investigating the effect of k0 when we quasi-statically impose
5

an end-to-end rotation F to the elastic rod, as illustrated in
Fig. 1. This complementary test, performed for a xed
displacement d/L ¼ 0.27, begins at F ¼ 0� and ends just before
self-contact occurs. We study the mechanical response of the
twisted rod in a similar way to case I, both experimentally and
numerically.

In Fig. 2c and d, we present a series of representative
experimental and numerical equilibrium congurations (top
views), at the same values of control parameterF. Again, we nd
excellent agreement between the two. For a straight rod with
k0 ¼ 0 m�1, the rod initially exhibits a planar equilibrium shape
that lies in the ( y, z) plane due to the effect of gravity as illus-
trated in Fig. 1 and 2c1. When the rotation angle F is increased,
this initial planar shape evolves smoothly into an out-of-plane
conguration, anti-symmetric with respect to the clamp's
centerline, with an amplitude that grows due to an increasing
internal twist [see Fig. 2c2 and c3]. At a critical value of the
rotation angle, Fcrit z 2040�, that is correctly predicted by our
continuation method, the out-of-plane shape jumps into a
plectoneme state,16,26 a highly localized structure consisting of a
two-start right-handed helix with terminal loops, located in the
middle of the rod. For a curved rod with k0 ¼ 44.8 m�1, the
evolution of equilibrium congurations with the rotation angle
F is qualitatively different as shown in Fig. 2d. By introducing
the constant natural curvature k0, the previously anti-symmetric
out-of-plane solutions obtained for the case of straight rods
become asymmetric with respect to the ( y, z) plane. For very
small rotation angles F as illustrated in Fig. 2d1, the rod adopts
a helical shape with opposite handedness as explained in the
previous section for case I. Above a critical rotation angle, F ¼
395�,36 our results conrm that the rod jumps into a one-twist-
per-wave helical mode due to the presence of natural curva-
ture.28 In this conguration, the number of waves is equal to the
number of full twists stored in the rod as shown in Fig. 2d1. For
a critical rotation angle Fcrit z 2960�, a plectoneme forms,
superimposed onto the one-twist-per-wave equilibrium state. It
is interesting to note that, for the naturally curved rod, the
plectoneme is located at one extremity of the rod rather than at
its center [see Fig. 2d4], as found above for the straight rod.

Similarly to case I, where we imposed displacement, but now
for the end-to-end rotation experiment, in Fig. 5 we plot the
rod's maximum transverse displacement, Xmax, as a function of
the imposed rotation angle, F. For the two values of k0 chosen,
and across the full range of F explored, the experimental data is
in excellent agreement with the numerical predictions (the
accumulating discrepancies at high values of F in Fig. 5b may
be interpreted by the absence of stretching in our numerical
model). It is remarkable that the experimental instability
threshold for the onset of a plectoneme, Fcrit, given also in
Fig. 2c4 and d4, is reproduced within 2% by our local numerical
stability analysis. Unlike the relatively smooth response for k0 ¼
0 m�1 given in Fig. 5a, natural curvature eventually introduces a
disconnected equilibrium branch as illustrated in Fig. 5b.
Counterintuitively, we nd that imparting a constant natural
curvature to our rods (essentially adding a geometric imper-
fection to the stress-free conguration) results in considerably
postponing (in this particular case, by approximately 43%) the



Fig. 5 Maximum transverse displacement, Xmax ¼ max(abs(X)), as a function of
F. (a) Case of a straight elastic rod with k0¼ 0 m�1. (b) Case of a curved elastic rod
with k0 ¼ 44.8 m�1. Xmax is illustrated in Fig. 2c and d. Solid/dashed lines repre-
sent stable/unstable semi-analytical branches obtained from simulations. Insets:
evolution of the decay rate, s, with control parameter F.

Fig. 6 Phase diagram of the rotation experiment. Instability threshold, Fcrit, as a
function of natural curvature, k0, for d/L ¼ 0.27. The equilibrium configurations
A–E, captured numerically right after onset of plectoneme are given for different
values of k0 associated with each step of the phase diagram.
emergence of the plectoneme instability, which is oen
synonymous with failure in practical systems.

We now address how the natural curvature affects the
mechanical response of the twisted rod. In Fig. 6, we plot the
evolution of critical rotation angle Fcrit as a function of k0,
obtained from the experiments and simulations. Excellent
agreement is found between the two, across the full range of
explored k0. The constant natural curvature k0 strikingly post-
pones the emergence of the plectoneme. Moreover, this
phenomenon is achieved through a nontrivial series of discrete
steps, as Fcrit is increased. And similarly to case I, the twisted
heavy elastic rod is signicantly affected by the imposed
geometry only past a critical value of k0.

In Fig. 6A–E we present a sequence of equilibrium states,
immediately aer the onset of the plectoneme, for rods with
increasing k0. The congurations A–E are each taken from the
individual steps in the plot of Fig. 6. The deformed shapes
associated with each step of Fcrit correspond to states charac-
terized by different number of waves that can be stored before the
instability occurs and are directly related to the amount of twist
required for the instability to be triggered. The signature of
increasing k0 can also be seen on the position along the rod's arc-
lengths, where the plectoneme forms. At low values of natural
curvature (e.g. points A and B in Fig. 6), the plectoneme forms
towards the middle of the rod (|s/L| � 0.5) as oen mentioned in
the literature,16,17 whereas for higher curvature (e.g. points C–E)
the plectoneme develops near the clamp (|s/L| � 1).
6

Making use of the simulations, we now connect the curvi-
linear coordinate at which the plectoneme forms, sP, to the
internal tension and twist rate in the rod, both of which are
plotted in Fig. 7a1 and a2, for different values of k0. For all the
curvatures considered, the entire rod is in tension when the
instability occurs, with a prole exhibiting a wavy shape that is
closely related to the deformed congurations represented in
Fig. 6A, B and D. In Fig. 7a2, the location of minimum tension at
onset is associated to the location of minimum twist coincident
with the position of plectoneme formation16 suggesting that
internal axial forces have again a central role in the instability
mechanism of the writhing case II. This nding is conrmed by
the linear relation between the location of absolute maximum
strain rates (both material curvatures and twist), sP, and
minimum tension for the range of simulated natural curvatures
0 < k0 < 60 m�1 illustrated in Fig. 7b. The inset in Fig. 7b also
shows the complex progression of the location of the plectoneme
with k0, conrming that plectonemes form closer to the edges as
k0 increases. For small values of curvature, the localized pattern
tends to emerge towards the middle of the rod, but there is a
critical curvature, kcrit0 , potentially related to the one uncovered in
the case I of imposed displacement, above which plectonemes
constantly appear at the extremities (apart for two data points
where the rod reproducibly snaps into a central plectoneme,
something which we have not yet been able to rationalize).



Fig. 7 Investigation on the location of plectoneme. (a) Profile of internal normal
forces (a1) and twist rate (a2) along the rod at onset of plectoneme for different
k0. (b) Location of plectoneme (identified as the maximum absolute flexural and
torsional strain rate at instability) as a function of the minimal tension in the rod,
right before the instability occurs. Inset: influence of k0 on the plectoneme
location.
Conclusions

In summary, we have focused on the effect of natural curvature,
k0, on the writhing of a heavy slender elastic rod, and presented
results on the pattern formation of geometrically nonlinear
congurations. Two complementary cases with particular
imposed kinematics were considered for which we found a
similar delaying mechanism where the inuence of imperfec-
tion is discontinuous, with a length scale that we attribute to an
elaborate interplay between natural curvature, elasticity and
weight.

When imposing a compressive displacement, we found two
regimes, separated by a critical curvature kcrit0 (seemingly related
to the elastogravity length scale Lgb) below which the rod
behaves as a naturally straight rod with a geometric imperfec-
tion. Above kcrit0 the rod behaves as a naturally curved rod under
tension. A similar delay in the inuence of natural curvature
due to weight was observed and explored in the more complex
case of an imposed rotation. Surprisingly, we nd that k0

postpones the emergence of plectonemes, in a stepwise
manner, by adopting a one-twist-per-wave conguration, with
increasing number of waves for higher curvatures. Further-
more, curvature qualitatively changes the plectoneme
7

formationmechanism by shiing the plectoneme location from
its center to the extremity of the rod.

Our ndings could allow for the measurement, as an inverse
problem, of the natural curvature of a heavy elastic rod. More-
over, our work points to a novel way to control localized insta-
bilities in slender wires, cables and tubes by tuning their
intrinsic curvature. Whereas we have focused on the role of
gravity, the prominence of geometry in this class of problems
suggests that the framework we propose and the mechanism we
identify should be relevant to other systems, over a wide range
of length scales, where conservative body forces and natural
curvature coexist in the mechanical response of so lamentary
structures.
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