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DISTRIBUTED BOOSTING FOR CLOUD DETECTION

M. Le Goff (1,2), J.-Y. Tourneret(1), H. Wendt(1), M. Ortner(2), M. Spigai(2)

(1) IRIT/ENSEEIHT/TéSA, University of Toulouse and (2) IRT Saint Exupery, Toulouse, France

ABSTRACT

The SPOT 6-7 satellite ground segment includes a sys-

tematic and automatic cloud detection step in order to feed a

catalogue with a binary cloud mask and an appropriate con-

fidence measure. In order to significantly improve the SPOT

cloud detection and get rid of frequent manual re-labelings,

we study a new automatic cloud detection technique that is

adapted to large datasets. The proposed method is based

on a modified distributed boosting algorithm. Experiments

conducted using the framework Apache Spark on a SPOT 6

image database with various landscapes and cloud coverage

show promising results.

Index Terms— Cloud detection, remote sensing, big

data, distributed processing, boosting

1. INTRODUCTION

The generation of cloud masks associated with remote sens-

ing images is an important issue in order to feed catalogues

not only with images but also with cloud information. This

problem has received considerable interest in the literature,

cf., e.g., [1, 2]. Cloud information is of central importance

for image catalogue customers as well as for operators in

order to perform fast reprogramming/rescheduling in case of

too cloudy acquisitions. SPOT 6-7 satellites belong to high

resolution (2.5m) optical Earth observation systems from the

SPOT satellite family. Upon request, the SPOT catalogue

interface returns product meta-information, a cloud mask

obtained from a semi-automatic pipeline, and a low resolu-

tion version of the requested image, called album version.

Currently existing cloud detectors are in majority based on

morphological operations such as shadow matching [1] or on

physical models specific to clouds [2]. However, it has been

observed that these detectors lack generalization capabilities

and robustness since they are satellite-dependent and can pro-

vide poor performance for specific images. Cloud detection

methods based on raw data (instead of morphological features

or physical models) are expected to be more robust, e.g., able

to discriminate clouds from other classes for any satellite and
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for any scenario. However, a central aspect of any powerful

automated cloud detection system is to rely on a large size

labelled database containing all representative landscapes

avoiding any expert intervention. The problem is therefore

to learn a robust classifier from a large database containing

ground truth masks. Most classical data mining approaches

are designed to process data that can fit in the memory of one

single machine. Thus, they cannot handle large-scale data

sets, which require some form of distributed processing by

multiple machines.

Recent research efforts have focussed on the development of

distributed versions of standard classification methods [3–6].

These methods include support vector machines (SVMs) that

have been widely used in many remote sensing applications.

However, the hyperparameter choice is critical for a good

classification performance with SVMs [6]. Random forests

are also known as state-of-the-art algorithms for classifica-

tion because of their simplicity and efficiency. However,

their distributed implementation is complex because of its

underlying assumptions [4]. Boosting algorithms require less

operational assumptions and are known to provide high clas-

sification performance with a small computational cost. They

are well suited to distributed implementations and several

architectures have been proposed [3,5,7]. Yet, these architec-

tures assume that the data are equally distributed among the

different machines (i.e., each data subset is representative of

the full data set), which is difficult to satisfy in practice.

The goal of this paper is to propose and study a novel dis-

tributed boosting algorithm that is capable of processing

large-scale datasets in order to solve the cloud detection

problem. The contributions are twofold. First, we address the

challenge of handling large-scale databases (and the induced

computational complexity) by defining a distributed boosting

algorithm whose complexity scales linearly with the sample

size. The proposed algorithm inherits the robustness of the

original boosting algorithm, without any condition on the

data distribution. Second, we study the application of the

proposed algorithm to a large-scale database (i.e, contain-

ing more than 10000 images) of SPOT 6 album images with

associated cloud masks. The paper is organized as follows.

Section 2 presents the images and features considered in this

study. Section 3 investigates the proposed distributed boost-

ing algorithm. Simulation results are presented and discussed

in Section 4, and conclusions are given in Section 5.



Fig. 1. Example of an image (left) and its cloud mask (right).

2. IMAGES AND FEATURES

Album SPOT 6 images consist of 4-channel images acquired

in the blue, green, red and near infrared wavelength domains.

Their spatial resolution is significantly smaller than those of

the full resolution images in order to reduce memory require-

ments, while the radiometric resolution is preserved at 12 bits.

A database of more than 10000 SPOT 6 album images, con-

taining a large and representative variety of cloud coverages

and landscapes, has been provided by Airbus Defense and

Space. The images have been corrected for radial distorsion,

internal sensor geometry and radiometric distorsion.

As a preprocessing step, image features are computed

from the 4 channels of the album images. Here, we mainly

focus on the classification algorithm part and therefore con-

sider simple and well-established pixel-wise descriptors de-

fined as band ratios (i.e., the ratio of the image intensities of

two channels). Band ratios have been considered previously

for remote sensing applications and in particular for cloud

detection [8]. These features have the advantage of being

simple to compute and are independent of illumination con-

ditions, which may vary significantly within each image. For

the 4 channels of the SPOT 6 images,
(

4

2

)

= 6 band ratios can

be computed. Moreover, we propose here to use multi-scale

features obtained by computing band-ratios for 3 different

spatial resolutions (60m, 120m and 240m), leading to a total

of d = 18 features per pixel.1 The use of additional features

will be studied in future work, including, for instance, pixel-

wise descriptors such as NDCI and NDSI [8], texture features

or object-level features (at the price, though, of additional

parameter tuning).

3. PROPOSED BOOSTING ALGORITHM

3.1. Machine learning problem and notations

Denote as S = {(xi, yi), i = 1, ..., N} a training set contain-

ing N feature vectors xi ∈ R
d (here, normalized to [−1, 1]d)

and their corresponding labels yi ∈ ±1 (where yi = 1 means

that the pixel corresponds to a cloud). To each training sample

(xi, yi), we associate a weight wi which is used to quantify its

relevance. The weights are concatenated into a weight vector

w = (w1, ..., wN ). The goal of a supervised machine learn-

ing algorithm is to identify the classifier f : Rd 7→ ±1 from

1The resolution of the album images is 60m, and the 120m and 240m

resolution images have been obtained by downsampling.

a (possibly infinite) set of binary classifiers (detectors) F that

minimizes the training error (or empirical risk) defined as

ǫ (S, f,w) =
∑N

i=1
wiL(yi, f(xi)) (1)

where L is a given loss function (here, the 0/1 loss defined

as L(yi, f(xi)) = 1 if yi 6= xi and L(yi, f(xi)) = 0 other-

wise). The criterion that is used to build the decision rule is

hence the empirical risk ǫ. Note that the classification perfor-

mance obtained for test examples unseen during the training

phase is referred to as generalization performance.

3.2. The boosting algorithm

The distributed algorithm described in this section is a modi-

fication of the classical boosting algorithm, which has shown

very good performance in many practical applications (see,

e.g., [9] for details). It is sketched in Algo. 1. The goal of

boosting is to construct a decision function f as a linear com-

bination of weak learners2 h(x)

fT (x) = sign

(

∑T

t=1
αtht(x)

)

.

Here, we consider weak learners defined as the following “de-

cision stumps”

hj,γ(xi) = 1 if x
j
i ≥ γ and hj,γ(xi) = 0 otherwise (2)

where x = (x1, ...,xd), γ ∈ Γj is a threshold for feature j.

At each iteration t, the algorithm selects the weak learner ht

that has minimal empirical risk ǫt and adds it to the decision

function weighted by αt that reflects the overall performance

of the weak learner (cf., lines 2–4 of Algo. 1). In addition,

the weights wt
i are updated depending on how xi is difficult

to classify (cf., lines 5–6 of Algo. 1), i.e., the weights used

for the following iteration t+1 are increased for misclassified

samples and decreased for correctly classified samples.

Data: S = {(xi, yi), i = 1, ..., N}

Result: fT (·) = sign
(
∑T

t=1
αtht(·)

)

1 while t ≤ T do

2 ht = argmin
j∈{1,...,d},γ∈Γj

ǫ(S, hj,γ ,wt);

3 ǫt =
∑N

i=1
wt

iL(yi, ht(xi));

4 αt = 0.5 log
(

1−ǫt
ǫt

)

;

5 zt+1

i = wt
i exp [αtyiht(xi)]; Zt+1 =

∑N

i=1
zt+1

i ;

6 wt+1

i = zt+1

i /Zt+1;

7 end

Algorithm 1: Boosting algorithm.

The main motivations for using the boosting algorithm are its

ability to control the training error, which is upper bounded

2By “weak learners”, we mean classifiers that perform (slightly) better

than random guessing.



by an exponential decrease at each iteration [9], and also its

generalization performance since boosting performs a margin

optimisation [10].

3.3. A distributed boosting algorithm

In order to distribute the computations on a cluster of ma-

chines, the classical boosting algorithm needs to be modi-

fied. One of the most efficient strategies is to test classi-

fiers and aggregate their performance [3]. We propose here

to define a large finite set of weak learners hj,γ induced by

using a finite set of discrete thresholds belonging to Γj in

(2) (in contrast to the the original algorithm where there are

as many thresholds as samples). Here, the thresholds are

equally-spaced in the interval [−1, 1]. With this modification,

the training error of each weak learner for the training set S
can, at each iteration, be determined by aggregating the train-

ing errors computed and broadcast for sub-sets of S in a dis-

tributed architecture. More precisely, the dataset is split and

distributed among n machines. Denote as Sk the sub-datasets

with Nk = card(Sk) elements associated with machine #k,

k = 1, . . . , n, where S = ∪
k=1,...,n

Sk and Sk∩Sl = ∅ for

k 6= l. Each machine k has a local set of weights, denoted as

w
t
k, that is associated with the samples in Sk. At each iter-

ation t, the distributed boosting algorithm computes for each

machine k (independently of the other machines) the train-

ing error of each classifier hj,γ , denoted as ǫ(Sk, hj,γ ,wt
k).

These training errors are then communicated and aggregated

to evaluate the global performance of each classifier hj,γ

ǫ(S, hj,γ ,wt) =
1

N

∑n

k=1
Nkǫ(Sk, hj,γ ,wt

k) (3)

which is in turn used to select the classifier ht as

ht = argmin
j∈{1,...,d},γ∈Γj

ǫ(S, hj,γ ,wt)

cf., line 2 in Algorithm 2. The remaining steps of the al-

gorithm consist of standard boosting weight update steps for

each data subset Sk (cf., lines 4-6 of Algo. 1), which are

again performed on each machine k independently. The re-

sulting distributed boosting architecture is sketched in Fig. 2.

Remarks. The algorithm has an extremely simple and easy

to implement structure, in contrast to, e.g., distributed random

forests [4] or SVM [6]. Moreover, it is scalable since its over-

all complexity is linear with respect to the training set size

(indeed, each single data instance will at most be considered

Nc × T times, where Nc =
∏d

j=1
card(Γj) is the total num-

ber of stumps). In addition, it yields a classifier that is inde-

pendent of the composition of the sub-datasets Sk (which do

hence not need to be representative of the full data set S; in-

deed, each Sk could, e.g., contain only one single image with-

out altering the final detector fT since each weak learner is

nonetheless tested on all training examples, cf., (3)). This is in

contrast with and a major advantage over previously proposed
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Fig. 2. Distributed boosting architecture.

distributed boosting algorithms: Among them, our algorithm

is close to the PreWeak algorithm [3], which relies however

on the independent execution of Adaboost on each individual

machine in order to determine the thresholds (whose number

hence grows linearly with the size of the data set, yielding an

overall quadratic complexity). Similarly, the Distboost algo-

rithm [5] makes use of a majority vote of decision trees that

are learnt on each machine independently, which requires that

each machine holds a representative sample of the full dataset.

This is also the case for the Adasampling algorithm [3], in

which Adaboost is executed independently on each machine

in order to select a subset of “important” examples that are

then fed to a centrally executed machine learning algorithm.

4. EXPERIMENTS

The algorithm was implemented using the Python API of the

framework Apache Spark. Spark enables efficient parallel

computations with a set of high level operations (that auto-

matically handle, e.g., work distribution and fault tolerance).

An emulated cluster on a single workstation was used in our

first experiments (40 cores, 128 GB RAM). However, the pro-

posed implementation is scalable and independent of the clus-

ter size and could be executed on a cluster in the cloud.

Simulation scenario. The training and generalization perfor-

mances of the proposed distributed boosting algorithm have

been computed using randomly selected subsets of 100 train-

ing images and 80 test images. The sizes of the training and



Fig. 3. Training error obtained on a training set of 100 images

for different learning algorithms.

Learning model Adaboost Random Forest Distributed boosting

Mean error on test data 27.6% 27.8% 28%

Table 1. Average generalization performance on a test set of

80 images (in percent of misclassified pixels).

test sets were chosen in order to meet our memory require-

ments and to be able to compare with the classical Adaboost

algorithm [9] and the random forest algorithm [11] (here, ran-

dom forests of depth 2 are used, since other depths lead to

similar generalization performance for the data set and fea-

tures considered here). Note, however, that 100 images al-

ready correspond to a set of N = 5·106 pixels. The classifica-

tion performance has been evaluated in terms of average pixel

misclassification rate. All algorithms have used the d = 18
features described in Section 2.

Results. First, we study the performance of the proposed dis-

tributed boosting algorithm on the training set as a function of

the number of weak learners and compare it to Adaboost [9].

The results are plotted in Fig. 3 and indicate that our algo-

rithm closely reproduces the performance of standard boost-

ing. The slight difference in performance is due to the fact

that, in contrast to Adaboost, a relatively small number of

fixed thresholds (100 thresholds per feature) has been used

in the distributed boosting algorithm.

In a second step, we evaluated the different classification

algorithms on the same sets of test images to assess their gen-

eralization performance. The results are shown in Tab. 1. We

observe that all 3 algorithms yield nearly equivalent general-

ization performance, with on average ≈ 28% error on the test

data. Note that this is below the state-of-the-art performance

of 15 − 20% error for SPOT6 images, which is a direct con-

sequence of the fact that only few and very simple features

have been used. To conclude, the proposed algorithm enables

the detection of clouds in SPOT 6 images with the same per-

formance as Adaboost, yet can be executed in a distributed

computing environment and could hence be applied to larger

image data bases.

5. CONCLUSION

This paper studied a new architecture for distributed boost-

ing. The resulting algorithm was applied to cloud detection

on a large database of SPOT 6 images with ground truth pro-

vided by human experts. The processing of large sets of im-

ages is a critical factor for obtaining a robust automatic cloud

detection and naturally needs distributed processing. Our re-

sults indicate that the proposed algorithm performs as well as

other classical machine learning algorithms. However, it has

the advantage of being scalable and being easily integrated in

distributed (cloud) computing environments such as Apache

Spark. First tests on the full SPOT 6 album image database

using a large distributed computing environment are currently

being conducted. Future work will include the study of an

optimal discretization scheme for the features and an auto-

matic procedure for handling outliers by defining appropriate

weights in the boosting algorithm.
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