Coherence and population dynamics of chlorophyll excitations in FCP complex: Two-dimensional spectroscopy study. - Archive ouverte HAL Accéder directement au contenu
Article Dans Une Revue Journal of Chemical Physics Année : 2015

Coherence and population dynamics of chlorophyll excitations in FCP complex: Two-dimensional spectroscopy study.

Résumé

Energy transfer processes and coherent phenomena in the fucoxanthin-chlorophyll protein complex, which is responsible for the light harvesting function in marine algae diatoms, were investigated at 77 K by using two-dimensional electronic spectroscopy. Experiments performed on femtosecond and picosecond timescales led to separation of spectral dynamics, witnessing evolutions of coherence and population states of the system in the spectral region of Qy transitions of chlorophylls a and c. Analysis of the coherence dynamics allowed us to identify chlorophyll (Chl) a and fucoxanthin intramolecular vibrations dominating over the first few picoseconds. Closer inspection of the spectral region of the Qy transition of Chl c revealed previously not identified, mutually non-interacting chlorophyll c states participating in femtosecond or picosecond energy transfer to the Chl a molecules. Consideration of separated coherent and incoherent dynamics allowed us to hypothesize the vibrations-assisted coherent energy transfer between Chl c and Chl a and the overall spatial arrangement of chlorophyll molecules.

Dates et versions

hal-01447173 , version 1 (26-01-2017)

Identifiants

Citer

Vytautas Butkus, Andrius Gelzinis, Ramūnas Augulis, Andrew Gall, Claudia Büchel, et al.. Coherence and population dynamics of chlorophyll excitations in FCP complex: Two-dimensional spectroscopy study.. Journal of Chemical Physics, 2015, 142 (21), pp.212414. ⟨10.1063/1.4914098⟩. ⟨hal-01447173⟩
125 Consultations
0 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More