P. Simon and Y. Gogotsi, Materials for electrochemical capacitors, Nature Materials, vol.45, issue.11, p.845, 2008.
DOI : 10.1038/nmat2297

J. R. Miller and P. Simon, MATERIALS SCIENCE: Electrochemical Capacitors for Energy Management, Science, vol.321, issue.5889, p.651, 2008.
DOI : 10.1126/science.1158736

J. Chmiola, G. Yushin, Y. Gogotsi, C. Portet, P. Simon et al., Anomalous Increase in Carbon Capacitance at Pore Sizes Less Than 1 Nanometer, Science, vol.313, issue.5794, p.1760, 2006.
DOI : 10.1126/science.1132195

C. Largeot, C. Portet, J. Chmiola, P. Taberna, Y. Gogotsi et al., Relation between the Ion Size and Pore Size for an Electric Double-Layer Capacitor, Journal of the American Chemical Society, vol.130, issue.9, p.2730, 2008.
DOI : 10.1021/ja7106178

C. Decaux, C. M. Ghimbeu, M. Dahbi, M. Anouti, D. Lemordant et al., Influence of electrolyte ion???solvent interactions on the performances of supercapacitors porous carbon electrodes, Journal of Power Sources, vol.263, p.130, 2014.
DOI : 10.1016/j.jpowsour.2014.04.024

V. Augustyn, J. Come, M. A. Lowe, J. W. Kim, P. Taberna et al., High-rate electrochemical energy storage through Li+ intercalation pseudocapacitance, Nature Materials, vol.116, issue.6, p.518, 2013.
DOI : 10.1038/nmat3601

URL : https://hal.archives-ouvertes.fr/hal-01159902

V. Augustyn, P. Simon, and B. Dunn, Pseudocapacitive oxide materials for high-rate electrochemical energy storage, Energy & Environmental Science, vol.1, issue.88, p.1597, 2014.
DOI : 10.1007/s11581-013-1009-8

URL : https://hal.archives-ouvertes.fr/hal-01171774

O. Ghodbanea, F. Ataherian, N. Wu, and F. , In situ crystallographic investigations of charge storage mechanisms in MnO2-based electrochemical capacitors, Journal of Power Sources, vol.206, p.454, 2012.
DOI : 10.1016/j.jpowsour.2012.01.103

H. Wang, A. C. Forse, J. M. Griffin, N. M. Trease, L. Trognko et al., In Situ NMR Spectroscopy of Supercapacitors: Insight into the Charge Storage Mechanism, Journal of the American Chemical Society, vol.135, issue.50, p.18968, 2013.
DOI : 10.1021/ja410287s

URL : https://hal.archives-ouvertes.fr/hal-01116492

A. C. Forse, J. M. Griffin, H. Wang, N. M. Trease, V. Presser et al., Nuclear magnetic resonance study of ion adsorption on microporous carbide-derived carbon, Physical Chemistry Chemical Physics, vol.114, issue.20, p.7722, 2013.
DOI : 10.1021/ar200306b

M. D. Levi, N. Levy, S. Sigalov, G. Salitra, D. Aurbach et al., Electrochemical Quartz Crystal Microbalance (EQCM) Studies of Ions and Solvents Insertion into Highly Porous Activated Carbons, Journal of the American Chemical Society, vol.132, issue.38, p.13220, 2010.
DOI : 10.1021/ja104391g

W. Tsai, P. Taberna, and P. Simon, Electrochemical Quartz Crystal Microbalance (EQCM) Study of Ion Dynamics in Nanoporous Carbons, Journal of the American Chemical Society, vol.136, issue.24, p.8722, 2014.
DOI : 10.1021/ja503449w

Y. Shim and H. J. Kim, Nanoporous Carbon Supercapacitors in an Ionic Liquid: A Computer Simulation Study, ACS Nano, vol.4, issue.4, p.2345, 2010.
DOI : 10.1021/nn901916m

G. Feng, J. Huang, B. G. Sumpter, V. Meunier, and R. A. Qiao, A ???counter-charge layer in generalized solvents??? framework for electrical double layers in neat and hybrid ionic liquid electrolytes, Physical Chemistry Chemical Physics, vol.11, issue.32, p.14723, 2011.
DOI : 10.1039/c1cp21428d

S. Kondrat, P. Wu, R. Qiao, and A. A. Kornyshev, Erratum: Accelerating charging dynamics in subnanometre pores, Nature Materials, vol.13, issue.5, p.530, 2014.
DOI : 10.1038/nmat3952

Y. He, J. Huang, B. G. Sumpter, A. A. Kornyshev, and R. Qiao, Dynamic Charge Storage in Ionic Liquids-Filled Nanopores: Insight from a Computational Cyclic Voltammetry Study, The Journal of Physical Chemistry Letters, vol.6, issue.1, p.22, 2015.
DOI : 10.1021/jz5024306

C. Merlet, B. Rotenberg, P. A. Madden, P. Taberna, P. Simon et al., On the molecular origin of supercapacitance in nanoporous carbon electrodes, Nature Materials, vol.84, issue.4, p.306, 2012.
DOI : 10.1038/nmat3260

URL : https://hal.archives-ouvertes.fr/hal-00853251

M. Z. Bazant, B. D. Storey, and A. A. Kornyshev, Double Layer in Ionic Liquids: Overscreening versus Crowding, Physical Review Letters, vol.106, issue.4, p.46102, 2011.
DOI : 10.1103/PhysRevLett.106.046102

C. Pean, C. Merlet, B. Rotenberg, P. A. Madden, P. Taberna et al., On the Dynamics of Charging in Nanoporous Carbon-Based Supercapacitors, ACS Nano, vol.8, issue.2, p.1576, 2014.
DOI : 10.1021/nn4058243

URL : https://hal.archives-ouvertes.fr/hal-01116494

C. Merlet, B. Rotenberg, P. A. Madden, and M. Salanne, Computer simulations of ionic liquids at electrochemical interfaces, Physical Chemistry Chemical Physics, vol.128, issue.38, p.15781, 2013.
DOI : 10.1039/c3cp52088a

URL : https://hal.archives-ouvertes.fr/hal-00862346

M. V. Fedorov and A. A. Kornyshev, Ionic Liquids at Electrified Interfaces, Chemical Reviews, vol.114, issue.5, p.2978, 2014.
DOI : 10.1021/cr400374x

C. Merlet, M. Salanne, B. Rotenberg, and P. A. Madden, Imidazolium Ionic Liquid Interfaces with Vapor and Graphite: Interfacial Tension and Capacitance from Coarse-Grained Molecular Simulations, The Journal of Physical Chemistry C, vol.115, issue.33, p.16613, 2011.
DOI : 10.1021/jp205461g

URL : https://hal.archives-ouvertes.fr/hal-00854030

J. C. Palmer, A. Llobet, S. Yeon, J. E. Fischer, Y. Shi et al., Modeling the structural evolution of carbide-derived carbons using quenched molecular dynamics, Carbon, vol.48, issue.4, p.1116, 2010.
DOI : 10.1016/j.carbon.2009.11.033

D. Roy and M. Maroncelli, An Improved Four-Site Ionic Liquid Model, The Journal of Physical Chemistry B, vol.114, issue.39, p.12629, 2010.
DOI : 10.1021/jp108179n

C. Merlet, M. Salanne, and B. Rotenberg, New Coarse-Grained Models of Imidazolium Ionic Liquids for Bulk and Interfacial Molecular Simulations, The Journal of Physical Chemistry C, vol.116, issue.14, p.7687, 2012.
DOI : 10.1021/jp3008877

URL : https://hal.archives-ouvertes.fr/hal-00854033

S. K. Reed, O. J. Lanning, and P. A. Madden, Electrochemical interface between an ionic liquid and a model metallic electrode, The Journal of Chemical Physics, vol.126, issue.8, p.84704, 2007.
DOI : 10.1063/1.2464084

T. R. Gingrish and M. Wilson, On the Ewald summation of Gaussian charges for the simulation of metallic surfaces, Chemical Physics Letters, vol.500, issue.1-3, p.178, 2010.
DOI : 10.1016/j.cplett.2010.10.010

J. I. Siepmann and M. Sprik, Influence of surface topology and electrostatic potential on water/electrode systems, The Journal of Chemical Physics, vol.102, issue.1, p.511, 1995.
DOI : 10.1063/1.469429

C. Merlet, C. Pean, B. Rotenberg, P. A. Madden, P. Simon et al., Simulating Supercapacitors: Can We Model Electrodes As Constant Charge Surfaces?, The Journal of Physical Chemistry Letters, vol.4, issue.2, p.264, 2013.
DOI : 10.1021/jz3019226

URL : https://hal.archives-ouvertes.fr/hal-00854038

C. Portet, P. Taberna, C. Simon, and . Laberty-robert, Modification of Al current collector surface by sol???gel deposit for carbon???carbon supercapacitor applications, Electrochimica Acta, vol.49, issue.6, p.905, 2004.
DOI : 10.1016/j.electacta.2003.09.043

C. Largeot, P. L. Taberna, Y. Gogotsi, and P. Simon, Microporous Carbon-Based Electrical Double Layer Capacitor Operating at High Temperature in Ionic Liquid Electrolyte, Electrochemical and Solid-State Letters, vol.14, issue.12, p.174, 2011.
DOI : 10.1149/2.013112esl

P. L. Taberna, C. Portet, and P. Simon, Electrode surface treatment and electrochemical impedance spectroscopy study on carbon/carbon supercapacitors, Applied Physics A, vol.45, issue.98, p.639, 2006.
DOI : 10.1007/s00339-005-3404-0

P. Taberna, P. Simon, and J. Fauvarque, Electrochemical Characteristics and Impedance Spectroscopy Studies of Carbon-Carbon Supercapacitors, Journal of The Electrochemical Society, vol.150, issue.3, p.292, 2003.
DOI : 10.1149/1.1543948

URL : https://hal.archives-ouvertes.fr/hal-00420564

R. Lin, P. Taberna, J. Chmiola, D. Guay, Y. Gogotsi et al., Microelectrode Study of Pore Size, Ion Size, and Solvent Effects on the Charge/Discharge Behavior of Microporous Carbons for Electrical Double-Layer Capacitors, Journal of The Electrochemical Society, vol.156, issue.1, p.7, 2009.
DOI : 10.1149/1.3002376

R. Lin, P. Huang, J. Ségalini, C. Largeot, P. Taberna et al., Solvent effect on the ion adsorption from ionic liquid electrolyte into sub-nanometer carbon pores, Electrochimica Acta, vol.54, issue.27, p.7025, 2009.
DOI : 10.1016/j.electacta.2009.07.015

URL : https://hal.archives-ouvertes.fr/hal-01281977

N. B. Luque and W. Schmickler, The electric double layer on graphite, Electrochimica Acta, vol.71, p.82, 2012.
DOI : 10.1016/j.electacta.2012.03.083

H. Gerischer, An interpretation of the double layer capacity of graphite electrodes in relation to the density of states at the Fermi level, The Journal of Physical Chemistry, vol.89, issue.20, p.4249, 1985.
DOI : 10.1021/j100266a020

Y. Zhou, T. Holme, J. Berry, T. R. Ohno, D. Ginley et al., Dopant-Induced Electronic Structure Modification of HOPG Surfaces: Implications for High Activity Fuel Cell Catalysts, The Journal of Physical Chemistry C, vol.114, issue.1, p.506, 2010.
DOI : 10.1021/jp9088386