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Bayesian Sparse Estimation of a Radar Scene with
Weak and Strong Targets

Marie Lasserre, Stéphanie Bidon and Olivier Besson
DEOS/ISAE,
University of Toulouse, Toulouse, France
Email: firstname.lastname @isae.fr

Abstract—We consider the problem of estimating a finite
number of atoms of a dictionary embedded in white noise, using a
sparse signal representation (SSR) approach, a problem which is
relevant in many radar applications. In particular, the estimation
of a radar scene consisting of targets with wide amplitude range
can be challenging since the sidelobes of a strong target can
disrupt the estimation of a weak one. In this paper, we present a
Bayesian algorithm able to estimate weak targets possibly hidden
by strong ones. The main strength of this algorithm lies in a novel
sparse-promoting prior distribution which decorrelates sparsity
level and target power and makes the estimation process span
the whole target power range. This algorithm is implemented
through a Monte-Carlo Markov chain. It is successfully evaluated
on synthetic and semiexperimental radar data.

I. INTRODUCTION

A well-known problem in radar applications is the estima-
tion of radar scenes containing strong and weak targets, since
the sidelobes of a strong target can disrupt the estimation of
a weak one. Several algorithms were developed to address
this issue, starting with the CLEAN algorithm [1], [2]. This
algorithm “successively removes large targets and their side-
lobe responses by subtracting the point spread function of the
receiving system centered at the locations of the bright targets”
[2]. Thus, if a strong target and a weak target are present in the
radar scene, the strong target will first be removed, and then the
weak target should appear as the bright target and be estimated.
More recently, the so-called “greedy methods”, such as the
Matching Pursuit (MP) [3] and Orthogonal Matching Pursuit
(OMP) [4], [5], use a similar procedure to estimate such a
target scene. Generally speaking, the estimation methods that
rely on a sparse representation of the target scene are of
particular interest in this issue since they allow the estimation
of a sidelobe-less signal of interest (SOI) and can lead to a
better target dynamic range.

In [6], a Bayesian sparse recovery algorithm was developed
and proved to give good performance on synthetic and exper-
imental data. As in every sparse signal representation (SSR)
approach, the signal is described as a linear combination of a
finite number of atoms from a dictionary. Using this approach,

the problem can be written as
y=Fx+n (D
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with
F e CMxM 4 sparsifying dictionary of size M X M
) where usually M > M ;
x e CM the sparse vector having ideally exactly N

nonzero components, N being the number
of scatterers in the target scene.

However, as in every SSR algorithm, adequate tuning of
some parameters is essential since it can deteriorate the
performance of the reconstruction. In [6], the sparsity is
enforced via a sparse-promoting prior distribution on vector
x. This prior depends on some hyperparameters that will
adjust the knowledge the radar operator has about the target
power level. In this case, setting up these hyperparameters
can be tedious. This paper aims at modifying the algorithm
proposed in [6] in order to deal with targets having significant
different power level. The approach proposed is to modify
the prior distribution of the sparse vector and to divide its
support into several classes, which correspond to subdivisions
of the receiver dynamic range. Thus, the estimation process is
“forced” to span each class of target power.

The remaining of the paper is organized as follows. The
proposed Bayesian model is described in Section II, as well as
the associated estimation scheme in Section III. The proposed
algorithm is successfully evaluated via numerical simulations
on both synthetic and semiexperimental data in Section IV.

II. BAYESIAN MODEL

In this section, we describe the hierarchical Bayesian
model adopted, which is represented graphically in Fig. 1.
A Bayesian framework is established in order to estimate the
target scene x. Thus, each unknown parameter is modeled by a
random variable with a given prior probability density function
(pdf). Each prior density is chosen as facilitating the computa-
tion of the estimation process (mathematical tractability), yet
preserving physical sense to the hierarchical model.

A. Likelihood

We adopt the same observation model as in [6] recalled in
(1). An additive white noise background is considered, and the
noise m is assumed to be centered Gaussian with power o2,
which is denoted as

nlo® ~ CN (0,0°1) )



Fig. 1. Directed acyclic graph associated with the hierarchical Bayesian model
proposed. The parameters in the dashed circles need to be adjusted by the
operator.

where I is the identity matrix. The likelihood function is thus
given by

1 y— Fx 2
f(yx’02)=7rM02M€XP{—”02|2}~ 3)

B. Prior pdfs of the parameters

: As in [6], an inverse-gamma prior is

1) Noise power o2
chosen for the whlte noise power o2, essentially because it

is conjugate to the likelihood (3). The prior pdf of o2 can
therefore be expressed as
2 em/o" 2
(070, 71) o Wﬂ[o,Jroo)(U ) 4

where o, y1 are respectively the shape and scale parameters.
The distribution (4) is denoted as o2|y0,v1 ~ ZG (Y0,71)-
As mentioned before, the shape and scale parameters (7o, Y1)
allow a very informative, or on the contrary flat, prior distri-
bution to be selected.

2) Sparse vector x: As said in Section I, the approach
chosen to deal with the problem of estimating targets with
different power level is to consider several classes of target
power. Truncating the power range makes sense in radar
applications since the receiver has some predefined dynamic
range [7, chap.11]. Then, the idea is to divide the power range
into several classes, within the dynamic range limitation.

The elements z,; = [x]; of the amplitude vector are
assumed independent and identically distributed (iid). Instead
of considering € C™, we parametrize x in terms of modulus
p and angle ¢ subject to (s.t.)

rLpoe?, (5)

where © refers to the Hadamard product Eq. (5) is equivalent
to the formulation Vi € {0 =1}, 25 = pre'®m.

The elements in p and ¢ are iid a priori. The Bernoulli-
Gaussian prior distribution on z; used in [6] can be modified
in order to include this idea of classes of target power, such
that

C
weke
)+ ; \/2mo?

1
P {—(pm = pe)? Iz iy (om) ()

T(prlw)= wod(p

202
and
T(dmlpm = 0) = 6(¢dm) (7a)
T(Pmlpm # 0) = %H[O,Qﬂ']((v{)m) (7b)
where w = [wc] _c is the vector of class probabilities,

and wg = 1— ZC 1 wC kc.isa scahng constant consecutive to
the truncation of the Gaussian on [p_, pF). This mixed-type
prior distribution allows to enforce sparsity while including
the target power classes notion. In other words, p;7 belongs
to class ¢ with probability w,., and is distributed following
./\f[ oz o) (pc, ); it is null with probability wg. p. and o2
represent the mean and variance in each class. Thus, the hyper-
parameters {(p_, pT, pe,02)}e=1..c can be set-up such that
the distributions /\/[ o o) (pc, 2) cover the whole expected
amplitude range, while having separated or almost-separated
supports.

However, setting-up the parameters {(p.,02)}.=1..c can
be tedious, so a simpler prior can be assigned to ps, €.g., a
uniform-like prior

c

)+ Y wekel,- ) (pm)-| ()

c=1

T(pm|w) = wo 6(pm,

In this case, p;7 belongs to class ¢ with probability w,, and
is uniformly distributed within this class; it is null with prob-
ability wg. In the following, we adopt this simpler uniform-
like prior distribution, acknowledging that it is still possible
to adopt a Gaussian-like prior distribution (6).

C. Prior pdfs of the hyperparameters

1) Vector of class probabilities w: A conventional solution
for the distribution of the vector of class probabilities w is a
multivariate Dirichlet distribution with concentration parame-
ters 0y, ...,0c > 0 [8], denoted as w ~ Dir (0, ...,0¢)

-1
H[O 1] wc)

]1[01 ’U}O XH’U}
9)

When no prior information about the target power range is
available, a symmetric Dirichlet distribution can be adopted
where the concentration parameters 6y, . ..,0¢c are equals to
1. Otherwise, the concentration parameters can be adjusted in
order to favor some classes over the other ones.

m(wlbo, . . .,0c) o< who ™



III. BAYESIAN ESTIMATION

Herein we propose an estimation scheme of the target scene
x based on the Bayesian hierarchical model described in (3),
(7, (8), (9). More precisely, our objective is to obtain the
following estimator of x

iclass =& {P © eid’Iy}
= / e ' f(p, ¢ly)dpde.
P,

(10)
(1)

This last integral is intractable to derive analytically, so we
demarginalize it and calculate &j,ss as

Betass — / p© e f(0%, p, . wly)do dpdepelaw.
o2,p,¢,w

(12)
It is now possible to compute &, Since we can obtain sam-
ples following the joint posterior distribution f (o2, p, ¢, w|y).
Indeed, as in [6], a Monte-Carlo Markov Chain (MCMC)
is implemented [9]. More specifically, a Gibbs sampler
[9, chap 10] is used, which simulates iteratively samples
az(t) qb(t) () according to their conditional posterior

T
distribution f({;|y,¢_;), where ¢ = {a P o7 w ]
¢_,; is the vector ¢ whose ith element has been removed.
After a burn-in time Nj;, the samples ¢ ®) are distributed
according to the joint posterior distribution f(¢|y). When
enough samples are acquired (namely, NN,.), the estimator of
x is built empirically as

and

N,
~ 1 t+ Ny, icp(t+Nbi)
Telass = N, § p( +Nes) © e'?

t=1

13)

which 1is the

Plrlcal mean of all the samples
x® = p® o cid"

. The conditional posterior distributions
are obtamed from the joint posterior pdf of p, ¢, 0%, w|y
)7 (plw)m($lp)m(0?

f(p.d, 0% wly) < f(ylp, ¢, 0° )7 (w).

(14)

A. Sampling of p

Since the elements in p are a priori iid, it is sampled
element-wise. Thus, we calculate the conditional posterior
distribution of p,; using (8) and (14)

flpmly,
X exp {—0_2

0'2’/)_77”(25,10) X f(y‘pa ¢a 0'2)77([)‘11;) 4
[p?ﬁ | £ 1P —20m Re {el £, ¢971] )

l +chkﬂp pc)pm)]

o wmo 0(pim) (15)

wmc m,c 1 2}
i — i) ¢ L - m
Z \/m { (p pm)” ¢ L iy (pm)

w = 0.10,0.15,0.60, 0.15

o = 500
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Fig. 2. Conditional posterior distribution (15) of pg with o = 500,
no = 150 and wo = [10,15,60,15]%. The dashed lines represent the
limits of the three non-zero power classes. The dotted curve is the Gaussian

N (pm,nZ).

where forc=1,...,C
1
= 50" 1 F 172 (15a)
pm = || £ |72 Re{efl £’} (15b)

k 1 _
we X (27T7731)1/26Xp{2m3u%}
Wie = e : (15¢)
wo + 3 ey (273, )1/Qexp{2n;fu3n}

and wypo = 1 — ZCC: The conditional posterior
distribution of py;, is then a mixed-type distribution with an
atom at 0 and a continuous component which is a mixture of
truncated Gaussians that are easy to simulate from, using for
instance an accept-reject procedure [10]. Note that the mean
and variance of the truncated Gaussian ./\/'[ pr o) (um, nfﬁ) do
not depend on the class, but that this Gaussian is weighted by
W, ¢, which may be different for each class. This is illustrated
in Fig.2 where we can see an example of this distribution,
without the discrete component.

1 wm,c-

Remark. When using a Fourier dictionary, || f, ||*?= 1 so
that n%, = 0% /2, which does not depend on the grid index M.
B. Sampling of ¢

The elements in ¢ are also a priori iid so it is sampled
element-wise. The conditional posterior distribution of ¢, is
written as

f(¢ﬁ|yaa2

X exp {—072

D s P) < f(Ylp, b, 0 )T (dm|pim)

[~2pm Re {el f e }] }(dmlom)
X exp {20 pm|fmem‘ CoSs ¢m } 7T QZ)m‘pm

According to (7a), we have

and
f(Dmly, 0%, ¢ _op; pm # 0) ox (17)
exXp {Fém cos (¢m — 1/%)} H[o,zn) (Pm)



which is a von Mises-Fisher distribution with concentration
parameter and mean direction respectively [11]

(17a)
(17b)

K = 29m0_2|fgem|
U = Zfem

where / represents the angle in [0,27). It is denoted as
by, 0%, d_ s i pm # 0 ~ VM (K, b)) This distribution
is easy to simulate from following the method described
in [11].

C. Sampling of o

As in [6], the conditional posterior distribution of o2

ly,p. ¢ ~IG (o + M.n+ |y —F(poe®) |3).
(18)

D. Sampling of w
A Dirichlet prior distribution is assigned to vector w. Using

(9) and (14), the conditional posterior distribution of w is then
calculated as

f(wly, p) oc m(plw)m(w)

M-1 c

<[] {“’0 8pom) + wc’“cﬂ[p:,m(f’m)}
m= c=1
xwio! H w?

no+0p—1 ct+0.—1
xwy T X ng (19)

where n. = #{m|pm € [p, , pj)g, i.e., the number of scatter-
ers in class ¢, and ng = M — Ec:l n.. Thus, the conditional
posterior distribution of w is a Dirichlet distribution with
concentration parameters (ng + 0, n1 + 01,...,nc + 0¢).

IV. NUMERICAL SIMULATIONS
A. Synthetic data

First, the proposed algorithm is compared to the previous
algorithm from [6] through numerical simulations on synthetic
data. These are generated according to (1) and (2), and using
a Fourier basis F' as a sparsifying dictionary. The target
power classes adopted are: (—oo 0], [0 30], [30 55], [55 65] dB.
As mentioned before, when using the previous algorithm
from [6], the radar operator must set-up the scale and shape
parameters of the prior distribution of the target power via
hyperparameters (see discussion in [6, Sec.III]). In what fol-
lows, they are adjusted to a non-informative Jeffreys prior, or
to an informative prior corresponding to high or low-power
targets. In this scenario, we consider a strong target with post-
processing SNR of 60 dB, defined as (F' being unitary)

SNR = |z, |%/0?, (20)

surrounded by two weak targets with varying SNR from 7 to

20 dB, located on the previous and next frequency bins. The
three targets have random phase. The performance of these

two algorithms is assessed after N,,. = 200 Monte-Carlo
simulations through the calculation of the normalized Mean
Square Error (nMSE) of the estimated target scene F'&¢juss
and the nMSE of the elements of &, corresponding to the
position of the targets in the scene. They are respectively
calculated as

Nine A (n) 2
~ 1 F:Bc ass - Fzx
nMSE(chlass) = N || l|| Fa: ||2 ||2 (21)
me pn=1 2
N (ln) B _|2
HMSE(iclass, N Z C dT; |2 (22)

Fig.3 shows that the proposed algorithm with target power
classes outperforms the algorithm from [6] in terms of nMSE
of Fz, regardless of the hyperparameters set-up. In fact, both
algorithms give the same performance in terms of nMSE of the
strong target (x1, Fig.3(c)) but the proposed algorithm better
estimates the weak targets (e.g., zg, Fig.3(b)).

-@-pw classes
-38t -B-no pw classes: low-power targets
‘O no pw classes: high-power targets
-40F @ no pw classes: flat prior

é 16 1é 1‘4 16 1‘8 20
SNR of weak target
(a) nMSE of Fx

-42
-44
-46
-48
-50

dB

-52]
-54
-56|
-58|

B i L e U

8 10 12 14 16 18 20 8 10 12 14 16 18 20
SNR of weak target SNR of weak target

(b) nMSE of xg (¢) nMSE of z1

Fig. 3. Comparison between the performance of the proposed algorithm with
power classes (plain line), and that of the previous algorithm from [6] in the
case of a flat prior (dash-dotted line), or a prior adjusted to high-power (dotted
line) or low-power targets (dashed line). The scenario consists of three close
targets separated by 1/M. M = M = 16. N, = 1000, Np; = 200.

B. Semiexperimental data

The performance of the proposed algorithm is finally con-
firmed on semiexperimental data recorded in November 2014
using the PARSAX radar [12] installed at TU Delft, The
Netherlands. The semiexperimental data were built adding
synthetic one-dimensional targets to a deramped thermal noise
signal. The target scene is represented in Fig.4(a); it consists of



3 strong targets with SNR=60dB, a target at 35 dB and 3 weak
targets near two of the strong ones. This target scene was
processed range-bin-wise since the algorithm is limited to one-
dimensional analysis for the moment. The proposed algorithm
well estimates the target scene, especially the weak targets that
are not always estimated by the previous algorithm from [6]. It
is also interesting to see that the proposed algorithm estimates
zero-velocity components that most probably correspond to
offsets of the coders.

V. CONCLUSION

In this paper we have presented a new Bayesian algorithm
for the sparse representation of a radar scene with targets
having wide amplitude range. In particular, a new sparse-
promoting prior was introduced, whose aim is to consider
several classes of target power and make the estimation process
span each class. The algorithm proposed, though computation-
ally intensive, allows to estimate weak targets whose recovery
might have been disrupted by strong ones. The study was
limited to on-grid targets but the algorithm will be extended
in the near future in order to deal with off-grid targets.
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Fig. 4. Evaluation on semiexperimental data: 4(a) true target scene (stars)
4(b) target scene estimated by the proposed algorithm (circles) 4(c) target
scene estimated by the previous algorithm from [6] (squares). The background
corresponds to the target scene estimated by the APES algorithm. M = 32,
M = M, N, = 1000, Np; = 1000.



