A Formalisation of the Generalised Towers of Hanoi
Laurent Théry

To cite this version:

Laurent Théry. A Formalisation of the Generalised Towers of Hanoi. 2017. <hal-01446070v2>

HAL Id: hal-01446070
https://hal.archives-ouvertes.fr/hal-01446070v2
Submitted on 28 Jan 2017

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
A Formalisation of the Generalised Towers of Hanoi

Laurent Théry
Laurent.Thery@sophia.inria.fr

Abstract
This notes explains how the optimal algorithm for the generalised towers of Hanoi has been formalised in the Coq proof assistant using the SSReflect extension.

1 Introduction

The famous problem of the towers of Hanoi was proposed by the french mathematician Édouard Lucas. It is composed of three pegs and some disks of different size. Here is a drawing of the initial configuration for 5 disks:\footnote{We use macros designed by Martin Hofmann and Berteun Damman for our drawings.}

Initially, all the disks are piled-up in decreasing order of size on the first peg. The goal is to move them all to another peg. There are two rules. First, only one disk can be moved at a time. Second, a larger disk can never be put on top of a smaller one.
The towers of Hanoi one of the classical example that illustrates all the power of recursion. If we know how to solve the problem for \(n \) disks, then the problem for \(n + 1 \) disks can be solved in 3 steps. Let us suppose we want to transfer all the disks to the last peg. The first step uses recursion and moves the \(n \)-top disks to the intermediate peg.

The second step moves the largest disk to its destination.

The last step uses recursion and moves the \(n \) disks on the intermediate peg to their destination.

This simple recursive algorithm is also optimal: it produces the minimal numbers of moves. In particular, if we look at each recursion depth, the
The key idea is that the largest disk always moves once from its current peg to its destination.

The generalised version of the towers of Hanoi considers an arbitrary initial configuration and an arbitrary final configuration. These two configurations must be valid: there is no larger disk on top of a smaller disk. The problem is to find an algorithm that generates the minimal number of moves that connects the two configurations. Here, the naive recursive algorithm is still applicable to solve the problem but does not lead to an optimal algorithm. This can be illustrated by 3 disks when trying to go from the initial configuration:

![Initial Configuration](image1.png)

...to the final position

![Final Configuration](image2.png)

If the naive recursive approach, that tries to move the largest disk only once, leads to a 7-move long solution as depicted in Figure 1 at page 12. The optimal solution requires instead to move the largest disk twice and is 5-move long as depicted in Figure 2 at page 2. In the following, we explain how the generalised towers of Hanoi has been formalised in the Coq proof assistant and how an algorithm that solves this problem has been proved correct.

2 The formalisation

In this section, we present the different elements our formalisation, starting with pegs, disks, configurations and moves, then we describe the naive recursive algorithm and finally the optimal one.
2.1 Pegs
The set of natural numbers strictly smaller than three \(I_3 \) is used to represent the three pegs.

Definition \(\text{peg} := I_3 \).

An operation that is frequently used in the algorithm is, having two arbitrary peg \(p_1 \) and \(p_2 \) to get the third one, This is done by the function \(\text{opeg} \) using some arithmetic:

Definition \(\text{opeg} \ p_1 \ p_2 : \text{peg} := \text{inord} \ (3 - (p_1 + p_2)) \).

where \(\text{inord} \) is the function that injects a natural number into the type \(I_n \).

2.2 Disks
A parameter \(n \) is used. A disk is then an element of \(I_n \).

Definition \(\text{disk} := I_n \).

The comparison of the respective size of two disks is simply performed by comparing their natural number.

2.3 Configurations
Disks are ordered from the largest to the smallest on a peg. This means that a configuration just needs to record which disk is on which peg. It is then defined as a finite function from disks to pegs.

Definition \(\text{configuration} := \{ \text{ffun disk} \to \text{peg} \} \).

Note that in this encoding, we do not have invalid configurations.

A configuration is called *perfect* if all its disks are on a single peg. It is the case for the initial and final configurations in the standard towers of Hanoi. The constant function that always returns \(p \) is then the perfect configuration where all the disks are on the peg \(p \).
We also need two functions to build configurations. The first one builds a new configuration from a configuration \(c \) by putting all the disks of size strictly smaller than \(m \) on the peg \(p \): this new configuration is perfect at depth \(m \).

\[
\text{Definition } \text{mk} \ _\text{perfect } m \ p \ c := \text{ffun } d \Rightarrow \text{if } d < m \text{ then } p \text{ else } c \ d.
\]

The second function performs a single change on the configuration \(c \): the disk \(d \) is moved to the peg \(p \).

\[
\text{Definition } \text{setd} \ d \ p \ c_2 := \text{ffun } d_1 \Rightarrow \text{if } d_1 = d \text{ then } p \text{ else } c \ d_1.
\]

2.4 Moves

A move is defined as a relation between configuration. A parameter \(m \) is introduced. It represents a bound on the size of the disk that has been moved. Its purpose is to let us perform proof by induction: the induction is then performed on the depth of the moves \(m \) rather than on the number of disks \(n \).

\[
\text{Definition } \text{move}_m : \text{rel configuration} := \\
[\text{rel } c_1 \ c_2 \mid \exists d_1 : \mathbb{I}_n, \\
\quad [kk] \\
\quad d_1 < m, \\
\quad c_1 \ d_1 \neq c_2 \ d_1, \\
\quad \forall d_2, d_1 \neq d_2 \Rightarrow \ c_1 \ d_2 = c_2 \ d_2, \\
\quad \forall d_2, c_1 \ d_1 = c_1 \ d_2 \Rightarrow d_1 \leq d_2] \ \& \\
\quad \forall d_2, c_2 \ d_1 = c_2 \ d_2 \Rightarrow d_1 \leq d_2]]].
\]

The definition simply states that there is a disk \(d_1 \) that fulfills five conditions. Its size is smaller than \(m \). It is has moved. It is the unique disk that has moved. No disk is in on top of \(d_1 \) in \(c_1 \). No disk is on top of \(d_1 \) in \(c_2 \). Trivial facts first need to be derived. For example, the \text{move} relation is cumulative and symmetrical.
A first interesting is then that before and after a move, all the disks smaller than the disk that has moved are all piled up on the same peg:

An important corollary is that if a disk d moves twice on different pegs then the two configurations after the first move and before the second one are perfect configurations at depth d.

This is a key lemma that is used to get a direct lower bound $(2^d - 1)$ on the number of moves that are needed for connecting c_2 are c_3. We will explain this later.

In order to be able to decompose paths under the move$_{m+1}$ relation, two inversion lemmas are needed. The first one checks if the disks m moves. If it is the case, it singles out its first move.
The decomposition is presented as an inductive predicate in order to get the decomposition by the direct application case: pathSP tactic on a path. The second inversion lemma considers a path at depth \(d+1\) for which the disk \(d\) may have moved but at the end it remains on the same peg. It builds the "restricted" path for which the disk does not move.

\[
\text{Lemma pathSprestrictE } d \ c \ cs :
\text{path move}_{d+1} c \ cs \rightarrow \text{last } c \ cs \ d = c \ d \rightarrow
\{c_{s1} | \land
\text{path move}_d c \ cs_{1},
\text{last } c \ cs_{1} = \text{last } c \ cs \ k
\text{size } cs_{1} \leq \text{size } cs \iff cs_{1} = cs \}.
\]

The number of moves of the restricted path gets strictly smaller only if there is a move of the disk \(d\) in the path \(cs\).

2.5 Naive algorithm

Our definition of the naive algorithm works at depth \(m\), starts with a configuration \(c\) and tries to move all the disks of size less than \(m\) to the peg \(p\). The strategy works as follows. If the disk \(m\) is already on the peg \(p\), there is nothing to do at depth \(m\): the algorithm is recursively called at depth \(m-1\). Otherwise, the disk \(m\) needs to be moved. The algorithm is first called at depth \(m-1\) to move all the disks of size smaller than \(m-1\) to the intermediate peg \(p_1\). Then, the disk of size \(m\) is moved to the peg \(p\) and finally the algorithm is called a second time to move the disk of size smaller than \(m-1\) to the peg \(p\). Formally, this gives\(^2\):

\[
\text{Fixpoint } rpeg_path_rec \ m \ c \ p :=
\text{if } m \text{ is } m_1, +1 \text{ then}
\text{if } c \ m = p \text{ then } rpeg_path_rec \ m_1 \ c \ p \text{ else}
\text{let } p_1 := apeg\ (c \ m) \ p \text{ in}
\text{let } c_1 := \text{setd } m \ p \ (mk_perfect \ m_1 \ p_1 \ c) \text{ in}
\text{rpeg_path_rec } m_1 \ c \ p_1 \ ++ \ c_1 :: \ rpeg_path_rec \ m_1 \ c_1 \ p
\text{else } [::]
\]

\[
\text{Definition } rpeg_path \ c \ p := rpeg_path_rec \ n \ c \ p.
\]

\(^2\)This is a simplified version. The real code is less readable because \(m\) is an ordinal.
Note that c_1 is configuration after the disk m has been moved to the peg p: all the disks smaller than m are on the intermediate peg p_1.

The first basic property that needs to be proved is that this algorithm is correct: what is build is a path that goes from the configuration c to the perfect configuration on peg p.

\[
\text{Lemma } \text{rpeg_path_correct} \ c \ p \ (cs := \text{rpeg_path} \ c \ p) : \\
\quad \text{path} \ (move \ n) \ c \ cs \land \text{last} \ c \ cs = \text{perfect} \ p.
\]

This directly gives the fact that any configuration is connected to any perfect configuration.

\[
\text{Lemma } \text{move_connect_rpeg} \ c \ p : \text{connect} \ (move \ n) \ c \ (\text{perfect} \ p).
\]

Since the relation is symmetric, this gives that any two configurations are connected.

\[
\text{Lemma } \text{move_connect} \ c_1 \ c_2 : \text{connect} \ (move \ n) \ c_1 \ c_2.
\]

There is always a solution to the generalized tower of Hanoi.

If we are only interested by the size of the solution, it is possible to give an algorithm that computes the size of the connection given by the naive algorithm.

\[
\text{Fixpoint } \text{size_rpeg_path_rec} \ m \ c \ p := \\
\quad \text{if } m = m_1 + 1 \text{ then} \\
\quad \quad \text{if } c \ m = p \text{ then } \text{size_rpeg_path_rec} \ m_1 \ c \ p \text{ else} \\
\quad \quad \quad \text{let } p_1 := \text{opeg} \ (c \ m) \ p \text{ in} \\
\quad \quad \quad \quad \text{size_rpeg_path_rec} \ m_1 \ c \ p_1 + 2^{m_1} \\
\quad \text{else } 0.
\]

Note that in this version, there is only one recursive call. The justification for this comes from the fact that this algorithm returns $2^m - 1$ when called on a perfect configuration c that is different from p.
Lemma: \[\text{size}_\text{rpeg_path_rec_2p} m p_1 p_2 c (c_1 := \text{mk_perfect} m p_1 c) : \]
\[\text{size}_\text{rpeg_path_rec} m c_1 p_2 = (2^m - 1)(p_1 \neq p_2). \]

This gives us directly that it computes the actual size of the naive algorithm.

Lemma: \[\text{size}_\text{rpeg_path_rec_pr} m c p : \]
\[\text{size}(\text{rpeg_path_rec} m c p) = \text{size}_\text{rpeg_path_rec} m c p. \]

As a matter of fact \(2^m - 1\) is the maximum a naive solution can get

Lemma: \[\text{size}_\text{rpeg_path_rec_pr} m c p : \text{size}_\text{rpeg_path_rec} m c p \leq 2^m - 1. \]

With these results, it is possible to prove the optimality of the naive algorithm for the special case where the initial configuration is perfect.

Lemma: \[\text{rpeg_path_rec_min} m c_1 p \text{ cs} (c_2 := \text{mk_perfect} m p c_1) : \]
\[\text{path}(\text{move} m) c_1 \text{ cs} \rightarrow \text{last} c_1 \text{ cs} = c_2 \rightarrow \]
\[\text{size}_\text{rpeg_path_rec} m c_1 p \leq \text{size} \text{ cs} \iff (\text{cs} = \text{rpeg_path_rec} m c_1 p). \]

Note that we also prove that the optimal solution is unique. The proof works by a double induction: one induction on the depth \(m\) and another strong induction on the size of \(\text{cs}\). So, when proving the step case at depth \(m\), the property is known to hold for all paths at depth \(m - 1\) and for paths at depth \(m\) which size is strictly smaller than \(\text{cs}\). We then simply do a discussion on the number of moves the disk \(m\) does in the path \(\text{cs}\):

- If it does not move, the inductive hypothesis for \(m - 1\) gives directly the result.

- If it moves once, the path \(\text{cs}\) mimics the strategy of the naive algorithm at depth \(m\). So, combining the two applications of the inductive hypothesis for \(m - 1\) (one before and one after the move) gives the result.

- If it moves more than once, there are two possibilities. Either the disk visits a peg more than once (this is always the case if the disk moves
more than two times). In this case, the lemma \textit{pathS restrictE} gives us a
strictly smaller path on which we can apply the inductive hypothesis on
the size. Either the disk has moved twice on different pegs. The lemma
\textit{move twice} tells us that if we consider the path the first move and before
the second, it connects two perfect configurations at depth \(m - 1\). So
the inductive hypothesis for \(m - 1\) and the lemma \textit{size rpeg path rec 2p}
tell us that its size is greater than \(2^{m-1} - 1\). The same holds for the
path after the second move and the final configuration. Altogether, this
gives a size for \(cs\) (not considering the path before the first move of the
disk \(m\)) that is larger than \(1 + (2^{m-1} - 1) + 1 + (2^{m-1} - 1) = 2^m\). This
is strictly more than the bound \(2^m - 1\) for the naive algorithm given
by the lemma \textit{size rpeg path rec pr}.

This ends the proof.

\subsection{Optimal algorithm}

In order to define the optimal algorithm, we first define the symmetric of the
naive algorithm that goes from a perfect configuration to any configuration
by simply reversing the path.

\begin{definition}
\texttt{lpeg path rec } m \ p \ c := \texttt{rev (belast c (rpeg path rec } m \ c \ p\texttt{))}.
\end{definition}

\begin{definition}
\texttt{lpeg path } p \ c := \texttt{lpeg path rec } n \ p \ c\texttt{.}
\end{definition}

This algorithm is clearly correct and optimal.

The optimal algorithm is defined recursively in order to find the first disk
that has to be moved. When this disk is found, it simply chooses the best
solution between moving it directly to where it has to go (going from \(c_1\) to
\(c_3\) then \(c_2\)) and moving it twice (going from \(c_1\) to \(c_3\) then \(c_4\) and finally \(c_2\))
using the intermediate peg \(p\). The computation of these two solutions can use
the naive algorithm since one of the two configurations that are connected is
perfect, so we know it is optimal.
Fixpoint hanoi\textsubscript{path_rec} m c \textsubscript{1} c \textsubscript{2} :=
if m is \(m_{1} + 1\) then
 if \(c_{1} m = c_{2} m\) then hanoi\textsubscript{path_rec} m \(c_{1} c_{2}\) else
 let p := opeg (c \textsubscript{1} m) (c \textsubscript{2} m) in
 let \(n_{1} := \text{size_rpeg_path_rec} m c_{1} p + \text{size_rpeg_path_rec} m c_{2} p\) in
 let \(n_{2} := \text{size_rpeg_path_rec} m c_{1} (c_{2} m) + 2^{m_{1}} + \text{size_rpeg_path_rec} m c_{2} (c_{1} m)\) in
 if \(n_{1} \leq n_{2}\) then
 let \(c_{3} := \text{setd} m (c_{2} m) (\text{mk_perfect} m c_{1} p)\) in
 rpeg_path_rec m c \textsubscript{1} p ++ c \textsubscript{3} :: lpeg_path_rec m p c \textsubscript{2}
 else
 let \(c_{3} := \text{setd} m p (\text{mk_perfect} m c_{2} m)\) in
 let \(c_{4} := \text{setd} m (c_{2} m) (\text{mk_perfect} m c_{1} m)\) in
 rpeg_path_rec m c_{1} (c_{2} m) ++ c \textsubscript{3} :: rpeg_path_rec m c_{3} (c_{1} m)
 ++ c \textsubscript{4} :: lpeg_path_rec m (c_{1} m) c \textsubscript{2}
 else ::::.
Definition hanoi\textsubscript{path} c \textsubscript{1} c \textsubscript{2} := hanoi\textsubscript{path_rec} n c \textsubscript{1} c \textsubscript{2}.

It is then easy to derive that this algorithm is correct. The proof for optimality is similar to the one for the naive algorithm: we simply show that the largest disk cannot move three times in the optimal solution.

Lemma hanoi\textsubscript{path_correct} c \textsubscript{1} c \textsubscript{2} (c \textsubscript{s} := hanoi\textsubscript{path} c \textsubscript{1} c \textsubscript{2}) :
 path (move n) c \textsubscript{1} c \textsubscript{s} ∧ \text{last} c \textsubscript{1} c \textsubscript{s} = c \textsubscript{2}.
Lemma hanoi\textsubscript{rec_min} m c \textsubscript{1} c \textsubscript{2} c \textsubscript{s} :
 path (move m) c \textsubscript{1} c \textsubscript{s} \rightarrow \text{last} c \textsubscript{1} c \textsubscript{s} = c \textsubscript{2} →
 \text{size} (hanoi\textsubscript{path_rec} m c \textsubscript{1} c \textsubscript{2}) \leq \text{size} c \textsubscript{s}.

3 Conclusion

We have presented a formalisation of the generalised towers of Hanoi. The formalisation clearly benefits from the SSReflect library. In particular, finite function have been a convenient tool to encode configuration. Most of the proofs are elementary. Without surprise, the difficult part is to get the optimality results. We had to device two dedicated inversion principles in order to mechanise the case distinctions that were needed. The complete proof is available at http://www-sop.inria.fr/marelle/Laurent.Thery/Hanoi.
Figure 1: A non-optimal solution for the generalised towers of Hanoi
Figure 2: An optimal solution for the generalised towers of Hanoi