Estimation of the joint distribution of random effects for a discretely observed diffusion with random effects

Maud Delattre 1 Valentine Genon-Catalot 2 Catherine Larédo 3
3 M.I.A., I.N.R.A.
LPMA - Laboratoire de Probabilités et Modèles Aléatoires, MIA - Unité de recherche Mathématiques et Informatique Appliquées
Abstract : Mixed effects models are popular tools for analyzing longitudinal data from several individuals simultaneously. Individuals are described by N independent stochastic processes (Xi(t), t ∈ [0, T ]), i = 1,. .. , N , defined by a stochastic differential equation with random effects. We assume that the drift term depends linearly on a random vector Φi and the diffusion coefficient depends on another linear random effect Ψi. For the random effects, we consider a joint parametric distribution leading to explicit approximate likelihood functions for discrete observations of the processes Xi on a fixed time interval. The asymptotic behaviour of the associated estimators is studied when both the number of individuals and the number of observations per individual tend to infinity. The estimation methods are investigated on simulated and real neuronal data.
Type de document :
Pré-publication, Document de travail
MAP5 2017-01. 2017
Liste complète des métadonnées

Littérature citée [15 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-01446063
Contributeur : Valentine Genon-Catalot <>
Soumis le : mercredi 25 janvier 2017 - 15:38:44
Dernière modification le : mercredi 5 juillet 2017 - 01:11:51
Document(s) archivé(s) le : mercredi 26 avril 2017 - 15:52:34

Fichier

EDSM_driftanddiff_25_01_17_MD....
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01446063, version 1

Citation

Maud Delattre, Valentine Genon-Catalot, Catherine Larédo. Estimation of the joint distribution of random effects for a discretely observed diffusion with random effects. MAP5 2017-01. 2017. 〈hal-01446063〉

Partager

Métriques

Consultations de
la notice

239

Téléchargements du document

62