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Abstract

We present a front tracking algorithm for the solution of the 2D
incompressible Navier-Stokes equations with interfaces and surface
forces. More particularly, we focus our attention on the accurate
description of the surface tension terms and the associated pressure
jump. We consider the stationary Laplace solution for a bubble with
surface tension. A careful treatment of the pressure gradient terms at
the interface allows us to reduce the spurious currents to the machine
precision. Good results are obtained for the oscillation of a capil-
lary wave compared with the linear viscous theory. A classical test of
Rayleigh-Taylor instability is presented.

1 Introduction

A number of methods have been developped in recent years for the solution
of problems involving free interfaces. These methods can be divided in two
main classes depending on the type of grids used. In the first class, the inter-
face is treated as a boundary between elementary domains. This approach
allows a precise discretization of the interfacial terms but requires deformable
grids in order to follow the motion of the interface [8][9]. The second class
of methods uses fixed grids to describe the velocity field but requires spe-
cific advection schemes in order to preserve the sharpness of the interfacial
front. Of these, modern Volume Of Fluid (VOF) advection schemes give
good results and ensure an accurate conservation of mass [1][14][24]. Level



set type methods are easy to implement but are probably less accurate in
term of mass conservation [26]. Both rely on an implicit description of the
interface, given through phase functions (i.e. volume fraction for VOF or dis-
tance function for level set), and are usually called front capturing methods.
Another group, front tracking algorithms use an explicit discretization of the
interfacial discontinuity, and if somewhat more complex to implement, give
the precise location and geometry of the interface [27][28].

All these methods provide good solutions to the problem of interface
advection, however accurate representation of surface forces (i.e. surface
tension, membrane effects, ...) remains a problem when using fixed grids.
In particular, most of these methods (including lattice gases [?]) exhibit the
so called spurious currents shown in figure 1. These numerical artefacts result
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Figure 1: Spurious currents around a stationary bubble. The method used
for the interface advection is a VOF type scheme.

from inconsistent modelling of the surface tension terms and the associated
pressure jump. More generally, this poses the problem of the accuracy of the
description of the steep gradients occuring at the interface.

Many practical problems involve fluids of very different densities and/or
viscosities (water droplets in air, wave breaking for example). Moreover, the



surface tension effects are usually large compared to the viscous damping.
In these cases, the effect of the unbalanced forces acting on the interface
not only reduces the accuracy but can lead to spurious currents which create
oscillations strong enough to destroy the interface. The spurious currents are
therefore more than simply a numerical inaccuracy but are a real limitation
of methods used on fixed grids.

In this paper, we present a front tracking method for the solution of the
2D incompressible Navier-Stokes equations with interfaces and surface ef-
fects. We will more particularly investigate the accuracy of the numerical
representation of the surface tension and of the associated pressure jump. In
the section which follows, we describe the general scheme used to solve the
Navier-Stokes equations. The second section gives a detailed description of
the front tracking algorithm and in the final section, some test cases investi-
gating the numerical accuracy and convergence properties are presented.

2 General description of the method

2.1 Basic equations

We seek to solve the incompressible Navier-Stokes equations with varying
density and surface tension. The momentum balance equations are

p(du+u-Vu)=-Vp+V.uD+okdn+F (1)
V-u=0. (2)
These may be written in conservative form
dpu
W—FV-(pu@u):—Vp—l—V~uD—|—a/i55n—|—F, (3)

where u = (u,v) is the fluid velocity, p = p(x,t) is the fluid density, p =
p(z, t) is the fluid viscosity, D is the viscous stress tensor. The surface tension
term is considered to be a force concentrated at the interface, o is the surface
tension, k the local curvature of the interface, d, a function equal to one on
the interface, zero outside and n the unit outward normal to the interface.
Density and viscosity are advected by the velocity field

dp

—_— . pr— 4
5 T Vp=0, (4)



and

o

In the case of two immiscible fluids, we use the volume fraction C' of one of
the fluids which verifies the advection equation

oC

The volume averaged density and viscosity can then be expressed as functions

of C
p=Cpi+(1=C)ps (7)

p="Cuy+ (1= C)ua. (8)

2.2 The Navier-Stokes solver

We use a momentum-conservative version of the Navier-Stokes solver initially
developed for the SURFER code [12]. The solution is based on a projection
method [18]. The pressure, volume fraction, momentum and velocity com-
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Figure 2: MAC discretization of the pressure, volume fraction, momentum
and velocity components

ponents are discretized on an uniform cartesian mesh (Az = Ay = h) using
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Figure 3: Control volumes for the pu and pv momentum components

a staggered Marker And Cell [18] distribution (figure 2). If we associate the
control volumes ), and €1, of figure 3, to the component pu and pv of the
momentum, we can write the integral formulation of (3) without the pressure
term as

Q/pqu pu®u:?{ uD+/cmc58n+/QF. (9)
ot Ja o9 09 Q

The discrete formulation of (9) is then

J, - .
—(puQ) + > ljpu@u=">» lfMD+FijQ,~j+/Q KOs, (10)
j

8t faces faces

where Ql-j is the area of the control volume €);;, Iy the length of a face and
pu;; is the average value of pu in €);;. For each time step At, the explicit
projection method can be subdivided in four steps:

1. An approximate solution pu* of the momentum at time (n + 1)At is
built using an explicit discretization of (10)

1

Kt(pufj—pu%)()ij =—> ljpueu"+ > lfMDnjLF%QZ-j—i-/Qij oKOsN.

faces faces
(11)

where ®" is the value of the function ® at time nAt.



2. The volume fraction field C' is advected using the velocity field at time
nAt. In our case this is done using a Lagrangian advection of the
markers and a reconstruction of the volume fraction field.

3. We then need to ensure the divergence-free character of the velocity
field u"*! defined as pu™™!/p"*'. The approximate solution u* =
pu*/p" Tt is corrected with the pressure gradient term

At
Vp. (12)

pn—l—l
In order to satisfy the continuity equation (2), the pressure must obey
the Poisson-like equation

un+1 —u* =

At

V- <pn+1

Vp) =V -u”. (13)
This equation is solved efficiently using a multigrid solver [4][5][20][30].

4. the momentum and velocity fields at time (n+1)At are computed using
pu™tt = pu* + AtVp (14)

and
un+1 — pu"“/,o"“. (15)

2.3 Interface and surface tension

Given a parametric description (z(s),y(s)) of the location of the interface,
where s is the curvilinear coordinate, we want to compute the source term
due to the surface tension in the momentum equation (9). If Q is the control
volume for one of the components of the momentum and AB , the section of
interface inside this control volume (figure 4), the integral source term in (9)
is

B
/ oKOsN = 07{ knds, (16)
Q A
which can be written using the first Frenet’s formula for parametric curves
B B
0—7{ knds = 07{ dt = o(tp — ta) (17)
A A

where t is the oriented unit tangent to the curve. The integral source term
due to the surface tension is then the sum of the outward unit tangents at
the points where the interface enters or exits the control volume.



Figure 4: Method of tensions for computing the integral contribution of the
surface tension to the momentum equation.

2.4 Surface tension, pressure jump and the pressure
gradient

The gradient terms in the momentum equation are discretized using a clas-
sical second-order accurate centered scheme. This simple discretization is
well suited for the representation of the gradient terms in the bulk of each
phase. However, very rapid changes occur near the interface and this type
of discretization no longer represents correctly the associated gradients.

As we are interested in phenomena including high surface tension effects,
a term of particular concern is the pressure gradient. As first shown by
Laplace, in the static case the surface tension is exactly balanced by the
jump of the pressure through the interface. The surface tension then yields
a pressure jump which can be expressed as

[ply = ok, (18)

where o is the surface tension coefficient and k, the curvature. If we look
more closely at what happens on our MAC grid, with a simple discretization
of the pressure, we can show that we cannot ensure the balance between
the pressure gradient and the surface tension (this was first shown by Jie
Li [15]). Let us consider the case of a stationary circular bubble. Figure 5
shows a piece of the circular interface and the corresponding pressure cells.
The control volume for the pv component of the momentum is crossed by
the interface. As the outward tangents are not colinear, the non zero surface
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Figure 5: The discretization of the pressure gradient. If a simple discretiza-
tion is used near the interface pl = p2 = p3 = p4 and the pressure gradient
h=Y(pl — p4) cannot balance the surface tension.

tension contribution to the momentum should be balanced by the pressure
gradient dp/0y ~ h~!(pl — p4). However, as the interface does not cross the
[p1, p2] segment, there is no pressure jump between pl and p2 and pl = p2
(where pl is the constant pressure inside the bubble). Following the same
argument, p2 = p3 = p4 and then pl = p4. The discretized pressure gradient
h~='(pl—p4) is then zero and cannot balance the surface tension contribution.
In practical terms this means that a stationary solution cannot exist using
this simple discretization of the pressure gradient at the interface.

In order to avoid spurious currents, we must first find a better way to
discretize the pressure gradient near the interface. We must note however
that this will only ensure the existence of a stationary solution, with the hy-
pothesis that the exact pressure field is known. The eventual convergence of
the method to this stationary solution and its stability are another problem.

From figure 5, we can easily see that a better approximation of the pres-
sure gradient can be obtained provided we use a better approximation of the
pressure fluxes on the AC segment. Due to the pressure jump at the inter-
section point B, the pressure flux psc should be decomposed in two parts
pap and ppe. In the stationary case, the integral contribution of the pressure
gradient to the momentum equation would then be discretized as

Ip

— — =ACp4— (AB BC 19
o, Dy p ( paB + PBC), (19)



which could be written using (18)
AC p4 — (AB pout + BC pin) = AB (pin — Do) = AB 0k, (20)

where poyt and py, are the pressures outside and inside the bubble respectively.
A parametric representation (x(s),y(s)) of the circular interface is

z(s) = z,+ K 'cos(s) (21)
y(s) = yo+ K 'sin(s). (22)

If we note sg and sp the values of the parameter for the intersection points
B and D, we have the relation AB = k= *(cos(sg) — cos(sp)) and then

9p _

o By = o(cos(sg) — cos(sp)). (23)

Using the tension formulation (17), the surface tension contribution to the y
component of the momentum can be expressed as

D
07{ knVds = o(t4h, — t%) = o(ky'(sp) — ky'(s)) = o(cos(sp) — cos(sg)).

’ (24
Thus, in the case of a circular interface the exact balance between the pressure
gradient term — ny Op/dy and the surface tension ny okny,d, is satisfied
provided we know the pressure field and the location of the intersection points
B and D exactly.

It is important to note that this approach could be and should be applied
to the discretization of all the gradient terms with rapid variations across
the interface, in particular the viscous stress tensor for high contrasts of
viscosities.

3 Front tracking algorithm

In this section, we present a detailed description of the front tracking algo-
rithm. The interface is represented using an ordered list of points (z;,v;),
1 < i < N. A list of connected polynomials (p?(s),p?(s)) is constructed
using the points and gives a parametric representation of the interface, with
s an approximation of the curvilinear coordinate. Both lists are oriented and
thus identify the topology of the interface.



3.1 Advecting the points

The first step in our algorithm is the advection of the points dataset. We
use a simple bilinear interpolation to find the velocity of a point in a given

velocity cell (w; j, it1,5, Ui j1, Wit1,j+1)
u(z,y) = ui(l—z—y+ay)+upo(l—y)+ (25)
i1y (1 — @) + i, ja2y,
where x and y are the coordinates of the point relative to the (i, j) vertex.

The points are then lagrangianly advected using a straightforward first order
explicit scheme

ot = 2l 4+ At u(r,y) (26)

)

ytt =yl 4 At(z,y).

Once the points have been advected we need to reconstruct the parametric
representation of the interface.

3.2 Constructing the polynomials

We have chosen to use connected cubic polynomials with continuous first and
second order derivatives. This type of curve is usually known as cubic splines
[29][11][19]. The parametric representation must be periodic as the interfaces
are mostly self-connected (drops, bubbles, periodic wave trains ... ).

We then need to choose a parameter s in order to interpolate the two
sets of points (z;, s;) and (y;, s;). A simple choice is an approximation of the
curvilinear coordinate

Si = 2\/(%“ — ;)% + (Y41 — y;)* (27)

The connection conditions for the interpolating polynomials lead to two
pseudo tridiagonal systems Ba = ¢, one for each coordinate of the para-
metric curve, where B is a N? matrix of the form

by ¢ 0 0 «
as by Co 0 0
B=1 0 0 (28)
0 0 an-1 by-1 cNa
(0% 0 0 an bN



where the « coefficients arise from the periodicity condition [11]. The solution
of this type of system can be reduced to the solution of two tridiagonal
systems which are easily solved using classical techniques [19].

The construction of the interpolating parametric spline curve from the
(x;,y;) set of points then requires the solution of four tridiagonal systems of
size N? which can be done in O(N) operations. All the other operations of
our marker algorithm deal with local computations along the interface and
are consequently also of order N. The ratio between the time spent in the
marker algorithm and in the computations done on the bulk of the fluid (the
Navier-Stokes solver) is then of order 1/N. As the domain size increases
the proportion of computational time needed by the marker representation
decreases. In practice, the marker computation accounts for less than ten
percent of the time for a 642 mesh.

3.3 Redistribution

As the interface evolves, the markers may drift due to non zero tangential
velocities and we may need more markers if the interface is stretched by the
flow. We then need to redistribute the markers in order to ensure an ho-
mogeneous distribution of points along the interface. This is done at each
time step using the interpolating curve (z(s),y(s)). As s is an approxima-
tion of the curvilinear coordinate, if we choose a redistribution length [, the
new number of markers is Ny, = Sy /l and the points are redistributed as
(apev yrew) = (z(il), y(il)). [ is usually chosen as Az, which yields an average
number of one marker per computational cell. Decreasing this length does
not apparently improve the accuracy and in some cases leads to instabilities.

3.4 Computing the volume fraction

In the case of flows with varying density and/or viscosity between the phases,
we need to solve the advection equations (4) and (5). This can be reduced
to the advection of the volume fraction field C. We then have to create the
new volume fraction field corresponding to the new parametric interpolation
of the interface. In the cells crossed by the interface, we want to compute
the area of the enclosed domain  (figure 6). This problem can be reduced
to the computation of a circulation along a parametric curve as illustrated
below. Following Stokes theorem, if P and () are two functions of the space

11



Figure 6: computation of the volume fraction

coordinates (z,y) we can write

9Q 0P

Pd dy = | == — Zdxd 29
fm T+ Qdy= | - oy - (29)

if we choose P =0, ) = = we get

7{ xdy:/ dzdy, (30)
09 Q

which can be written using the parametric description of 0f2

For our third order polynomial parametric function (x(s),y(s)),

2(5) = aus® +by8* +cps+d,
y(s) = a,s®+b,s°+cys+dy, (32)

this integral is given by
/ 1 6 1 5
/x(s)y (s)ds = 5 Gally$ + 5(353[:% + 2a,b,)s° +
1 1
Z(amcy + 2b,by + 3cpa,)st + g(bxcy + 2¢,by + 3d,a,)s” +

1
é(cxcy + 2d,b,)s° + dycys. (33)

12



We must then add the circulation along the faces of the cell. In the case
of our cartesian grid, three useful observations can be made:

1. As for the horizontal faces dy = 0, only the vertical faces can lead to a
non-zero contribution to the circulation.

2. If a vertical face is not crossed by the interface its contribution to the
circulation is [ xdy = = [ dy = £x, which is an integer number.

3. We impose a maximum CFL number of 0.5. In this case the variation
of the volume fraction during any time step can not be larger than 0.5
in any cell. Consequently, we can write

A" —05< "< +0.5 (34)

If we compute only the fractional part of the circulation, é**1, ¢"*! is defined
as ¢"*! 4+ 4, where i is an unknown integer. However i is uniquely defined by
(34) and can take only four distinct values {—1,0,1,2}.

It is now easy to compute the volume fraction, we just follow the inter-
face, as defined by the list of polynomials. We test whether the interface
intersects the horizontal and/or vertical grid lines. The point of intersection
is computed using a combination of bisection and Newton-Raphson methods
[19]. If there is no intersection (eg. segment BC in figure 6), we just add the
circulation along the whole polynomial segment, computed using (33), to the
cell volume fraction é. If there is one (or more) intersection, we compute the
circulation for each part of the polynomial segment and add the circulation
to the corresponding cell (segments AB and CD). When the intersection is
on a vertical segment, we add the vertical contribution to the circulation to
one cell and subtract it from the neighboring cell (figure 7). Once all the
interfaces contributions have been added, we use (34) to compute the value
of the integer constant i to be added to get ¢"*'. With this algorithm, the
cases where an interface (or several interfaces) crosses more than once the
same cell are treated implicitly.

Cells which were crossed by the interface at the previous time step have
their volume fraction field updated to zero or one according to whether they
now lie outside or inside the domain respectively. The inequality (34) gives
the correct value.

13
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Figure 7: Intersection of an interface with a vertical face. Two cases arise
depending on the topology of the domain.

3.5 Surface tension contribution to the momentum equa-
tion

Following the tension formulation (17), if the interface crosses a momentum
control volume boundary, we compute the value of the parameter s (using
the same solver as above) for the intersection point. We then add the surface
tension contribution ot where t is the unit tangent to the curve pointing
outward for the considered cell: t = +(2'(s)i+y'(s)j)//2"*(s) + y'*(s), where
i and j are the unit vectors in the x and y direction. As this computation is
done once for the two neighboring cells, the momentum contributions of the
surface tension cancel exactly. As the control volumes for each component
of the momentum do not coincide due to our staggered grid (see figure 3),
we need to repeat this calculation twice, shifting the position of the markers
respective to the C' control volume, by (—1/2,0) for the pu component and
(0, —1/2) for the pv component.

3.6 The pressure gradient correction

In the case of our staggered grid, the x component of the integral contribution
of the pressure gradient is usually given by [ Op/0x = h(p;; — pi—1;). If
the interface is crossing the vertical face BC' of the control volume, we have a

14



o Pij+1
C C
o UL , o pJI y
Pi-1,j m ® m Pij Pi-1,j m o Pij
e
pd ° / B
o Pij-1
@ (b)

Figure 8: The pressure gradient correction for a MAC grid. The location of
the interface relative to the pressure nodes yields two cases: (a): EB < h/2,
(b): EB > h/2.

pressure jump either between p; ; and p; ;_1 (case (a): EB < h/2), or between
pij and p; ;41 (case (b): EB > h/2). We can have a better approximation of
the flux hppc, using a linear correction dhp; ; to the pressure fluxes on either
sides of the interface:

o if EB < h/2 hpBC = EBpi7j_1 + EC’pi,j = hpi,j + 5hpi,j = hpi,j —+
EB(pz‘,j—l —pi,j)'

[ lf EB Z h/2 hpBC = EBpi,j _'_ECpi,jJrl = hpl'J' +5hpw = hpl'J' + (h —
EB)(pij+1 — Pij)-

A correction dhp; j—dhp;_1 ; can then be applied to the integral term [, dp/0z.
This is done practically when computing the surface tension contribution ex-
pressed at the same intersection point F. Ideally, this pressure gradient
correction should be applied when solving the pressure equation (13), thus
getting the right pressure field (where hppe = hp;;). We have chosen however
a simpler approach where the pressure gradient correction is considered as a
source term in the right hand side of the momentum balance equation (10).
This term is then computed using the pressure field at time nAt, which is

15



less accurate and probably less stable. We will see however that the method
gives good results for difficult test cases.

This pressure gradient correction is probably the simplest choice available.
However several other solutions exist and it would be interesting to assess
their accuracy and convergence properties. A simple extension is the choice
of higher order interpolation schemes on both sides of the interface, in order
to obtain a more accurate representation of the pressure jump. The mean
square interpolation proposed by Shyy et al. [25] would be interesting too and
could be used to obtain any term with rapid variations across the interface
(e.g. viscous terms for high contrasts of viscosity).

4 Results

In this section, we present some simple test cases intended to illustrate the
ability of our method to cope with high tension surface flows without loss
of accuracy. All the computations have been done on an IBM RS6000/370
workstation. Typically one time step on a 1282 grid requires 0.7 second, the
most time consuming procedure being the multigrid solver.

4.1 Stationary bubble and spurious currents

An interesting test case is the verification of the stationary Laplace solution
for a circular bubble or droplet. As shown previously, in principle a sta-
tionary solution exists for our method and consequently Laplace law should
be verified exactly. However, one cannot interpolate a circle (which is C'*)
exactly using a parametric spline curve (C? in our case) and small differences
will subsist. Two questions follow, the stability of this approximate solution
and its numerical convergence to the theoretical solution.

Using dimensional arguments one can show that the amplitude of the
spurious currents must be proportional to o/u. A relevant measure of the
amplitude of the spurious currents is then the coefficient of proportionality
K = Upaxt/o which is characteristic of the accuracy of the method. Using
this velocity scale, we can define a Reynolds number as opD/u?, where D
is the diameter of the bubble. This number is actually 1/Oh? where Oh
is known as the Ohnesorge number [16]. Table 1.a illustrates the constant
character of K over a broad range of Ohnesorge numbers. We used a 322

16



Cartesian mesh with periodic boundary conditions in the x direction and re-
flecting conditions on the horizontal walls, the density and viscosity ratios are
one, the ratio between the diameter and the box width is 0.4. We measured
the maximum amplitude of the spurious currents after 250 characteristic time
scales (t = tonyso/D/p = 250).

1/On? | |U|p/o Grid size | Diameter in grid points | |U|u/o
1.2 8.58e-6 162 6.4 3.76e-5
12 6.76e-6 322 12.8 6.68e-6
120 | 5.71e-6 642 25.6 10.7e-7
1200 | 5.99e-6 1282 01.2 11.5e-8
12000 | 8.76e-6 2562 102.4 17.4e-9

(a) (b)

Table 1: Amplitude of the spurious currents around a circular bubble. (a)
Independence of the non-dimensional maximum velocity with the Ohnesorge
number on a 32% mesh. (b) Convergence of the non-dimensional maximum
velocity with the spatial resolution.

A second series of tests was performed with the same geometry, for a
value of 1/Oh? of 12,000 and increasing spatial resolutions. Table 1.b shows
a convergence of the method to the theoretical solution which is faster than
second order in the spatial resolution (the exponent is approximately 2.75).
For the maximum resolution of 2562 the absolute error is of the order of the
machine precision.

The same test was done using the Piecewise Linear Interface Calculation
(PLIC/CIAM) code [14]. Figure 9 shows that without the correction to the
pressure gradient, the amplitude of the spurious currents is independent of
the spatial resolution for PLIC, which results in spurious currents 10° times
stronger than with the markers method for the 2562 case.

4.2 Capillary wave

Another simple but important test is the solution of the damped oscillation
of a capillary wave. The linear theory for the small amplitude oscillation of

17
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Figure 9: Amplitude of the spurious currents versus spatial resolution for the
PLIC and markers methods.
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an interface between two inviscid fluids of equal density p in a non-bounded
domain, gives the dispersion relation

3
5 Ok

Wy = %7 (35)

where k is the wavenumber [13].

4.2.1 Normal mode analysis

However, in the case of a viscous fluid, this relation must be corrected. To
derive this new dispersion relation, we can use the formalism first introduced
by Meunier [?], which relates the time derivative Hy(w) of the amplitude to
the forcing Fi(w) applied to the interface via a transfer function Ry(w). For
small amplitude perturbations, we have

Hy(w) = Ry(w) Fi(w), (36)

with

Ru(w) = % 0= /R —ipaln. (37)

We look for solutions of the form Hy(w) = Hye'**=D " wwe then have the
relation Hy(w) = —iwHg(w). The forcing Fi(w) due to the surface tension is

F(w) = —ok*Hy(w). (38)
Substituting this relations in (36) yields the dispersion relation

o ok’ 2
w Ig(l—k/Q)zwo(l—k/Q), (39)
which gives the viscous correction to the inviscid case (35) and the damping
ratio of the amplitude. We can write (39) with ¢ as unknown, this yields a
polynomial equation

ok3p
2u?’

a(a—k)(g+k)* = (40)

which can be solved numerically.
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4.2.2 Initial value problem

However, as will be shown from the numerical simulations, this normal mode
analysis is not suitable for the study of the related initial-value problem.
As shown by Prosperetti et al. [6][21], an analytical solution for the ini-
tial value problem exists in the case of the small-amplitude waves on the
interface between two superposed viscous fluids, provided the fluids have the
same dynamic viscosity. We consider here the case of an initial sinusoidal
perturbation of amplitude Hy, the two fluids being at rest. If we take as fun-
damental time wy !, with wy given by w2 = ak?®/(p1 + p2), and as fundamental
length k!, we can set

T = wot, € = vk? Jwp. (41)

Using these non-dimensional time and viscosity, the analytical solution for
the non-dimensional amplitude a = H/H, is given in compact form by

a(t) = erfc(et/?71/?) (42)

xexp|(z — ewo)T/wo]erfc(ziTl/Q/wé/Q),
where the z;’s are the four roots of the algebraic equation

24 — 4B (ewp)? 2% 4+ 2(1 — 68)ewp2® + (43)
4(1 — 38) (ewo)*?2 4+ (1 — 45) (ewp)? + wi = 0,

and 71 = (22 — 21)(23 — 21)(24 — 21) with Zs, Z3, Z4 obtained by circular
permutation of the indices. The dimensionless parameter [ is given by g =
p1p2/(p1 + p2)?.

4.2.3 Comparison with the numerical simulations

The test case for the capillary wave is a square box divided in two equal parts
by a sinusoidal perturbation. The wave length is equal to the box width. The
boundary conditions are free slip on the top and bottom walls, periodic along
the horizontal axis. The ratio between the initial interface perturbation H
and the box height is 0.01. The Ohnesorge number is 1/4/3000, the non
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dimensional viscosity € ~ 6.472 x 1072, the two fluids densities are the same
and thus § = 1/4. Figure 10 shows the evolution of the amplitude with time
for the numerical solution and both the normal mode and initial value analyt-
ical solutions. The normal mode curve is obtained using Hoe™/“° cos(wT /wy)
where w and A are given by the numerical solution of (39).

Grid size | Error/Initial value | Error/Normal mode
82 0.2972 0.3077
162 0.0778 0.0959
322 0.0131 0.0332
642 0.0098 0.0307
1282 0.0065 0.0280

Table 2: Evolution of the relative error between numerical computations and
the normal mode and initial value analytical solutions. The relative error is
the r.m.s. of the differences between the solutions divided by the amplitude
of the initial perturbation. We compare the solutions for the first 25 non-
dimensional time units. p; = po, B = 1/4, € ~ 6.472 x 1072, Oh = 1/4/3000.

Grid size | Error/Initial value
8? 0.3593
162 0.1397
322 0.0566
64 0.0264
1282 0.0148

Table 3: Evolution of the relative error between numerical computations and
the initial value analytical solution. p; = 10ps, 8 ~ 0.826, € ~ 4.799 x 1072,

Ohy = 1/4/3000, Ohs = 1/+/30000.
In order to study the spatial convergence of the method, we have repeated

this test for resolutions of 82, 162, 32% and 642. Table 2 summarizes the
results. We obtain a good convergence and a relative error of order 102 from
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Figure 10: Time evolution of the amplitude of a capillary wave in the viscous
case. Our front-tracking method is used on a 1282 square grid. The theo-
retical curves are obtained from a normal mode analysis and from the exact
solution to the initial value problem in the linearized viscous case (Pros-
peretti).
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Figure 11: Close up of the previous figure illustrating the differences between

the normal mode an initial value solutions.
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a spatial resolution of 322 compared to the initial value analytical solution
of Prosperetti. Moreover, we treat here the case of a bounded domain of
aspect ratio hA = 1/2. The analytical solution of Prosperetti is given in the
infinite depth case and should be corrected with a term of order cotanhkh =
cotanh7 & 1.0037.

The previous test was performed with a density ratio of one (5 = 1/4).
Table 3 illustrates the results for a density ratio of ten (8 ~ 0.826).

4.3 Rayleigh-Taylor instability

In order to illustrate the capability of our method to deal with more complex
cases, we present here a classical test. The original version of this computa-
tion has been performed by Puckett et al. [23][24] using a VOF type method.
A one meter wide, four meters high rectangular domain is discretized using
a 64 x 256 grid. The fluid densities are 1.225 and 0.1694 kg/m?>. The fluid
viscosities are 0.00313 kg.m~'.s7!. The interface between the fluids is an ini-
tially sinusoidal perturbation of amplitude 0.05 meters. Figure 12 shows the
evolution of the interface at times 0, 0.7, 0.8 and 0.9 seconds. The maximum
mass fluctuation of our method is approximately 0.14%, which is larger than
the observed variation for a VOF type method (about 0.01%). The interface
evolution compares well with the results of Puckett et al. [23] and with the
simulation done using PLIC/CIAM on a 128 x 512 grid (figure 13).

We can note however, that we have not yet implemented a reconnec-
tion mechanism to deal with topology changes. Consequently, our method
conserves the small filamentary structures even for low resolutions. We are
studying a reconnection mechanism based on a physical representation of
the short range interactions between interfaces. Whereas VOF type meth-
ods introduce an arbitrary reconnection length (usually the mesh spacing),
this method should provide a physical criterium for the reconnections. The
marker representation gives the precise location of the interface and is there-
fore well-suited for the study of small scale effects.

5 Conclusions

In summary, we have presented a front tracking numerical algorithm able
to deal accurately with surface tension terms. For the case of a stationary
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t=0.0 t=0.7 t=0.8 t=0.9

Figure 12: Rayleigh-Taylor instability on a 64 x 256 grid using the front-
tracking algorithm.
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t=0.0 t=0.7 t=0.8 t=0.9

Figure 13: Rayleigh-Taylor instability on a 128 x 512 grid using the
PLIC/CIAM algorithm.
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bubble, the method shows a convergence to the theoretical solution which
is faster than second order in the spatial resolution. For reasonable mesh
sizes, the spurious currents usually present when using fixed grids can then
be reduced to the machine precision. Good results are obtained for the
test case of a capillary wave with viscous damping. We obtain a very good
agreement with Prosperetti’s linearized solution to the initial value problem.
The relative error for the time evolution of the amplitude is smaller than 102
when using 32 or more points per wavelength. The method is robust and
remains accurate even for very small Ohnesorge numbers (1072 or less). As we
use a fixed Eulerian grid, the Navier-Stokes algorithm is efficient. Moreover,
due to its one dimensional nature, the surface tracking part is negligible
in term of computational time. The ideas developed in this paper can be
generalized to different types of Navier-Stokes solvers and are not limited
to projection methods on cartesian grids. In particular, we emphasized the
necessity of a precise and consistent discretization of the surface tension
and of the associated pressure jump. This probably requires the precise
knowledge of the interface position relative to the underlying grid.

Various applications require an accurate representation of the surface ef-
fects: motion of drops of water in air [31][22], wave breaking [2] or sonolumi-
nescence [?]. Moreover, the exact description of the interface position allow
an easy implementation of the membrane models found in biological mechan-
ics [3][10] and of the effect of surfactants [17]. An interesting study could
also be a detailed sub-grid modelling of the reconnections between interfaces
[7].

We are working on an axisymmetric version of the code. In the future,
we would like to develop a fully three-dimensional front tracking algorithm.
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