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Abstract. The formal similarity between possibility theory and formal concept

analysis, made ten years ago, has suggested the introduction in the latter setting

of the counterpart of possibilistic operators, which were ignored before. These

new operators can be related to the basic operator of formal concept analysis by

a triple use of negations on the contexts, on the set-valued arguments and on the

obtained results, and lead to consider new compositions worth of interest. They

enable us to complete the Guigues-Duquenne basis with rules having disjunctive

conclusions. Besides, the approach can be naturally generalized to incomplete

contexts and then to uncertain context where uncertainty is graded.

1 Introduction

Formal Concept Analysis (FCA) considers the classical Galois derivation operator

(i.e. the sufficiency operator) for extracting formal concepts organized within a hier-

archy (i.e. partial ordering) called the concept lattice. The concept lattice has proved

highly useful for knowledge discovery. The knowledge is expressed as attribute im-

plications, that are formulas in the form {a1, ..., an} → {b1, ..., bm} where a1, ..., an, b1, ...

and bm are attributes. It is considered that the underlying semantics is a conjunctive one.

Indeed, by {a1, ..., an} → {b1, ..., bm}, the interpretation “a1” and ... and “an”→ “b1” and

... and “bm” is implicitly agreed.

Recently, Dubois and Prade [6] [9] have given a possibility-theoretic reading of for-

mal concept analysis. Beyond the sufficiency operator currently used in FCA, the pos-

sibilistic interpretation proposed by these authors allows to consider three other (pow-

erset) operators namely possibility, necessity and dual sufficiency [5] [3]. In this spirit,

the aim of this paper is to enlarge the knowledge representation capability of FCA to

so-called “disjunctive attribute implications” instead of the conjunctive attribute impli-

cations considered by current approaches [1] (introduced in [11]). It will be shown that

the proposed approach considers “open-closed” pairs obtained by means of the asym-

metric composition (N ◦Π) of necessity and possibility operators, and then we propose

a method for inducing disjunctive attribute implications.

The remainder of the paper is organized as follows. Section 2 gives a background

on FCA. The possibility-theoretic view of FCA is discussed in section 3, whereas the



next section presents our contribution which highlights the interest of using possibility

theory operators in order to induce disjunctive attribute implications from formal con-

texts. Section 5 presents the same analysis for incomplete formal contexts and finally,

Section 6 deals with necessity degrees in uncertain formal contexts.

2 Formal concept analysis: basic notions

Formal concept analysis [1] is a lattice-based setting for data analysis and knowledge

representation. It relies essentially on a binary relation between a set of objects and a set

of attributes. This relation is called a formal context. More formally, a formal context is

a triple K = (O,P,R) where O is a set of objects, P a set of attributes and R a binary

relation s.t. R ⊆ O × P. xRa means that the object x satisfies the attribute a.

Example 1. We consider an example of formal contextKS = (O,P,R) given in Table 1

whereO = {John,Maria, Peter,Clara} andP = {Man,Woman, Father,Mother, Parent}.

The cross mark × indicates that the related object satisfies the corresponding attribute.

Whereas the empty mark indicates the contrary.

The paradigm of formal concept analysis [14] is classically based of an adjoint pair of

operators (.)∆ : 2O → 2P and (.)∆ : 2P → 2O (called Galois derivation operator in the

literature) defined for two sets X ∈ 2O and A ∈ 2P as follows :

A∆ = {x ∈ O | ∀a ∈ P (a ∈ A⇒ xRa)}

X∆ = {a ∈ P | ∀x ∈ O (x ∈ X ⇒ xRa)}

That is, A∆ corresponds to the set of objects that satisfy all attributes in A. Similarly, X∆

corresponds to the set of of attributes that are satisfied by all objects in X.

A formal concept of K is a pair of closed sets (X, A) with X ⊆ O, A ⊆ P such that

X∆ = A and A∆ = X. X is called the extent and A the intent of the formal concept (X, A).

For instance, ({Clara}, {Woman, Parent, Mother}) is a formal concept of KS. The set

of all formal concepts (denoted by B(O,P,R)) equipped with a partial order � defined

as: (X1, A1) � (X2, A2) if X1 ⊆ X2 (or equivalently, A2 ⊆ A1) forms a complete lattice

(denoted by L(O,P,R)).

Formal concepts lattices can be characterized in terms of attribute implications [10].

An attribute implication is an expression A→ B where A and B are subsets of attributes

(A, B ∈ 2P) and it holds in a formal context if A∆ ⊆ B∆ (equivalently B ⊆ A∆∆).

The semantics of the attribute implication is that, for every object x ∈ O, if every

attribute from A applies to the object x, then every attribute from B also applies to x.

It is important to remark that the underlying semantics is a conjunctive one. Thus, our

objective in the following is to consider additional knowledge in the form of so-called

disjunctive attribute implications.

Table 1. Formal context KS.

R Man Woman Father Mother Parent

John ×

Maria ×

Peter × × ×

Clara × × ×



3 Asymmetric Composition of possibilistic operators

The Galois derivation operator which is at the basis of FCA theory is the operator of

sufficiency (.)∆. Some time ago, Dubois and Prade [6,9] have highlighted, in the setting

of possibility theory, three other powerset derivation operators, namely the possibility

operator (denoted (.)Π), the necessity operator (denoted (.)N) and the dual sufficiency

operator (denoted (.)∇). The two former operators are given in the following:

— (A)Π corresponds to the set of objects that are associated with at least one at-

tribute in A. Formally, we have:

(A)Π = {x ∈ O | ∃a ∈ A, xRa}

— (A)N corresponds to the set of objects such that any attribute that satisfies one of

them is necessarily in A.

(A)N = {x ∈ O | ∀a ∈ P (xRa⇒ a ∈ A)}

(X)Π and (X)N are dually obtained.

Let xRa indicates that object x does not satisfy attribute a. In the particular case

where the derivation operators (.)Π, (.)N, (.)∆ are applied to the complementary context

K(O,P,R) (where R = {(x, a) ∈ O × P | xRa}), we will exceptionally use the explicit

notation (.)Π
K

, (.)N

K
, (.)∆

K
. Given X ⊆ O and X its complementary set (i.e. O \ X), the

following recalls some useful properties [5] needed in the rest of the paper.

P1 : X∆
K
= (XΠ)

P2 : X∆
K
= (X)N

P3 : X1 ⊆ X2 ⇒ (X1)Π ⊆ (X2)Π

P4 : X ⊆ ((X)Π)N

P5 : (X1)Π ∪ (X2)Π = (X1 ∪ X2)Π

P6 : X1 ⊆ X2 ⇒ (X1)N ⊆ (X2)N

P7 : (X)Π = (((X)Π)N)Π

These properties are dually satisfied for A ⊆ P.

Let us also denote by NΠ-pair, a formal pair (X, A) s.t. X = AΠ and A = XN, where

X (resp. A) will be called NΠ-extent (resp. NΠ-intent). It may be remarked that both

elements X and A present dual topological properties. Indeed, X is an open element,

whereas A is a closed one, achieving then an “open-closed” pair. The set of all NΠ-pairs

is denoted byBNΠ, whereas the setBNΠ(Ext) (resp.BNΠ(Int)) corresponds to the set of

all NΠ-extents (resp. NΠ-intents). Proposition 1 establishes first a characterization of

NΠ-pairs, whereas the proposition 2 gives the algebraic structure of the set BNΠ.

Proposition 1. Let X ∈ 2O and A ∈ 2P, (X, A) is an NΠ-pair if and only if (X, A) is a

formal concept in K(O,P,R).

Proof. It is proved using properties P1 and P2 given in section 3.

It has been already established that the set BNΠ with a partial order (denoted �) defined

as (X1, A1) � (X2, A2) if X1 ⊆ X2 (or, equivalently, A1 ⊆ A2) forms a complete lattice,

called the NΠ-lattice and denoted by LNΠ. The following proposition gives the infima

(greatest lower bound) and the suprema (least upper bound) for a given subset of LNΠ.



Proposition 2. The infima and suprema of a subset (X j, A j) (j an index set) of LNΠ are

given by:
∧

j∈J

(X j, A j) = (
⋃

j∈J

X j, ((
⋃

j∈J

A j)
Π)N);

∨

j∈J

(X j, A j) = (
⋂

j∈J

X j,
⋂

j∈J

A j).

Proof. This result can be established using Proposition 1, and the fact that (X, A) is a

formal concept of K(O,P,R).

Example 2. Figure 1 illustrates the LNΠ lattice corresponding to the formal context

given in Table 1.

Let us now introduce the mapping µ which associates to each set of attributes A ∈

2P, its NΠ-pair such as:
µ : 2P → BNΠ

A → µ(A) = (AΠ, (AΠ)N)

The following proposition establishes the mapping µ for a set A of attributes.

Proposition 3. Let A ⊆ P, then µ(A) =
∧

a∈A

µ({a})

Proof. AΠ =
⋃

a∈A

aΠ is obtained directly by the definition of possibility operator, we

have µ(A) = (AΠ, (AΠ)N)⇔ µ(A) = (
⋃

a∈A

aΠ, (
⋃

a∈A

aΠ)N) =
∧

a∈A

µ({a})

4 Disjunctive attribute implications

We propose now to introduce disjunctive attribute implications of the form a1 ∨

... ∨ an 7−→ b1 ∨ ... ∨ bm (equivalently denoted by
∨

A 7−→
∨

B with A = {a1, ..., an},

({},

{})

({Clara},

{Mother})

({Peter},

{Father})

({Maria,Clara},

{Woman, Mother})

({Peter,Clara},

{Father,Mother,Parent})

({John,Peter},

{Man,Father})

({Maria,Clara,Peter},

{Woman,Mother,Father,Parent})

({John,Peter,Clara},

{Man,Father,Mother,Parent})

({Maria,Clara,John,Peter},

{Man,Woman,Father,Mother,Parent})

Fig. 1. Lattice LNΠ



and B = {b1, ..., bm}). Being understood that the satisfaction of such an implication is

related to the set of all objects in O, we agree that a formal context K(O,P,R) satis-

fies a disjunctive attribute implication
∨

A 7−→
∨

B if and only if every object that is

never satisfied by each attribute from B is also never satisfied by each attribute from A.

Formally, K |=
∨

A 7−→
∨

B, iff ∀x ∈ O, i f b1 * {x}Π ∧ ... ∧ bm * {x}Π then a1 *
{x}Π ∧ ... ∧ an * {x}Π

For example, the formal context KS given in Table 1 satisfies the disjunctive attribute

implication Parent 7−→ Father ∨Mother (KS |= Parent 7−→ Father ∨Mother).

The following important result can be easily obtained.

Proposition 4. The disjunctive attribute implication
∨

A 7−→
∨

B is valid in formal

context K(O,P,R) iff the attribute implication B 7−→ A is valid in formal context

K(O,P,R) iff A ⊆ ((B)Π
K

)N
K

.

Proof. Suppose B 7−→ A is valid in K . In logical terms, it means ∧b∈B¬b → ∧a∈A¬a,

which is logically equivalent to ∨a∈Aa → ∨b∈Bb. Now, B 7−→ A is valid in K means

A ⊆ B∆∆
K

, that is, A ⊆ (BΠ
K

)∆
K

iff A ⊆ ((B)Π
K

)N
K

. ⊓⊔

A simpler way to assert the satisfaction of a disjunctive attribute implication based

on the possibility operator (.)Π is given hereafter.

Proposition 5. Given a formal context K(O,P,R) and A, B ⊆ P, K |=
∨

A 7−→
∨

B

iff for each x ∈ O, B * {x}Π or A ⊆ {x}Π.

The disjunctive attribute implications that hold in a formal context K(O,P,R) can be

obtained from concept lattice LNΠ. The following proposition illustrates this.

Proposition 6. Given a formal context K(O,P,R), K |= a →
∨

B iff (aΠ, (aΠ)N) ≤

(BΠ, (BΠ)N)

This means that we have to check in the concept lattice LNΠ whether the NΠ-pairs

associated to a are located above the infima of all NΠ-pairs associated to b from B.

Example 3. In the following we give the set of disjunctive attribute implications that

matches to the formal context given in Table 1 by applying the proposition:

{Father→Man, Mother→Woman, Father∨Mother→Parent, Parent→Father∨Mother}

5 Possible and certain implications in incomplete contexts

The case of incomplete context has been only considered by Obiedkov [13] and by

Burmeister and Holzer [2] until now. They have proposed to introduce a third value,

denoted “?”, in a formal context, which leads to the concept of an incomplete con-

text, sometimes also called three values context. More formally, incomplete context

Ki(O,P, {+,−, ?},Ri) where O is the set of objects, P the set of attributes, “+”, “-”,

“?” are the three possible entries of the incomplete context, and R is a ternary relation

R ⊆ O × P × {+,−, ?}. The interpretation of the relation R is as follows. Let x ∈ O and

a ∈ P:



— (x, a,+) ∈ R : it is known that the object x has the attribute a

— (x, a,−) ∈ R : it is known that the object x does not have the attribute a

— (x, a, ?) ∈ R : it is unknown, whether the object x has the attribute a or not

An incomplete formal context may be viewed as a weighted family of all standard for-

mal contexts obtained by changing unknown entries (x, a, ?) into known ones ((x, a,+)

or (x, a,−)). The two extreme cases where all such unknown entries (x, a, ?) are changed

into (x, a,−) and the case where all such unknown entries (x, a, ?) are changed into

(x, a,+) give birth to lower and upper completions, respectively [8] [4].

In this way, two classical (Boolean) formal contexts, denoted K∗(O,P,R∗) and

K∗(O,P,R∗) are obtained as respective results of the two replacements. More formally:

— K∗(O,P,R∗) is a Boolean formal context such that R∗ = {(x, a)|(x, a,+) ∈ Ri}

where A∆
K∗
= {x|A ⊆ xR∗} is the set of objects certainly having all attributes in A

— K∗(O,P,R∗) is a Boolean formal context such that R∗ = {(x, a)|(x, a,+) ∈ Ri or

(x, a, ?) ∈ Ri} where A∆
K∗
= {x|A ⊆ xR∗} is the set of objects possibly having all

attributes in A.

There exists other intermediate formal contexts by replacing each “?” by “+” or “-

” and we obtain exactly 2n possible formal contexts (n is the number of “?” in the

initial formal context). All attribute implications that are obtained from these formal

contexts are either possible attribute implications or certain attribute implications. An

implication is certain if it is valid in each formal context K j; this condition may seem

hard to verify at first glance. The following theorem solves the problem.

Theorem 1. A 7−→ B is a certain attribute implication in Ki iff A∆
K∗
⊆ B∆

K∗

Proof. Assume that A 7−→ B is not a certain attribute implication in Ki and A∆
K∗
⊆ B∆

K∗
.

But A 7−→ B is not certain implication =⇒ ∃ a formal context K j|x ∈ A∆
K j

and x < B∆
K j

=⇒∃ an object x possibly having all attributes in A and not having the certain attributes

in B =⇒ ∃x ∈ O |x ∈ A∆
K∗

and x < B∆
K∗
=⇒ A∆

K∗
* B∆

K∗
. ⊓⊔

Another problem is to determine a possible attribute implication that are holds in at

least ont formal contextK j, the following theorem facilitates this determination. Proofs

are omitted due to space limitations.

Theorem 2. A 7−→ B is a possible attribute implication in Ki iff A∆
K∗
⊆ B∆

K∗

This section also considers disjunctive attribute implications, presented in section 4,

in incomplete formal contextKi. As in the case of conjunctive attribute implications we

distinguish certain disjunctive attribute implications and possible disjunctive attribute

implications. Note that (A)Π
K∗

is the set of objects certainly having at least one attribute

in A and (A)Π
K∗

is the set of objects possibly having at least one attribute in A. And (A)Π
K∗

is the set of objects that certainly never have any attribute in A and (A)Π
K∗

is the set of

objects that can never have any attribute in A. We get two major results of this paper.

Theorem 3.
∨

A 7−→
∨

B is a certain disjunctive attribute implication in Ki iff AΠ
K∗
⊆

BΠ
K∗

Theorem 4.
∨

A 7−→
∨

B is a possible disjunctive attribute implication inKi iff AΠ
K∗
⊆

BΠ
K∗



6 Implications from gradually uncertain contexts

In an uncertain formal context the boxes are filled with a pair (α, β) of degree of

necessity. That is to say that (α) is the necessity that the object has the attribute, and (β)

is the necessity that the object does not have the attribute. Moreover, we should respect

the property min(α, β) = 0 [7]. Pairs (1,0) and (0,1) correspond to completely informed

situations where it is known that object has the attribute (ie. +), respectively the object

does not have the attribute (ie. -). The pair (0,0) reflects total ignorance (ie. ?), whereas

pairs (α, β) s.t. 1 > max(α, β) > 0 correspond to partial ignorance.

Consider a pair of thresholds (u, v) with u > 0 and v > 0. K(u,v) is an incomplete

formal context obtained by replacing:

all entries of the form (α, 0) such that α ≥ u by (+)

all entries of the form (α, 0) such that α < u by (?)

all entries of the form (0, β) such that β ≥ v by (-)

all entries of the form (0, β) such that β < v by (?)

The classical formal context (K(u,v))∗ is obtained by replacing with (+) the pairs

(α, 0) such that α ≥ u and all the rest with (-). The classical formal context (K(u,v))
∗ is

obtained by replacing with (-) the pairs (0, β) such that β ≥ v and all the rest with (+).

Observe that (K(u,v))∗ does not depend on v, and increases when u decreases. (K(u,v))
∗

does not depend on u, and increases when v increases. Recall that A∆
K

increases as K

increases (in the sense of inclusion). Therefore, A∆
(K(u,v))∗

increases when v increases.

B∆
(K(u,v))∗

decreases when u increases.

An attribute implication A 7−→ B is more certain with u great and v great such that

A∆
(K(u,v))∗

⊆ B∆
(K(u,v))∗

. Therefore, the degree of certainty cert(A 7−→ B) of the attribute im-

plication is equal to the maximum value w such that A∆
(K(w,w))∗

⊆ B∆
(K(w,w))∗

. In particular,

cert(A 7−→ B) = 1 iff A∆
(K(1,1))∗

⊆ B∆
(K(1,1))∗

that is to say that the certain attribute implica-

tions are calculated with the most certain part of the data. Also a possibility degree is

attached to the attribute implication such that A∆
(K(u,v))∗

⊆ B∆
(K(u,v))∗

which is all the greater

as u and v are greater.

We also consider the disjunctive attribute implications in the uncertain formal con-

text. Observe that (K(u,v))∗ does not depend on v, and increases when u increases, and

(K(u,v))∗ does not depend on u, and increases when v decreases. Recall that the dis-

junctive attribute implication
∨

A 7−→
∨

B is valid in a formal context K if and only

if the attribute implication B 7−→ A is valid in K . Therefore, the degree of certainty

cert(B 7−→ A) is equal to the maximum value w such that B∆
(K (u,v))∗

⊆ A∆
(K (u,v))∗

, equivalent

to BΠ
(K(u,v))∗

⊆ AΠ
(K(u,v))∗

, which is equivalently written: AΠ
(K(u,v))∗

⊆ BΠ
(K(u,v))∗

. Also a possibil-

ity degree is attached to attribute implication such that AΠ
(K(u,v))∗

⊆ BΠ
(K(u,v))∗

which is all

the greater as u and v are greater.

7 Conclusion

All existing works and approaches pertaining to FCA rely on the use of the classi-

cal Galois derivation operator (i.e. sufficiency operator). Thus, these works are based on



the complete lattice of all formal concepts obtained using the composition of sufficiency

operators. Consequently, induced implications are limited to their conjunctive form. In

this paper we propose an approach that enlarges knowledge representation ability to

disjunctive attribute implications. Possible links with [12] are to be investigated. The

proposed approach considers “open-closed” pairs obtained by means of the asymmetric

composition (N ◦ Π) of necessity and possibility operators. We have only focused on

composition (.)
NΠ

. Further researches should concern the study of other possible com-

positions of possibilistic composite operators such that (.)
Π∆

, (.)
∇∆

, etc.
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