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Abstract

Various optimization problems result from the introduction of nonlinear terms into combinato-
rial optimization problems. In the context of energy optimization for example, energy sources
can have very different characteristics in terms of power range and energy demand/cost func-
tion, also known as efficiency function or energy conversion function. Introducing these energy
sources characteristics in combinatorial optimization problems, such as energy resource alloca-
tion problems or energy-consuming activity scheduling problems may result into mixed integer
nonlinear problems neither convex nor concave. Approximations via piecewise linear functions
have been proposed in the literature. Non-convex optimization models and heuristics exist to
compute optimal breakpoint positions under a bounded absolute error-tolerance. We present
an alternative solution method based on the upper and lower bounding of nonlinear terms
using non necessarily continuous piecewise linear functions with a relative epsilon-tolerance.
Conditions under which such approach yields a pair of mixed integer linear programs with a
performance guarantee are analyzed. Models and algorithms to compute the non necessarily
continuous piecewise linear functions with absolute and relative tolerances are also presented.
Computational evaluations performed on energy optimization problems for hybrid electric
vehicles show the efficiency of the method with regards to the state of the art.

Keywords: OR in energy , Nonlinear programming , Combinatorial optimization , Piece-
wise linear bounding

2010 MSC: 90C30 , 90C59 , 90C90 , 68W25

1 Introduction

Various optimization problems result from the introduction of nonlinear terms into combinato-
rial optimization problems and can therefore be modeled as mixed integer nonlinear problems
(MINLP). In the context of energy optimization, such nonlinear terms model energy conver-
sion or demand/cost functions. Let us consider, for example, energy optimization in hybrid
electric vehicles (HEV). In such vehicles the electrical powertrain system has multiple energy
sources that it can gather power from to satisfy the propulsion power requested by the vehicle
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at each instant. The problem usually consists in finding at each instant the optimal power
split between the multiple energy sources to satisfy the power demand of a driver on a prede-
fined road section. The variant of the problem called offline assumes that the power demand
profile is known a priori. The objective is to minimize the total fuel consumption of the vehicle
performing a predefined mission, taking into account the characteristics and the limitations of
each energy source, such as the energy losses happening during any energy transfer. Let (P)
denote such problem for a HEV operating with two energy sources: (1) a Fuel Cell (FC) stack
able to produce power from Pl. up to Pl.. at each instant i € {1...]}, (2) a Storage Ele-
ment (SE) able to retrieve power up to P2. and to produce power up to P2, at each instant
i € {1...I}. The amount of energy stored in the SE is also called State Of Charge (SOC).
To avoid a premature aging of SE, its state of charge is only allowed to vary between Fii,
and Fax, typically 25% and 100% of its energy capacity. Problem (P) can be modeled with
equations (1)-(5) where z}, 22 and x} are the amount of energy produced by the FC, produced
by the SE, and retrieved by the SE at instant ¢ € {1...]}. Problem (P) is a (MI)NLP because

of nonlinear energy conversion functions f!, f2, and f% continuous on intervals [PL.  PL 1,

10, P2,.], and ]0, — P2, ] respectively, and verifying f1(0) = f2(0) = f3(0) = 0, often with a
discontinuity at Pr}lin or 0 that requires the introduction of binary variables to be modeled.

The mathematical model can be expressed as follows:

1
(P) minz () //minimize total cost on FC (1)
i=1
subject to (s.t.)
z; +a? —ad > P, Vic{l..I} //power demand satisfaction (2)
I
S (@) = @) <0 //final SOC > initial SOC (3)
i=1
Eo— Bmax < Y (f2(23) — £2(2})) < By — Bwin, Vi€ {1..1} //SOC limits (4)
k=1

z; € {0} U [P, Prol, 7 €10, P2, ] 2 € [0,—P2

min’ * max max min]

Vi€ {1..I} //domain definition. (5)

General MINLPs are NP-hard, but some subclasses such as convex MINLP may be easier
to solve although still NP-hard. Convex MINLPs have a convex objective function to min-
imize, and their constraint functions are all convex and upper bounded. In these instances,
when the integrity constraints are relaxed the feasible set is convex, and there exist efficient
algorithms to solve the resulting convex NLP. However, the (MI)NLP modeling an energy
optimization problem may be neither convex (nor concave) even when all energy conversion
functions are convex or concave. Therefore, only small instances may be tractable using stan-
dard MINLP solvers. Several real-world applications have been addressed using piecewise
linear approximations of the nonlinear functions of the MINLP to obtain a MILP which is
easier to solve (see for example (Borghetti et al., 2008), (Boukouvala et al., 2016), (Camponog-
ara et al., 2007), (D’Ambrosio et al., 2010)). Such approach presents the main advantage of
producing solutions faster than purely MINLP-based approaches if not too many additional
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binary variables or combinatorial conditions have been introduced in the process, meaning
that the number of pieces of the piecewise linear (pwl) functions used should be limited.
(Geifler et al., 2012) explain that the approach suffers from a few drawbacks because the na-
ture of the nonlinearities inherent to the problem may be lost and the solutions obtained from
the MILP may have no meaning for the MINLP. If the solution obtained is not satisfactory
in terms of feasibility or optimality, then a new pwl approximation may be performed using
a higher number of pieces, to obtain a new MILP to solve. This yields an iterative solution
procedure with a number of iterations unknown a priori which translates into high computing
times, either because several iterations needed to be performed, or because an unnecessary
large number of pieces were introduced upfront, resulting into an unnecessarily large MILP
that required a high solution time.

As an alternative we propose a straightforward two-phase solution method. The first phase
consists in bounding each nonlinear term from above and below using a pair of piecewise linear
functions satisfying conditions that will be specified in the core of the paper. Contrary to
most publications on piecewise linear approximation which focus on the minimization of the
approximation error for a given number of pieces or breakpoints that may or may not be
equidistant, we aim at minimizing the number of pieces for a given error bound. The second
phase of the solution method consists in solving two MILPs obtained from the replacement of
the nonlinear functions with one of the two piecewise linear functions. This paper addresses
the first phase of the iterative procedure, assuming that the resulting MILPs can be solved
efficiently with a MILP solver. If it is not the case, then a specific solution method may need
to be designed for them. An example of such case is presented in Ngueveu et al. (2016), which
focused on the solution of the resulting MILP without specifying how to obtain the piecewise
linear functions.

2 State of the art

Several publications exists on the application of piecewise linear (pwl) approximation on non-
linear univariate functions to solve MINLP problems, but the issue addressed in the large
majority of them is to minimize the approximation error given a predefined number of break-
points or pieces. To the best of our knowledge, only three papers focused on the specific
problem of minimizing the number of breakpoints for a given tolerance or bounded approxi-
mation error.

Rosen and Pardalos (1986) were the first to propose the computation of breakpoints for a
given error tolerance for concave quadratic functions. The pwl interpolators were built using
equidistant breakpoints, and because the input functions were concave their interpolators were
underestimators. They identified conditions on the number of breakpoints required to achieve
a given error tolerance. Geifsler et al. (2012) showed that certain cases of general MINLPs
can be solved by just applying techniques purely from the mixed integer linear programming
by approximating the nonlinearities with pwl functions. They proposed to compute a priori
errors for pwl approximations or a priori errors for over- and under- pwl estimators. However,
they did not focus on the computation of optimal (minimal) breakpoint positions.

Rebennack and Kallrath (2015) propose two exact approaches and two heuristics for the
computation of optimal continuous pwl approximators for univariate continuous functions
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Figure 1: Maximizing the length of the intervals successively is not optimal, in general (source:
Rebennack and Kallrath (2015), page 628)

over a compactum D = [X_, X, ]. Their algorithms handle more general functions than the
ones of Rosen and Pardalos (1986). In addition, their breakpoints are distributed freely and
shifts from the function are allowed at breakpoints, which were shown to be important degrees
of freedom contributing to a significant reduction of the number of breakpoints, up to 80% in
some cases. The work of Rebennack and Kallrath (2015) differs from Geifsler et al. (2012) in
the following aspects. Geifler et al. (2012) do not target on computing the minimal number
of breakpoints and do not consider shift variables at breakpoints whereas Rebennack and
Kallrath (2015) do so. Since their work is close to ours in some aspects, let us focus on their
contributions before highlighting the main differences and contributions of this paper.
Rebennack and Kallrath (2015) show that ensuring that the approximator and the original
function do not deviate more than a predefined tolerance § from each other leads to sets of
constraints which have to hold over a continuum, resulting in a semi-infinite programming
(SIP) problem denoted OBSC for “Optimal Breakpoint System using a Continuum approach
for 7. The authors show that it is NP-hard to compute a d-approximator for an arbitrary
continuous function and propose an iterative solution procedure based on the evaluation of
the continuum conditions only on a discrete set of grid points, resulting into a MINLP model
which is a relaxation of the SIP. The feasibility of the resulting solution with regards to
OBSC is then evaluated by solving an NLP on each interval corresponding to a line-segment
of the pwl approximator, to compute the true maximal deviation between the approximator
and the original function. The algorithm stops if the true deviation is less or equal to ¢
on all line-segments. In this case the solution obtained is optimal for OBSC. Otherwise
the grid is refined to obtain a new MINLP to be solved. OBSC and the MINLPs are in
general too large and difficult to solve to optimality, therefore the authors proposed two
heuristic methods. The heuristics methods were based on the successive computation of the
breakpoints, from X_ to X, maximizing at each iteration the length of the interval on
x. This meant solving at each iteration a problem denoted BSB that can be expressed as
follows: given the breakpoint z; ending the i line-segment (which corresponds by continuity
to the beginning of the i + 1*" line-segment), compute the next breakpoint z;,; (end of
the i + 1*" line-segment) so as to maximize z;,1 while ensuring a deviation of at most §
between the original function and the linear approximation on interval [z;, z;+1]. Rebennack
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and Kallrath (2015) provided a counter-example showing that maximizing the length of the
intervals do not necessarily lead to an optimal breakpoint system i.e., to a J-approximator
with the least number of breakpoints, contrary to what is stated for example in Frenzen
et al. (2010). The counter-example is illustrated on Figure 1. It shows, for a function f(z)
that the authors proposed with [X_, X ;] = [0, 5] and § = 0.25, that the unique optimal 0.25-
approximator uses two line-segments whereas maximizing the interval length successively from
X_ to X produces a 0.25-approximator using three line-segments. The Forward Heuristic
with Moving Breakpoints (FHMB) solved each BSB problem to optimality with the iterative
“orid discretization + NLP solution” approach. Its main limitation was the necessity to solve
several NLPs. The a-Forward Heuristic with Backward Iterations (FHBI) solved each BSB
problem heuristically by trying different decreasing values for x;41 with a predefined step
parameter «. FHBI solved less NLPs than FHBM, and therefore required less computing
time, but FHBI obtained better solutions. Using any of the heuristics, it is possible to obtain
breakpoint positions satisfying the required d-tolerance, and provide an upper bound on the
minimal number of breakpoints.

It is worth mentioning that there exists publications on piecewise linear approximation
with a minimum number of pieces given a predefined bound on the absolute error in the fields
of data reduction, pattern recognition or classification, and ECG waveform preprocessing
(Tomek (1974a), Tomek (1974b), Gritzali and Papakonstantinou (1983)). The main difference
with our problem is that those publications consider as an input a discrete set of points.
Their objective is to find the piecewise linear function with a minimum number of pieces,
such that the error for each of the sample points is less than the allowed value §. Even in
cases where an analytical expression of a continuous function was available, the function was
sampled and the approximation was performed on the set of sample points. The algorithms
proposed in these research fields did not ensure the respect of the predefined approximation
error on the entire interval [X_, X ] and are therefore not applicable to our problem. Finally,
the field of piecewise linear approximation of planar curves could be mentionned (Dunham
(1986), Papakonstantinou et al. (1994)), with applications related to shape analysis or pattern
classification, since a nonlinear function f(x) could be represented as a parametric curve x(t) =
t,y(t) = f(t). However, the algorithms proposed in that research field are not applicable to
our problems for two main reasons: (i) input curves considered are discrete or digitised, not
continuous ones as ours, and (ii) the error metric is the Euclidean distance, which does not
correspond to the approximation error between the original function and the piecewise linear
function.

In the view of the state-of-the-art, the contributions of the paper are the following: (1)
instead of using continuous pwl §-approximators, we propose to approximate general univari-
ate continuous functions with non necessarily continuous piecewise linear §-approximators,
adding an additional degree of freedom to obtain a breakpoint system of equal or less line-
segments, (2) we prove that when discontinuity is allowed, maximizing the interval length
produces an optimal pwl d-approximator, leading to an exact solution procedure based on
the iterative solution of adapted BSB problems, (3) we introduce relative e-tolerance and
show the benefit of using it instead of the absolute d-tolerance, (4) models and algorithms to
compute the discontinuous pwl under- and over-estimator with absolute or relative tolerance
and with an additive worst case guarantee are presented, (5) for solving MINLP involving
nonlinear univariate energy conversion functions, we propose a solution method based on the
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upper and lower bounding of energy conversion expressions using non necessarily continuous
piecewise linear functions with a relative e-tolerance, and the solution of a pair of mixed in-
teger linear programs, (6) we show that such approach yields a performance guarantee when
the nonlinearity is restricted to the objective function, and, finally (7) computational results
on energy optimization problems for hybrid electric vehicles illustrate the efficiency of the
method in comparison to state-of-the-art methods, including solution procedures based on
approximations with absolute d-tolerance.

3 Non necessarily continuous pwl J-approximation of continu-
ous nonlinear functions
Let f: D = [X_,X,] - R be a function on the compact interval D C R. A function

g:D=[X_, X;] — Risapwl function with n, € N line-segments if Ja € R"s,b € R"s, g™ €
[X_, X]" and Vi € [1...n,], Fzax €]z™® X ], such that the following equations are verified:

g(z) = a;x + b;, Vi € [1..n,],Va € [z", 2] (7)
T = gl Vi€ [1..ng — 1] (8)
Pt = X 9)
The = X4 (10)

Such pwl function is said to be defined by G = J;2, ([a;, bi], [z™", z112X]), and the two end-

. (]
points ;™" and x;"** of each line-segment ¢ are called breakpoints.

A pwl function g is:

e continuous iff it verifies all following equations:

@™ 4+ by = a1l + by, Vi € [1,ng — 1] (11)

e or discontinuous if it does not verify all equations (11), i.e. 3j € [1,n4 — 1] such that
(aiz™ +b;) # (ai17] + biv1)

e or non necessarily continuous (nnc) if the satisfaction of equations (11) is neither required
nor forbidden

Definition 3.1 (§-approximator): A pwl function g : D = [X_,X;] — R s called 0-
approzimator of a function f:D =[X_, X ] - R with § >0, iff :

mazzeplg(x) — f(z)| <6 (12)

Proposition 3.2 Any optimal pwl continuous d-approrimator with n* line-segments can be
converted into a pwl non necessarily continuous d—approrimator with n < n* line-segments
where the projection of the first line-segment on interval D is of maximal length.
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case 1 (y = XJ") :

=1

D

y:XrT'I-ih2 )‘(min3 X-min1
Xmax,  Xmax, X,

Xr;1in1
X.

continuous approximator: AB-BC-CD

f(x

y:Xn‘I‘ir’I2 )‘(min3 X-min1
Xmax,  Xmax, X,

Xr;1in1
X.

non necessarily continuous approximator: AE-EC-CD

case 2 (X" <y

< Xénax) ng=1y

Xm.in2 é).(min3 X.min1
Xmax1 y Xmax2 X,

)(n.win1
X

continuous approximator: AB-BC-CD

f(x

Xm.in2 ).(min3 X.min1
Xmax1 y Xmax2 X,

Xn.win1
X

non necessarily continuous approximator: AE-E’C-CD

case 3 (X <y) :

n[~< nl)

z:EED

Xm-in2 )-(min3 X.f'f"i"'1
Xmax, Xmaxz)./ X,

Xr;win_I
X

continuous approximator: AB-BC-CD

f(X _E ‘D

Xm-in2 )-(min3 X.f'ﬂin1
Xmax,  Xmax,y X,

Xr;ﬂn1
X

non necessarily continuous approximator: AE-E’D

Figure 2: Maximization of the first interval (projection on I of the first line-segment)
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Proof Let [ = J™, ([a;, b;], [z™", 2%X]) be an optimal continuous d-pwl approximator (n; =
n*) of a continuous function f: D = [X_, X;] — R. Let y € D be the solution value of the
problem defined as follows:
max y //mazimize ending breakpoint
(PY){ : o ‘
larz + b1 — f(z)] <9, Ve [z7"™,y] //d-approzimation constraint
y € [z, 2] //domain definition
Let g € [1...n;] be the piece number that verifies a;;nin <y <z Breakpoint 21" verifies

larzP® + by — f(z)| < 0, therefore y > z"*. If y = 2"**, then I=1lisa pwl continuous 6-

approximator of f with n = n* pieces where the projection of the first line-segment on interval
D is of maximal length. Otherwise y > x"**, in which case a discontinuous pwl J-approximator
[ with ny < n* line-segments where the projection of the first line-segment on interval D is

of maximal length can be defined by L = U?il([ai,gi], [zmin Fmax]) = ([ag, by], [z, y]) U

(2 7

(fag:ba]. [ 2D U (UL gy (fas, b e, 227 ). i

Theorem 3.3 For any continuous function f : D = [X_, X ] — R and any scalar § > 0,
there exists an optimal non necessarily continuous pwl d-approximator g defined by G =
U, ([ai, bi, [0, 28X]) | such that each line-segment i has a mazimal length projection on
the interval [z0, X ].

Proof There exists a continuous d-approximator function for any continuous function f on
a compactum D and any scalar 6 > 0 (Duistermaat and Kol, 2004). Proposition 3.2 can
be applied iteratively on an optimal continuous d—approximator to obtain an optimal non
necessarily continuous pwl d—approximator with intervals of maximal length on D. |

Figure 2 illustrates the three possible cases related to Proposition 3.2. Figure 3(a) illus-
trates the implications of Theorem 3.3 for the function f defined with equation (6): maximiz-
ing the length of intervals leads to a discontinous pwl 0.25-approximator of two line-segments,
which is the optimal number of line-segments for any non necessarily continuous pwl 0.25-
approximator of f. In this example optimal continuous and non necessarily continuous pwl
approximators have the same number of line-segments. Figure 3(b) illustrates an example
where it is not the case: one has more line-segments than the other. In the general case, it
can be easily proven that given a continuous function f : D = [X_, X;] — R and given a
scalar 6 € R, if n,,,,¢ is the number of line-segments of an optimal non necessarily continuous
pwl d-approximator of f and if n. is the number of line-segments of an optimal continuous
pwl d-approximator of f, then {”CTH] < Npne < Ne.

The mathematical models and algorithms from Rebennack and Kallrath (2015) for com-
puting continuous pwl §-approximators are modified to compute non necessarily continuous
pwl d-approximators by considering two shifts per breakpoint instead of one, namely s,” used
for the line-segment ending a breakpoint b and s;' used for the line-segment starting at break-
point b. In particular, thanks to Theorem 3.3, Algorithm 1 resulting from the adaptation of
Forward Heuristic with Moving Breakpoints Rebennack and Kallrath (2015) is a now exact
method for computing optimal non necessarily continuous d-approximators. Its main limi-
tation is the necessity to solve an SIP, for example with an iterative grid and NLP-based
procedure as described in Algorithm 2. The tightest approximator computation given the
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2
=
~
1 —
f(x) o-tube around f(x) flx) o-tube around f(x)
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0 .-+ nne d-approximator maximizing interval length 0 -+ nne d-approximator maximizing interval length
0 1 2 3 4 5 0 1 2 3 4 5 6
T T

(a) (b)

Figure 3: Maximizing the length of the intervals successively is optimal for non necessarily
continuous d-approximators

Algorithm 1 Optimal non necessarily continuous pwl approximation
Input: Function f; domain D = [X_; X ]; scalar § > 0
Output: pwl function g defined by G

Lng:=0y=X_;G:= 0; zond .= X,

2: while y < X, do

3 phegin . y

4:  solve the following SIP to obtain a, b, and y:

max y //mazximize ending breakpoint  (13)
s.t. |ar +b— f(x)| <6,Vx € [zP8y] //5-approzimation constraint  (14)
a €R,beR,y € [gbeein pend] //domain definition (15)

5 G:=GU([(a,b), (zPe" y)])
7. end while
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Algorithm 2 Iterative grid and NLP-based procedure to solve SIP (13)-(15)

Input: Function f; limits x

begin - gend. gealar § > 0; parameters nilnit >2 w>1

Output: slope a, y-intercept b, next breakpoint y
1: initialize gap := +oo; grid size n; := ni"*/w and grid Ny = {1...ns}
2: while gap > § do

3:
4:

5:

update grid size n; := njw and grid Ny :={1...ns}
solve the following NLP to obtain y, sg, and s, in order to compute the coefficients

__ .begin__ . .
q = JWtsy— 0 and b= f(zP°8N) 4 5o — azPbesin:

—zbeEm
max y //mazimize ending breakpoli

s.t. so + f(xPeein) + i(8y+f(y)‘;,{|(ﬂegin)_s°) — f(zi)| <6,Vie Ny //d-approzimation on grid17)
r; = xPeein 4 | N1i| (- rPeein) Vi € Ny //grid computation (18)

s0 € [=9,6], 8y € [=0,0],y € [x8™ 24| and z; € R,Vi € N;.  //domain definition (19)

compute the gap := max,¢zbesin o [az + b — f(z)|

6: end while

optimal number breakpoints computed with Algorithm 1 would also require the solution of
NLPs (Rebennack and Kallrath (2015)). Section 4 presents, among other things, an exact
method applicable to convex and concave functions that does not need to solve any SIP or
any NLP. The method also has an additive worst case guarantee for functions that are nei-
ther convex nor concave but that can be decomposed into convex or concave pieces, if the
decomposition is part of the input.

4 From pwl )-approximation to pwl )-bounding

A benefit of computing §-approximators optimal in terms of number of line-segments is to
minimize the number of additional binary variables added to obtain the MILP resulting from
the replacement of nonlinear terms with their pwl approximators. A drawback of applying -
approximation is that the optimal solution of the resulting MILP can be infeasible with respect
to the original MINLP. In this case the solution may not be of interest for the practitioners
who formulated the original problem. A usual alternative is to use over- and under-estimators
defined as follows.

Definition 4.1 (§-underestimator): A pwl function | : D — R is a 6-underestimator of a

function f:D — R with 6 € RT iff [(z) < f(z) < l(z) + §,Vz € D.

Definition 4.2 (5-overestimator): A pwl function [ : D — R is a §-overestimator of a func-
tion f: D — R with § € RT iff l(x) > f(z) > 1(x) — 6,YVx € D.

In the context of energy optimization for hybrid electric vehicles for example, replacing

each nonlinear energy loss function with its pwl d-overestimator yields a MILP solution where
a sufficient or excess amount of energy is produced at each time-step. Since excess energy can
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be dissipated as heat (in a resistance inserted in the braking system or in mechanical brakes
present for security reasons) therefore the MILP solution is applicable on a test bench or on
the real world hybrid electric vehicle considered. Having ensured the feasibility of the solution
obtained, it is of interest to provide an estimate of the quality of the solution with respect to
the optimum of the original MINLP. This can be done using a pwl d-underestimator of the
energy loss function and solving the resulting MILP problem to obtain a lower bound of the
MINLP. Each nonlinear function is therefore bounded from above and below with two pwl
functions, yielding two MILPs whose optimal solutions cost verify: zyiLp < 2mINLP < 235p-
The resulting solution method is denoted PLB-+MILP.

Given an optimal continuous pwl d-approximator g of a function f, an optimal continuous
pwl 25-over- (resp. under-) estimator can be obtained from shifting g by § (resp. —d), as stated
by Rebennack and Kallrath (2015) i.e. g(x) 4 d (resp. g(x) — J) is a 26-over (resp. under-)
estimator of f. This result can be extended to non necessarily continuous pwl approximators
and estimators. In addition, in the case of energy optimization for example, the MINLP can
be neither convex nor concave even though the individual nonlinear energy loss functions or
energy demand /cost conversion functions are convex or concave. Yet, if a nonlinear continuous
function f : D — R is convex (resp. concave) over D with a derivative efficiently computable
at any point of I, then taking advantage of the following equation, it is possible to compute
an optimal J-underestimator (resp. d-overestimator) without solving any SIP or even NLP:

f is convex over D < f(y) > f(z) + f'(2)(y — x),Va,y €D (20)

Shifting can then be applied to obtain an optimal J-overestimator (resp. d-underestimator).

Let us focus, for example, on the computation of the optimal J-underestimator of a non-
linear continuous convex function f with a derivative efficiently computable. The reason-
ing hereafter can be adapted to compute the optimal d-overestimator of concave functions.
Thanks to Theorem 3.3 the objective at each iteration ¢ of the algorithm is to maximize x}"*
for a given x?‘in. Each line-segment 7 is tangent to f (otherwise it can be replaced with a
line-segment of identical slope but tangent to f). Therefore the objective at iteration i is to
identify a tangent point ¢; € [m?‘in, "] that defines the slope a; = f’(¢;) and the y-intercept
bi = f(a) — f'(¢;)qi of line-segment i so that z"®* is maximized given ™. Given g;, the
error in function of y defined as f(y)— (f'(¢i)y + f'(¢i)q:) increases when y decreases if y < ¢;,
or when y increases if y > ¢;. Therefore, for a given ¢;, checking whether the d-approximation
constraint is verified at points ™™ and 2 is sufficient to ensure the validity of the con-

i i
straint on the entire interval [z™", 2]"**]. In this context, the following proposition can be
enunciated:

(2
Proposition 4.3 Finding the line-segment that mazimizes x;"** for a given Jrini“

to solving sequentially two separate problems: (1) maximizing g; for the given x
(2) mazimizing ™ for the previously computed g;.

1s equivalent

P and then

Proof Let x;-nax(qgk)) be the maximal value possible of zj"** for a given qZ(k). It suffices to
prove that :L‘?lax(ql@)) > ajinax(ql(l)) = qZ@) > qgl). This is done using equation (20) which

leads to 0 < f(y) — (aPy +b?) < f(y) — @My +bV), vy > ¢?. |

i
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Algorithm 3 Optimal non necessarily continuous pwl §-underestimator

Input: Convex function f; domain D = [X_; X |; scalar § > 0
Output: pwl function g defined by G
Lng:=0y=X_;G:=10
2: while y < X, do
3 phegin . y
4:  solve the following problem to get ¢ and set a := f'(q), b:= f(q) — f'(q)q
max q //mazimize tangent point
s.t.
(PQ) beginy) __ ! begin __ _ ; ; ;
fxPe™) — (f(q) + f(g)(= q)) <6 //d-approzimation constraint
q € [zPee" X ] //domain definition
5. solve the following problem to obtain y
maxy //mazimize ending breakpoint
PY){ 5" o .
fly) — (ay +b) <o //d-approzimation constraint
y € ¢, X+] //domain definition
6:  G:=GU([(a,b),(zP=E" )]
7. ng:i=ng+1
8: end while

Algorithm 4 Solve problem (PQ)
Input: Convex function f; z”®™: X :§>0; a € N
Output: tangent point ¢, slope a, y-intercept b
1: {q, a, b, 0, 0}=Dichotomy _q(f,x>°" X, 6 a,2P®" X, 0,0, 0) {use Algorithm 6}

Algorithm 5 Solve problem (PY)

Input: Convex function f;X,; d > 0; a € N; tangent point ¢, slope a, y-intercept b
Output: next breakpoint y
1: {g, 0, 0}=Dichotomy y(f,z" X, d.a,q, X;, 0,0, 0) {use Algorithm 7}
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Algorithm 6 Dichotomy ¢
Input: Convex function f; 2P X : § > 0; & € N; Buin, Buax; ¢; a; b
Output: tangent point g, slope a, y-intercept b, lower limit By, upper limit Bpax

1: if Bpax — Bmin < 107% then

2 q=Bunia=f'(¢);b=f(qg) — f'(9)a
3:  return q,a,b

4: else

5. b= f/(xbegin); E — f(l‘begin) o f/(Qi)Qi
6:  if f(xPeE) — (@zPesi™ 4 b) < § then
7 Bmin = Bmax; Bmax = X+

8 else

9: Biax = Buin + 0.5(Bmax — Bmin)
10:  end if

11: {Q7 a, ba Bmin; Bmax}:ComPUte_Q(f7$begin7 X+767a7Bmin> Bmax; q, a, b)
12: end if

Algorithm 7 Dichotomy y
Input: Convex function f; Xy; 6 > 0; a € N; ¢; a; b; Buin, Bmax
Output: next breakpoint y, lower limit B, upper limit B ax

1: if Bhax — Bmin < 107% then

2: Yy = Bmax

3: return y

4: else

5. if f(Bmax) — (aBmax +b) < § then
6: Bmin = Bmax; BmaX = X_|_

7. else

8: Brax = Bnin + 0.5(Bmax — Bmin)
9: end if

10:  {y, Bmin, Bmax}=Compute y(f, X,0,a,q, a, b,Bmin, Bmax)
11: end if
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Algorithm 3 summarizes the resulting procedure that computes an optimal §-underestimator
of a nonlinear convex function f with a derivative efficiently computable at any point of
[X_, X4]. Problems (PQ) and (PY) can be solved to optimality with dichotomy search meth-
ods as illustrated by Algorithms 6 and 7 where parameter « is the number of significant
decimals for g;, ™™, and x;"®. Notice that there is no need to solve an SIP or NLP. It can

? . .
be noted that any two consecutive line-segments ([a;, b;], [2j*", 2]***]) and ([a;41, biy1], [2]}] =

", a:fff‘]) of the pwl function obtained verify a; # a;4+1 and a;x7"** +b; < a1 1257 + biy1.
Their supporting straight lines intersect on a point C of coordinates (z¢,yc), such that
Yo = a;xc + b; = ajr1x0 + bir1 and x?m <zo <2 and f(xc) — yo < §. Consequently,
the non necessarily continuous pwl d-under-estimator computed with Algorithm 3 can be
converted into a continuous pwl J-under-estimator with the same number of line-segments.

Algorithm 3 can be adapted to compute directly an optimal d-overestimator of a convex
function: a tangent point ¢; in this case defines the slope a; = f’(¢;) and the y-intercept
bi = f(a™) — f/(g;)x™". It can also be adapted for the pwl bounding of concave functions
with derivatives efficiently computable. Let us consider the case of continuous functions
that are neither concave nor convex but that can be decomposed into p pieces, each piece
being either concave or convex. If the decomposition is part of the input, then pwl bounding
the function can be done by bounding each piece separately using the algorithms previously
described, then aggregating the pwl functions obtained. To that end, let k; € D, Vi € {1..p+1}
be a set of points, such that (i) on each interval [k;, k; 1] the function f(z) is either convex
or concave, (ii) k; = X_, (iil) kp41 = X4, and (iv) k; < kjy1,Vi € {1..p}. For each interval
[ki, kit1], let g; be the optimal pwl over-(resp. under-) estimator of f computed with the
algorithms from Section 4. Let g be an over (resp. under) estimator of function f on interval
D, resulting from the union of pwl functions g;, i.e. g = Ujeq1. p19i- Let ny, (vesp. ny) be the
number of line-segments of g; (resp. g). If n* is the number of line-segments of any optimal
pwl over-(resp. under-) estimator of f on interval D, then n, = > ¢ ; ng, and the following
equation is verified, providing an additive worst case guarantee:

n*<ng<n*+p-1 (21)

5 Drawbacks and limitations of pwl )-bounding

When applying PLB+MILP, choosing relevant ¢ values is a challenging issue. The chosen
value should be orders of magnitude smaller than the resulting solution cost to provide an
acceptable precision level. After solving the MILP, verifying whether the chosen tolerance
value § was sufficiently small in the view of the resulting solution costs is straightforward.
If it was not the case then the value of § is decreased before a new round of pwl bounding
then MILP solution. Such iterative procedure is not satisfactory because the number of
iterations is unknown a priori and the pwl bounding and/or the MILP solution may require
significant computational efforts during each single iteration. An alternative is to identify a
target precision A of the MILP solution with regards to the optimal MINLP solution value
and precompute a priori the corresponding § values in function of the chosen A. When
nonlinearity occurs in the constraints, the link between ¢ and A is not obvious. But even
when nonlinearity occurs only in the objective function, PLB+MILP with a target precision
A presents significant limitations described in the remainder of this Section.
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5.1 Data dependence leading to multiple ¢ values

Let us consider the problem (1)-(5) for a specific HEV, which, for simplicity, is assumed to have
an ideal supercapacitator (f%(z) = x, f3(x) = x). Therefore the nonlinearity in the problem
comes from the objective function which is composed of I univariate positive nonlinear terms
fY(x). Ensuring a final precision of at least A requires to bound f! with a tolerance § = A/I.
Even if the same target precision A is chosen, different power profiles translate into different
¢ values. Two power profiles with the same time horizon I, may also require different § values
because different power profiles may translate into solution costs which can differ significantly
in order of magnitude, requiring different A values, and, therefore, different § values.

To summarize, for any new power profile provided, the pwl bounding of the same function
f' may need to be redone with a value of § suitable to the new data set, even though
the nonlinear terms themselves remained unchanged. In addition, since the ¢ errors on the
nonlinear terms are additive, a longer time horizon means a higher number of univariate
terms (f!(z;)) in equation (1), which means that a smaller tolerance § may be required. This
translates into an increase of the number pieces for the pwl functions, and, therefore, more
binary variables which adds to the complexity of a MILP that was already penalized by the
fact that long time horizons meant more decision variables a:zl, x?, arf’ These all contribute to
a substantial reduction of the size of instances that can be solved efficiently.

5.2 Solution dependence leading to unknown § values

There exists several cases of MINLP where knowing A is not sufficient to infer the correspond-
ing 0 values. Let us consider, for example, problem (CF) modeling a scheduling problem with
a single energy source. There are a set of activities A, each activity a having a release date rg,
a due date d,, a duration p,, and an instantaneous energy demand b,. A constant term aq
with a € Aand ¢t € T is equal to 1 if ¢t € [rq, ds[ and 0 otherwise. The efficency function of
the energy source used to satisfy the total demand of activities scheduled at each time period
is denoted p, i.e. a cost or energy consumption of p(x) produces an amount of usable energy
x. Therefore p is defined on [0, 4 bs] and verifies p(0) = 0. The goal is to schedule the
tasks so as to minimize the total energy cost. A resulting mathematical model requires binary
decision variable x4; that is equal to 1 iff activity a is active at instant ¢ € 7. Continuous
variables w; represent the total energy demand at instant ¢ € 7. Nonlinearity comes from
the objective function which is comprised of |7| univariate nonlinear terms. The resulting
problem is:

(CF) min Zp(wt) //minimize total energy cost (22)
teT
s.t.

Zaatxat > Da, Va e A /] execute activity a during p, time periods (23)

teT
wy — Z baTar = 0, Vte T //link variables xq and z (24)

acA

zq €{0,1}, VYae At €T //domain definition (25)
w; € RT, VteT. //domain definition (26)
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Let (CF), refer to the MILP derived from problem (CF) with a target tolerance A.
Identifying a relevant ¢ value for obtaining (CF), is not straightforward. Indeed, in the
general case, the duration of the schedule for the optimal solution is not known a priori. The
only information available is the time horizon |7, but this value may be far from the real
ending time of the optimal schedule. As an illustration, consider an instance with a time
horizon |7] = 100 having an optimal solution with an ending time of 10 (i.e. an optimal
solution x* that verifies >, 4 @7 19 > T and >, 4 D 4~19Zar = 0). In this case only 10 terms
are active in the objective function, therefore bounding each term with a tolerance § = A/10
should have been sufficient to achieve the requested global tolerance A. Instead, because the
duration is unknown a priori, each term of the objective function has to be bounded with
precision § = A/100. In summary, a pwl bounding tolerance 10 times smaller than necessary
would be requested, leading to pwl bounding functions with a higher number of line-segments,
leading to a higher number of binary variables, leading to MILPs more time consuming to
solve than necessary given the tolerance target A.

6 Using e-relative tolerance

To counter the drawbacks identified in Section 5, we propose to perform the upper and lower
bounding of energy conversion expressions using non necessarily continuous pwl functions
with a relative e-tolerance.

Definition 6.1 On a compactum D, pwl bounding a function f : D — R* with a relative
tolerance value € €]0,1] consists in identifying two pwl functions (f, ) that verify:

f(z) < f(x) < F(®), VeeD (27)
[f(x) = (@) <elf(x)], VeeD (28)
f°(z) = f(2)| < el f(z)], VzeD (29)

Definition 6.1 generalizes the one of Ngueveu et al. (2016) by taking into account D C R
instead of D C R*.

The resulting ePLB+MLP method shares the advantages of the JPLB+MILP method but,
in addition, thanks to the use of relative tolerance, guarantees can be obtained on the quality of
resulting bounds under conditions expressed in Proposition 6.2. Models and algorithms from
Sections 3 and 4 can be adapted to ensure satisfaction of the relative € tolerance constraints
(27)-(29) instead of the absolute § tolerance constraints expressed in Definitions 4.1 and 4.2.

Proposition 6.2 Let (P) be a (MI)NLP linearly constrained and with an objective function
decomposable into a sum of univariate positive linear or nonlinear functions, i.e. verifying the
following equation where gi; : D — R, Vk, Vi are linear or nonlinear functions:

(P)min or max zp) = g(z) = Z ngi(xi) st. Az <B (30)
k1
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Let P° (resp. P€) be the MILP resulting from the replacement of each nonlinear term gg; with
its over-estimator g, (resp. under-estimator QZZ) Then the solution values of the optimal
solutions z(py, z(pe), and 2P of the corresponding problems verify the following equations:

ZFE . Z(pe
(1 —€)z(py < max {z(Pe), 1(+)€} < z(py < min {Z(Pe), 1(: l} < (1 +e)zp (31)

Proof It results from the combination of equations (27) with zp) < 27 < (1+€)zpy and
(L=6)zp) < 2p) < 2(p) i

Let f*(x) (resp. f(z)) be an optimal e-over- (resp. under-) estimator of f. Contrary to

the case of absolute tolerance, if relative tolerance is used then f(x) — e (resp. f(z)¢ +€) is
not necessarily an under- (resp. over-) estimator of f(x). Therefore is not possible to deduce
an optimal e-over- (resp. under-) estimator of f from applying a shift on an optimal e-under-
(resp. over-) estimator of f. Each estimator has to be computed separately.

7 Computational results

Models and algorithms run on an Intel(R) Xeon(R) CPU E3-1271 v3 computer with 32 GB
RAM using a single core. PLB heuristic algorithms based on a dichotomic search (Algorithm
3) are coded in MATLAB R2017b 64bits. Their parameter « set to 6 specifies the number
of significant decimals. Obviously the computing times would be significantly reduced if
all algorithms were implemented in C or C++, but the findings, analysis, and conclusions
would not differ. MILPs are solved using ILOG CPLEX 12.6.3 with a time limit of 3600
seconds. We also implemented the exact PLB Algorithm 1, by using GAMS 24.9.2 r64480
with LindoGlobal on neos servers (single core) Czyzyk et al. (1998) to solve the NLP sub-
problems that Algorithm 2 generates.

The computational evaluation was done in three parts: first, a comparison between con-
tinuous pwl d-approximation and non necessarily continuous (nnc) pwl d-approximation was
done, for various nonlinear continuous functions. Then, the full ePLB-+MILP solution method
was compared to MINLP solvers as well as state-of-the-art upper and lower bounding methods
for solving the MINLP problem of energy optimization in HEV. Finally, the impact of the
tolerance type (relative versus absolute) was evaluated.

7.1 Continuous pwl J-approximation versus nnc pwl J-approximation of
nonlinear continuous functions

Let us consider the nine nonlinear continuous expressions summarized in Table 1. For each
function and four different values of 6 € {0.100,0.050,0.010,0.005}, (Rebennack and Kallrath,
2015) reported the number of breakpoints of their continuous pwl J-approximators. Their
numerical accuracy was set to 107°, meaning that equations (12) could be violated by at
most 107°. Their models and algorithms were implemented in GAMS 23.6 and solved using
LindoGlobal 23.6.5. Their computations were performed on an Intel(R) i7 using a single core
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ref function X_ X4

) 2 —35 3.5
(IT) In(x) 1 32
I11) sin(x) 0 27
V) tanh(x) -5 5
(V) sin(z) 112
(VI) 222 + 23 —25 25
(VII) e " sin(z) —4 4
(VIII) e~ 100(@=2)? 0 3
(IX) 1.03¢—100(z—1.2)* + e—100(z—2)? 0 3

Table 1: Univariate nonlinear functions tested

S.U.N. : Piecewise linear bounding and MILP for energy optimization

input continuous approximation nnc approximation

function o Rebennack and Kallrath (2015) Heuristic Exact
ref p Ny N_ Ny cpu M. N_ N4y CPU N, cpu
() 1 0.010 25 Hours 25 30s 25 19 s
0.005 35 Hours 35 43s 35 4s
(I)y 1 o0.010 9 Sec 9 11s 9 221s
0.005 13 Sec 13 16s 13 172 s
(IfIry 2 0.010 13 Sec 13 14 12s 13 57 s
0.005 17 Few min 17 18 17s 17 68 s
(Iv) 2 0010 9 Few sec 9 10 10s 9 161 s
0.0065 13 Few min 13 14 15s 13 128 s
(V) 4 0.010 9 Sec 7 10 11s 8 143 s
0.006 12 Few min 12 15 15s 12 181 s
(VI) 2 0.100 12 Min 1 12 11s 11 115 s
0.050 16 Few days 15 16 17s 15 88 s
0.010 16 35 34 35 36s 34 164 s
0.005 16 48 47 48 59s 47 195s
(VII) 3 0.100 5 15 14 16 17s 14 226
0.050 5 20 19 21 28s 19 287s
0.010 5 44 43 45 52s 43 268 s
0.005 5 62 61 63 T72s 61 869 s
(VIII) 3 0.100 5 Sec 4 6 4s 4 74 s
0.050 5 7 4 6 6s 5 83 s
0.010 5 12 10 12 11s 11 138 s
0.005 5 15 14 16 16s 14 1466 s
(IX) 5 0.100 8 Few days 7 11 8s T 77 s
0.050 8 12 7T 11 12s 9 64 s
0.010 8 22 19 23 23s 21 114 s
0.005 8 29 27 31 27s 27 T84s

Table 2: Comparison between nnc d-approximation and continuous d-approximation for nine
univariate nonlinear continuous functions previously used by Rebennack and Kallrath (2015)
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30 30
25 25
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10 10

Figure 4: For function f(z) = 222423 and interval [X_, X ] = [~2.5, 2.6], optimal continuous
upper bounding leads to 8 line-segments whereas optimal nnc continuous upper bounding leads
to 7 line-segments when § = 0.5

with 2.93 GHz and 12.0 GB RAM on a 64-bit Windows 7 operating system. A time limit of
1800 seconds was set for every MINLP.

Table 2 shows the comparison between the continuous pwl §-approximation and our nnc
pwl d-approximation obtained by computing a 2-overestimator before applying a shift of —§
on it. For functions (I) to (V), easier to approximate by Rebennack and Kallrath’s algo-
rithms, only the two smallest (and thus more challenging) ¢ values are considered, whereas
for functions (VI) to (IX), harder to approximate, all four ¢ values were used. The first col-
umn contains the reference of the continuous input function considered. The second column
specifies the number p of the subintervals of convexity and concavity for the nonlinear uni-
variate input functions. The third column corresponds to the absolute tolerance value 6. In
the remainder of the table, n, is the optimal number of line-segments, n_ (resp. ny) is the
lower (resp. upper) bound returned when n, could not be found and cpu is the total comput-
ing time. Note that (Rebennack and Kallrath, 2015) reported only the order of magnitude
of the computing time for instances that could be solved to optimality. In their scale few
means “> 1 and < 10". The instances without computing times are the ones for which the
1800 seconds time limit was reached during the solution of one of the MINLPs. Passmark
cpu scores can be used to estimate the computing times of our algorithms if they were run
on a machine equivalent to the one of (Rebennack and Kallrath, 2015). Such conversion is
available in Appendix. The computing times reported in Table 2 are the original values.

Results show that nnc heuristic and exact approximation methods require short com-
puting times for all instances, contrary to continuous approximation which fails to converge
for half of the instances. Exact nnc approximation yields a smaller number of pieces than
continuous approximation 17 times out of 26, and the same number of pieces 9 times. The
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heuristic nnc approximation yields an upper bound better or equal to the one from continuous
optimization only 11 times out of 26, but its lower bound outperforms or equals the one from
continuous approximation 19 times out of 26. In particular, on instances for which continuous
approximation could not converge, the lower bound from the heuristic nnc improves the one
from (Rebennack and Kallrath, 2015) 10 times out of 12. Figure 4 illustrates the optimal
continuous and nnc continuous pwl overestimators for function f(x) = 222 + 2% and interval
[X_, X4] = [—2.5,2.6] with 6 = 0.5. We can observe that the discontinuity helps to lessen the
number of line-segments. In summary, the great advantage of using nnc pwl functions is the
drastic reduction of the computing times, with the added benefit of sometimes also reducing
the number of pieces.

7.2 Evaluation of the ePLB--MILP solution method
7.2.1 Instances and ePLB-+MILP settings

The solution method ePLB4+MILP is evaluated on the real-world problem (P) of energy
optimization for hybrid electric vehicles modeled with (1)-(5). Instances derive from the data
of Ngueveu et al. (2017) representing different driving cycles. The vehicle characteristics
are: PL.=1kW, PL =60KkW, P2. —60 kW, P2, —=60kW , Eyin—=400kWs, Eyax—1600

min max min max
if <0

0
_ 2 _ 3 _ 1 _
kWs, Fo=900 kWs, f?(z) = 1.0753z, f3(z) = 0.93z and f!(z) = { fir () otherwise

where f(g)(z) = 0.00000022° — 0.00002742* + 0.0015145023 — 0.0245327022 + 1.92434870x +
5.90568630. Function f(g)(x) is convex on [1;7.04029] and concave on [7.04029;60]. The six
different power demand profiles that define P;,Vi € {1...I} varied in size from I = 40 to
I = 1400'. This results into 6 instances regrouped in a class denoted (R). Two other classes
of instances denoted (Al) and (A2) were obtained, by replacing f(gy(z) with fia1)(z) =
0.001z% — 0.02422 + 1.92z + 5.91 or fiz)(x) = —0.0052° + 0.52% — 0.8z + 10.0. Function
fa1)(x) results from the truncation of function f(g)(x) to avoid numerical errors in MINLP
solvers. It is convex on [1;8.0] and concave on [8.0;60]. Function f(49)(x) is an artificial
function that is concave on [1;33.3333] and convex on [33.3333; 60].

Applying ePLB+MILP on problem (P) consists in identifying, for a given value of ¢,
two pwl functions f1° and S verifying equations (27)-(29) to replace f!. Two MILPs are
obtained: solving (P€) yields a lower bound for (P) whereas solving (P°) yields a feasible
solution and an upper bound for (P). A tighter upper bound can be obtained by recomputing
the cost of the feasible solution from (F€)7 using f! instead of Fﬁ. Three different € values
were tested: 0.01, 0.001, and 0.0001, corresponding to an expected gap of 1%, 0.1% and 0.01%
between upper and lower bounds. The time limit was set to 3600 seconds for each MILP.

7.2.2 MINLP solvers and previous state-of-the-art upper and lower bounding
methods

To the best of our knowledge the best known solution method for problem (P) was proposed
by (Gaoua et al., 2013). It consists in a reformulation of the problem as a MILP using a dis-
crete set of efficiency points obtained experimentally for the FC. This approach was replicated

'"Power profiles derived from real-wold test drive cycles (Ngueveu et al. (2017)) are available at
http://homepages.laas.fr/sungueve/Data/HEV_I_PowerProfiles.zip.
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by (Chauvin et al., 2015) in an iterative procedure based on the discretization of the nonlin-
ear continuous efficiency function into equidistant efficiency points before the solution of the
resulting sub-problems with a MILP solver. Applying such method on problem (P) consists in
defining a set Kpc of efficiency points k denoted (z*, f1(z%)) with 2% € [P, , PL..], defining
binary variables yf equal to 1 iff efficiency point k is applied at time ¢, replacing le with
> keKpe y¥ in constraints (2) and replacing each nonlinear term f1(z}) of the objective func-
tion with the linear term >, x fH(@*)y¥, to obtain a MILP. The resulting solution method
is denoted EP+MILP. To ensure a fair comparison between EP+MILP and ePLB-+MILP, the
same number of binary variables is imposed by setting |Kpc| = 7€, and the time limit is set
to 3600 seconds.

The only known lower bound for problem (P) was proposed by Ngueveu et al. (2017), based
on an assumption of ideal conditions: that the FC efficiency remains at its maximum level

when it is used, i.e. each term f1(z}) is replaced with ya}! where v = (maxyeipr  p1 fl;y)).
The resulting relaxation is a MILP whose optimal solution cost is a lower bound of (P).
Problem (P) is a MINLP and can therefore be solved with any commercial or opensource
MINLP solver. We used GAMS 24.9.2 164480 and neos servers Czyzyk et al. (1998) to test
four state-of-the-art solvers: Antigone, Baron, Couenne, and LindoGlobal. The time limit is
set to 7200 seconds per instance, and the relative gap tolerance is set to ¢, i.e. for e = 0.01,

GAMS parameter OPTCR is also set to 0.01.

7.2.3 Results and analysis

PLB MILP EP | MILP: |K[ = ¢

Instances
PLB (upper) MILP Recomp  from (Gaoua et al., 2013)
class # e n cpu UB gap cpu UBgap |K| UB gap cpu
(R) 6 0.01 6 8s 0.20% 16 s 0.04 % 6 1.07 % 3000 s
0.001 19 17s  0.04 % 30 s 0.03 % 19 0.15 % 1690 s
0.0001 56 52s 0.01 % 58 s 0.01 % 56 0.03 % 314 s
(A1) 6 0.01 10 10s  0.26 % 3ls 0.18 % 10 0.62 % 3000 s
0.001 27 25s  0.05% 61 s 0.04 % 27 13.25 % 2098 s
0.0001 82 73s 0.01 % 78 s 0.01 % 82 0.03 % 488 s
(A2) 6 001 14  14s 052% 96s 049% 14 226% 2436 s
0.001 43 41s 0.06% 119s 0.06 % 43 39.67 % 2648 s
0.0001 133 109s 0.01 % 627s 0.01 % 133 0.07 % 1213 s

Table 3: Comparison between ePLB+MILP and the best known state-of-the-art upper bound-
ing method EP+MILP from (Gaoua et al., 2013). (refer to Table 4 for MINLP solvers results)

Tables 3, 4, 5, and 6 report the computational results in an aggregated format where the
first column is the instance class, the second column is the number of instances in the class,
the third column specifies the relative tolerance €, and the remainder of the table uses the
following headings:

e N n&

numbers of pieces of the pwl functions FE and ]ie

e cpu: computing time
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MINLP solvers (GAMS 24.9.2 r64480; cpu=7200 s)
Instances - :

antigone baron couenne lindoglobal
class # optCR=¢ UBgap UB gap UB gap UB gap
(R) 6 0.01 1386 % 9.64 % 20.97 % (4) 0.01 % (5)
0.001 526 % 9.69% 540 % (4) 0.01 % (5)
0.0001 378% 969 % 540 % (4) 0.01 % (5)
(A1) 6 0.01 1.06 % 8.62% 344 % (5) 0.37 % (5)
0.001 1.39% 848 % 3.94 % (4) 0.37 % (5)
0.0001 1.71% 1015 %  3.44 % (5) 0.37 % (5)
(A2) 6 0.01 096 % 14.74 % 20.11 % (2) 0.00 % (5)
0.001 096 % 14.86 % 20.11 % (2) 0.00 % (5)
0.0001 094 % 14.73% 20.11 % (2) 0.00 % (5)

Table 4: Evaluation of MINLP solvers upper bounds for problem (P), for a computation time

of 7200s. Results show that these solvers are outperformed by the algorithms of Table 3

Instances LB from Ngueveu et al. (2017) PLB | MILP
PLB (lower) MILP

class # LB ratio cpu € nf cpu LB ratio cpu
®) 6 9781 % 2s 00l 6 8s  99.18%  20s
0.01 19 19s  99.93 % 3ls
0.001 56 50s 99.99 % 58 s
(A1) 6 97.36 % 2s 001 10 1ls 9925% 29s
0.001 27 27s  9994% 46
0.0001 82 74s 99.99 % 216s
(A2) 6 78.50 % 2s 0.01 14 16s  99.50 % 26 s
0.001 43 42 s 99.95 % 87 s
0.0001 134 114s 99.99 % 405s

Table 5: Comparison between ePLB+MILP and the best known state-of-the-art lower bound-
ing method for problem (P) (from Ngueveu et al. (2017)). (refer to Table 6 for MINLP solvers

results)

e UB gap: upper bound gap, equal to 100-

UB-LB+

LB+

where UB is the upper bound obtained

and LB+ is the best known lower bound from any of the lower bounding methods tested
(therefore UB gap = 0% if UB=LB-). If the solver was not able to produce a solution
within the time limit, the number of non-solved instances are reported in parenthesis.
The average UB gap values are only computed over the instances for which a solution
was produced.

e LB ratio: lower bound ratio, equal to 100 -

LB

UB+

where LB is the lower bound obtained,

UB- is the best known upper bound from any of the upper bounding methods tested
(therefore LB ratio = 100% if LB=UB+). If the solver was not able to produce a valid
lower bound within the time limit, the number of non-solved instances are reported in
parenthesis. The average LB gap values are only computed over the instances for which
a solution was produced.
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MINLP solvers (GAMS 24.9.2 r64480; cpu=7200 s)

Instances - -
antigone baron couenne lindoglobal
class # optCR=e LB ratio LB ratio LB ratio LB ratio
(R) 6 0.01 24.66 % - % (6) % (6) (6)
0.001 21.18 % - % (6) % (6) (6)
0.0001 21.32 % - % (6) % (6) % (6)
(A1) 6 0.01 4941 % 37.89 % (0) 33.03 % (3) 3599 % (5)
0.001 49.62 % 37.72 % (0) 32.57 % (1) 35.79 % (5)
0.0001  49.60 % 37.72 % (0) 33.07 % (3) 35.80 % (5)
(A2) 6 0.01 5321 % - % (6) - % (6) - % (6)
0.001 53.35 % - % (6) % (6) % (6)
0.0001  53.21 % - % (6) % (6) % (6)

Table 6: Evaluation of MINLP solvers lower bounds for problem (P), for a computation time
of 7200s. Results show that these solvers are outperformed by the algorithms of Table 5

e Recomp: cost of the optimal solution of (P°) when recomputed using f* instead of FE.

Results from Table 3 show that ePLB+MILP produces better solutions than EP+MILP in
a shorter computing time. Table 4 shows that none of the MINLP solvers is able to complete
its computations before the 7200 seconds time limit. With this time limit, Antigone and
Baron produce solutions of worse quality than the ones from ePLB-+MILP. Couenne fails to
produce a feasible solution in 32 cases out of the 54. LindoGlobal may produce very good
solutions, but, due to its problem size limitations (3000 variables and 2000 constraints), the
solver can only be applied on the 9 smallest cases out of 54. On these few cases, the solver
produces better solutions than ePLB+MILP in 6 cases, with a UB gap was improved by a
value between 0% and 0.52%. In the 3 cases where ePLB+MILP produces better solutions
than the solver, the UB gap was worse by a value between 0.11% and 0.36%.

Regarding the lower bounds. Results from Table 5 show that ePLB+MILP require a
higher computing time, but produces better lower bounds, than the previous lower bounding
procedure from the literature. Table 6 show that MINLP solvers are clearly outmatched.
Baron, Couenne, and LindoGlobal fail to return a valid lower bound for several instances,
and the few lower bounds returned are poor. Antigone always produces valid lower bounds
but of poor quality, with a ratio varying between 21 and 54%. These results also suggest that
all the MINLP solvers tested would require a prohibitively high computing time to run to
completion.

In summary, ePLB+MILP outperformed the best known upper and lower bounding meth-
ods from the literature, as well as MINLP solvers. New best known solution values are avail-
able in the column UB+ of Tables 7 and 8.

7.3 Comparison between relative and absolute tolerance for piecewise lin-
ear bounding

This section focuses on the impact of the type of tolerance (relative or absolute) used for the
first phase of the PLB+MILP solution method. For each pair “instance, €”, given the best
known solution cost UB+, we evaluate what would have been the value of absolute tolerance §
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Class (R) using relative tol using absolute tol Gap
instance I UB+ e nf UB 6= % e 100?
S _(R) 40 453.34 001 6 454.3 0.1133 14 13333 %
0.001 19 453.5 0.0113 42 121.05 %
0.0001 56 4534 0.0011 133 137.50 %
I (R) 561 8740.92 0.01 6 8756.6 0.1558 12 100.00 %
0.001 19 8742.2 0.0156 36 89.47 %
0.0001 56  8741.0 0.0016 110 96.43 %
H (R) 734 1856841 0.01 6 18626.0 0.253 10 66.67 %
0.001 19 18576.9 0.0253 28 4737 %
0.0001 56 18569.0 0.0025 89 58.93 %
U _(R) 811 2607.60 0.01 6 2613.5 0.0322 25 316.67 %
0.001 19 26084 0.0032 78 310.53 %
0.0001 56  2607.7 0.0003 255 355.36 %
N (R) 1200 23114.87 0.01 6 23137.7 0.1926 11 8333 %
0.001 19 23119.3 0.0193 33 73.68 %
0.0001 56 23114.9 0.0019 102 82.14 %
E (R) 1400 27065.71 0.01 6 27088.9 0.1933 11 8333 %
0.001 19 27075.3 0.0193 33 73.68 %
0.0001 56 27065.9 0.0019 102 82.14 %

Table 7: Comparison between relative pwl bounding and absolute pwl bounding for instances
of class (R)

to be used for pwl bounding with absolute tolerance in order to ensure an similar solution cost.

It is computed as: § = %. The value obtained is used to compute the pwl over-estimator

F(S and the resulting number of pieces 7’ is displayed in Tables 7 and 8.

Results show that the § value varies significantly from one instance to another: for ex-
ample, for ¢ = 0.01 the § values vary between 0.0322 and 0.2538 on instances of class R;
thus the number of pieces vary, in this case between 10 and 25. Overall, on average the
absolute § tolerance led to more than twice the number of line-segments than the relative e
tolerance. ePLB-+MILP therefore outperforms éPLB-+MILP on problem (P), by generating
tighter MILPs requiring 20% to 80% less binary variables. Similar results were obtained with
instances of class A1l and A2.

8 Conclusion

The paper presents a two-phase solution method for combinatorial optimization problems
involving nonlinear univariate functions such as energy conversion functions. The first phase
consists in bounding the nonlinear univariate functions from above and below with two piece-
wise linear non necessarily continuous functions with a relative € tolerance. The second
phase consists in solving the two mixed integer linear programs obtained when replacing the
nonlinear terms with their piecewise linear overestimators or underestimators. Models and
algorithms to perform the piecewise linear bounding are presented. Computational results
on an energy optimization problem for hybrid electric vehicles illustrate the efficiency of the
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Class (Al) and (A2) using relative tol using absolute tol Gap
instance I UB+ e nf UB 4= % n’ 100%
S (AD) 40 45606 001 10 4578 0.114 73 130.00 %

0.001 27 456.2 0.0114 69 155.56 %

0.0001 82 456.1 0.0011 218 165.85 %

I (A1) 561 8813.40 0.01 10 8834.7 0.1571 19  90.00 %
0.001 27 8817.7 0.0157 58 114.81 %

0.0001 82  8813.5 0.0016 181 120.73 %

H (A1) 734 18545.92 0.01 10 18610.1 0.2527 15 50.00 %
0.001 27 18548.1 0.0253 47 74.07 %

0.0001 82 18546.4 0.0025 145 76.83 %

U_ (A1) 811 2595.76 0.01 10 2603.1 0.032 41 310.00 %
0.001 27  2596.4 0.0032 129 377718 %

0.0001 82  2595.8 0.0003 418  409.76 %

N _ (Al) 1200 23014.74 0.01 10 23040.2 0.1918 17 70.00 %
0.001 27 23026.0 0.0192 53 96.30 %

0.0001 82 23014.8 0.0019 166  102.44 %

E (A1) 1400 27298.46 0.01 10 273414 0.195 17 70.00 %
0.001 27 27318.6 0.0195 53 96.30 %

0.0001 82 27298.5 0.0019 166 102.44 %

S (A2) 40 810.97 0.01 14 813.1 0.2027 30 114.29 %
0.001 43 811.2 0.0203 93 116.28 %

0.0001 133 811.0 0.002 294 121.05 %

I (A2) 561 18310.64 0.01 14 18438.3 0.3264 24 7143 %
0.001 43 18327.6 0.0326 74 72.09 %

0.0001 133 18311.9 0.0033 229 7218 %

H (A2) 734 49668.87 0.01 14 50007.8 0.6767 17 2143 %
0.001 43 49701.9 0.0677 51  18.60 %

0.0001 133 49669.0 0.0068 161 21.05 %

U (A2) 811  4340.32 0.01 14  4355.9 0.0535 58  314.29 %
0.001 43  4341.6 0.0054 180 318.60 %

0.0001 133 43404 0.0005 588  342.11 %

N (A2) 1200 52948.82 0.01 14 53231.9 0.4412 21 50.00 %
0.001 43 52981.1 0.0441 63 46.51 %

0.0001 133 52952.9 0.0044 199  49.62 %

E (A2) 1400 61074.77 0.01 14 61400.3 0.4362 21 50.00 %
0.001 43 611055 0.0436 64 48.84 %

0.0001 133 61074.8 0.0044 199  49.62 %

Table 8: Comparison between relative pwl bounding and absolute pwl bounding for instances

of classes (Al) and (A2)

solution method. Results also show that using non necessarily continuous piecewise linear
functions to approximate continuous univariate nonlinear functions leads to a significant re-
duction of the computing time and a reduction of the number of line-segments in comparison

to classical continuous piecewise linear functions.
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Appendices

Characteristics of the mathematical formulations

MINLP | ePLB4+MILP | EP+MILP

# binary variables I In® IKrc

# continuous variables 41 3I 4+ Inf 21
# constraints | 51+ 1 | 41 +2In°+1 47 +1

Table 9: Characteristics of the mathematical formulations for solving (P)

Table 9 reports on the characteristics of the mathematical formulations used to solve
problem (P) in Section 7.2.3, in function of the number of the instants I and the number of
pieces of the piecewise linear bounding function nc.
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Passmark cpu score and equivalent computing times

The computing times of approximation algorithms reported in Table 2 were obtained with
different computers with different characteristics, therefore Table 10 reports the equivalent cpu
times if all procedures were run on a computer with a similar passmark score as the one from
(Rebennack and Kallrath, 2015). Rebennack and Kallrath computed their continuous pwl
approximators using a single core Intel(R) i7 with 2.93 GHz that scores a 5366 passmark cpu
score. The heuristic pwl bounding procedure (Algorithm 3) was run on an Intel(R) Xeon(R)
CPU E3-1271 v3 computer with 32GB RAM using a single score and having a passmark cpu
score of 10086. The exact pwl bounding procedure (Algorithm 1) was run using GAMS 24.9.2
164480 with LindoGlobal on neos servers (single core) Czyzyk et al. (1998) to solve the NLP
sub-problems that Algorithm 2 generates. It is not possible to chose a priori a specific neos
machine, but it is possible to know a posteriori on which machine a code submitted had been
run. Five types of servers (P1, P2, P3, P4 and P5) were available on the neos website, with
the following specs. P1 is a Dell PowerEdge R430, Intel Xeon E5-2698 with 2.3GHz, that
has a passmark score of 21149. P2, P3 and P4 are Dell PowerEdge R410, Intel Xeon X5660
with 2.8GHz that have a passmark score of 7641. P5 is a Dell PowerEdge R420, Intel Xeon
E5-2430 with 2.2GHz that have a passmark score of 6878.

The first column of Table 10 contains the reference of the continuous input function
considered. The second column reports the absolute tolerance value 4. In the remainder
of the table, cpu is the original computing time, eg-cpu is the equivalent cpu time if the
procedure was run on a computer with a similar passmark score as the one from (Rebennack
and Kallrath, 2015), # per server reports the number of NLP sub-problems solved on each
type of neos server, and |Np| is the value of grid size reached when computing each valid
line-segment (Algorithm 2).
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heuristic exact
ref 1) # per server |NT|
et earept P1 P2 P3 P4 P5 min avg max et earept

[69) 0.01 30 s 56.39 s 9 14 22 13 20 3 3 3 19s 31.88 s
0.005 43 s 80.82s 20 20 65 21 75 3 3 3 4s 6.49 s
(Im) 0.01 11s 20.68 s 7 9 20 5 10 42 42 42 221 s 384.89 s
0.005 16 s 30.07 s 9 7 21 9 14 28 28 28 172 s 304.16 s
(111) 0.01 12s 22.56 s 9 0 6 3 15 28 43.75 63 57 s 116.62 s
0.005 17 s 31.95s 11 0 48 1 5 19 31.25 42 68 s 125.05 s
(Iv) 0.01 10 s 18.80 s 0 2 0 11 41 9 44.33 63 161 s 211.88 s
0.005 15s 28.19 s 0 2 0 17 44 28 30.15 42 128 s 169.56 s
(V) 0.01 11s 20.68 s 0 3 0 19 29 28 43.75 63 143 s 192.06 s
0.005 15s 28.19 s 0 4 0 23 33 19 31.25 42 181 s 243.58 s
(V1) 0.1 11s 20.68 s 0 4 0 28 37 42 137.64 211 115 s 154.99 s
0.05 17 s 31.95 s 0 8 0 25 42 42 81.53 94 88 s 118.30 s
0.01 36 s 67.67 s 0 12 7 31 82 3 40.62 94 164 s 219.04 s
0.005 59s 11090s 13 29 11 43 75 3 31.6 94 195 s 302.83 s
(VII) 0.1 17 s 31.95s 0 8 0 18 75 3 16.67 63 226 s 297.95 s
0.05 28 s 52.63 s 0 3 1 20 90 3 101.36 141 287 s 376.46 s
0.01 52 s 97.74s 24 27 17 41 156 3 14.05 42 268 s 420.29 s
0.005 72s 135.33s 49 23 13 74 207 3 82.74 141 869 s 1460.41 s
(VIII) 0.1 4s 7.52's 1 11 9 18 48 211 211 211 74's 101.71 s
0.05 6s 11.28 s 1 10 14 13 51 211 211 211 83 s 113.77 s
0.01 11s 20.68 s 20 7 2 5 57 19 27.27 42 138 s 260.57 s
0.005 16 s 30.07 s 8 3 7 28 66 19 36.71 42 1466 s 2228.30 s
(IX) 0.1 8s 15.04s 15 5 10 7 57 28 163.71 211 77s 133.94 s
0.05 12 s 2256 s 21 6 10 6 60 42 109.11 141 64 s 118.68 s
0.01 23 s 43.23s 13 1 3 54 93 94 94 94 114 s 175.89 s
0.005 27 s 50.75s 24 1 7T 44 111 63 68.74 94 784 s 1303.51 s

Table 10: Processors used on neoserver, equivalent computing times and final grid sizes from
piecewise linear bounding algorithms
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