S. Altschul, Gapped BLAST and PSI-BLAST: a new generation of protein database search programs, Nucleic Acids Research, vol.25, issue.17, pp.3389-3402, 1997.
DOI : 10.1093/nar/25.17.3389

M. Boocock and P. Rice, A proposed mechanism for IS607-family serine transposases, Mobile DNA, vol.4, issue.1, p.24, 2013.
DOI : 10.1146/annurev.bi.58.070189.004405

G. Cambray, A. Guerout, and D. Mazel, Integrons, Annual Review of Genetics, vol.44, issue.1, pp.141-166, 2010.
DOI : 10.1146/annurev-genet-102209-163504

URL : https://hal.archives-ouvertes.fr/hal-00535771

P. Carle, Partial Chromosome Sequence of Spiroplasma citri Reveals Extensive Viral Invasion and Important Gene Decay, Applied and Environmental Microbiology, vol.76, issue.11, pp.3420-3426, 2010.
DOI : 10.1128/AEM.02954-09

S. Casjens, Prophages and bacterial genomics: what have we learned so far?, Molecular Microbiology, vol.141, issue.Suppl. 1, pp.277-300, 2003.
DOI : 10.1046/j.1365-2958.2003.03580.x

M. Chandler, Breaking and joining single-stranded DNA: the HUH endonuclease superfamily, Nature Reviews Microbiology, vol.36, issue.8, pp.525-538, 2013.
DOI : 10.1038/nrmicro3067

URL : https://hal.archives-ouvertes.fr/hal-00944976

K. Devos, J. Brown, and J. Bennetzen, Genome Size Reduction through Illegitimate Recombination Counteracts Genome Expansion in Arabidopsis, Genome Research, vol.12, issue.7, pp.1075-1079, 2002.
DOI : 10.1101/gr.132102

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC186626

R. Edgar, MUSCLE: multiple sequence alignment with high accuracy and high throughput, Nucleic Acids Research, vol.32, issue.5, pp.1792-1797, 2004.
DOI : 10.1093/nar/gkh340

URL : http://doi.org/10.1093/nar/gkh340

C. Feschotte and E. Pritham, DNA Transposons and the Evolution of Eukaryotic Genomes, Annual Review of Genetics, vol.41, issue.1, pp.331-368, 2007.
DOI : 10.1146/annurev.genet.40.110405.090448

S. Gill, A highly divergent archaeo-eukaryotic primase from the Thermococcus nautilus plasmid, pTN2, Nucleic Acids Research, vol.42, issue.6, pp.3707-3719, 2014.
DOI : 10.1093/nar/gkt1385

URL : https://hal.archives-ouvertes.fr/hal-01332620

T. Goodwin, M. Butler, and R. Poulter, Cryptons: a group of tyrosine-recombinase-encoding DNA transposons from pathogenic fungi, Microbiology, vol.149, issue.11, pp.3099-3109, 2003.
DOI : 10.1099/mic.0.26529-0

T. Goodwin and R. Poulter, A New Group of Tyrosine Recombinase-Encoding Retrotransposons, Molecular Biology and Evolution, vol.21, issue.4, pp.746-759, 2004.
DOI : 10.1093/molbev/msh072

N. Grindley, K. Whiteson, and P. Rice, Mechanisms of Site-Specific Recombination, Annual Review of Biochemistry, vol.75, issue.1, pp.567-605, 2006.
DOI : 10.1146/annurev.biochem.73.011303.073908

A. Hickman and F. Dyda, CRISPR-Cas immunity and mobile DNA: a new superfamily of DNA transposons encoding a Cas1 endonuclease, Mobile DNA, vol.5, issue.1, p.23, 2014.
DOI : 10.1186/1759-8753-5-23

A. Hickman and D. F. , is a DNA integrase that generates target site duplications, Nucleic Acids Research, vol.43, issue.22, pp.10576-10587
DOI : 10.1093/nar/gkv1180

A. Hickman and F. Dyda, Mechanisms of DNA transposition. Microbiol Spectr, pp.3-0034, 2015.

A. Hua-van, L. Rouzic, A. Boutin, T. Filee, J. Capy et al., The struggle for life of the genome's selfish architects, Biology Direct, vol.6, issue.1, p.19, 2011.
DOI : 10.1534/genetics.105.051714

T. Ilyina and E. Koonin, Conserved sequence motifs in the initiator proteins for rolling circle DNA replication encoded by diverse replicons from eubacteria, eucaryotes and archaebacteria, Nucleic Acids Research, vol.20, issue.13, pp.3279-3285, 1992.
DOI : 10.1093/nar/20.13.3279

L. Iyer, E. Koonin, D. Leipe, and L. Aravind, Origin and evolution of the archaeo-eukaryotic primase superfamily and related palm-domain proteins: structural insights and new members, Nucleic Acids Research, vol.33, issue.12, pp.3875-3896, 2005.
DOI : 10.1093/nar/gki702

J. Jurka, V. Kapitonov, O. Kohany, and M. Jurka, Repetitive Sequences in Complex Genomes: Structure and Evolution, Annual Review of Genomics and Human Genetics, vol.8, issue.1, pp.241-259, 2007.
DOI : 10.1146/annurev.genom.8.080706.092416

V. Kapitonov, J. Jurka, V. Kapitonov, and J. Jurka, RAG1 core and V(D)J recombination signal sequences were derived from Transib transposons Self-synthesizing DNA transposons in eukaryotes, PLoS Biol. Proc Natl Acad Sci, vol.3, issue.103, pp.1814540-4545, 2005.

V. Kapitonov and J. Jurka, A universal classification of eukaryotic transposable elements implemented in Repbase, Nature Reviews Genetics, vol.8, issue.5, pp.411-412, 2008.
DOI : 10.1038/nrg2165-c1

V. Kapitonov and E. Koonin, Evolution of the RAG1-RAG2 locus: both proteins came from the same transposon, Biology Direct, vol.59, issue.3, p.20, 2015.
DOI : 10.1186/s13062-015-0055-8

H. Kazazian and . Jr, Mobile Elements: Drivers of Genome Evolution, Science, vol.303, issue.5664, pp.1626-1632, 2004.
DOI : 10.1126/science.1089670

E. Koonin, V. Dolja, and M. Krupovic, Origins and evolution of viruses of eukaryotes: The ultimate modularity, Virology, vol.479, issue.480, pp.2-25, 2015.
DOI : 10.1016/j.virol.2015.02.039

E. Koonin and K. M. , Evolution of adaptive immunity from transposable elements combined with innate immune systems, Nature Reviews Genetics, vol.4, issue.3, pp.184-192
DOI : 10.1038/nature13011

M. Krupovic, Networks of evolutionary interactions underlying the polyphyletic origin of ssDNA viruses, Current Opinion in Virology, vol.3, issue.5, pp.578-586, 2013.
DOI : 10.1016/j.coviro.2013.06.010

M. Krupovic, D. Bamford, and E. Koonin, Conservation of major and minor jelly-roll capsid proteins in Polinton (Maverick) transposons suggests that they are bona fide viruses, Biology Direct, vol.9, issue.1, p.6, 2014.
DOI : 10.1093/sysbio/syq010

URL : https://hal.archives-ouvertes.fr/pasteur-00994115

M. Krupovic and P. Forterre, Single-stranded DNA viruses employ a variety of mechanisms for integration into host genomes, Annals of the New York Academy of Sciences, vol.9, issue.1, pp.41-53, 2015.
DOI : 10.1111/nyas.12675

URL : https://hal.archives-ouvertes.fr/hal-01436107

M. Krupovic, M. Gonnet, W. Hania, P. Forterre, and G. Erauso, Insights into Dynamics of Mobile Genetic Elements in Hyperthermophilic Environments from Five New Thermococcus Plasmids, PLoS ONE, vol.21, issue.2, p.49044, 2013.
DOI : 10.1371/journal.pone.0049044.s012

URL : https://hal.archives-ouvertes.fr/hal-00748527

M. Krupovic and E. Koonin, Polintons: a hotbed of eukaryotic virus, transposon and plasmid evolution, Nature Reviews Microbiology, vol.214, issue.2, pp.105-115, 2015.
DOI : 10.1186/1741-7007-12-36

M. Krupovic, K. Makarova, P. Forterre, D. Prangishvili, and E. Koonin, Casposons: a new superfamily of self-synthesizing DNA transposons at the origin of prokaryotic CRISPR-Cas immunity, BMC Biology, vol.12, issue.1, p.36, 2014.
DOI : 10.1093/molbev/mst197

URL : https://hal.archives-ouvertes.fr/pasteur-01001796

G. Lipps, Structure and function of the primase domain of the replication protein from the archaeal plasmid pRN1, Biochemical Society Transactions, vol.16, issue.1, pp.104-106, 2011.
DOI : 10.1073/pnas.0902910106

K. Makarova and E. Koonin, Annotation and Classification of CRISPR-Cas Systems, Methods Mol Biol, vol.1311, pp.47-75, 2015.
DOI : 10.1007/978-1-4939-2687-9_4

K. Makarova, Evolution and classification of the CRISPR???Cas systems, Nature Reviews Microbiology, vol.35, issue.6, pp.467-477, 2011.
DOI : 10.1038/nrmicro2577

K. Makarova, Dark matter in archaeal genomes: a rich source of novel mobile elements, defense systems and secretory complexes, Extremophiles, vol.6, issue.5, pp.877-893, 2014.
DOI : 10.1007/s00792-014-0672-7

K. Makarova, An updated evolutionary classification of CRISPR???Cas systems, Nature Reviews Microbiology, vol.41, issue.11, pp.722-736, 2015.
DOI : 10.1038/nrmicro3569

A. Marchler-bauer, CDD: conserved domains and protein three-dimensional structure, Nucleic Acids Research, vol.41, issue.D1, pp.348-352, 2013.
DOI : 10.1093/nar/gks1243

URL : http://doi.org/10.1093/nar/gks1243

F. Mojica, C. Diez-villasenor, J. Garcia-martinez, and C. Almendros, Short motif sequences determine the targets of the prokaryotic CRISPR defence system, Microbiology, vol.155, pp.733-740, 2009.

J. Nuñ-ez, Cas1???Cas2 complex formation mediates spacer acquisition during CRISPR???Cas adaptive immunity, Nature Structural & Molecular Biology, vol.25, issue.6, pp.528-534, 2014.
DOI : 10.1038/nsmb.2820

J. Nuñ-ez, A. Lee, A. Engelman, and J. Doudna, Integrase-mediated spacer acquisition during CRISPR???Cas adaptive immunity, Nature, vol.14, issue.7542, pp.193-198, 2015.
DOI : 10.1038/nature14237

K. Okonechnikov, O. Golosova, and M. Fursov, Unipro UGENE: a unified bioinformatics toolkit, Bioinformatics, vol.28, issue.8, pp.1166-1167, 2012.
DOI : 10.1093/bioinformatics/bts091

URL : http://bioinformatics.oxfordjournals.org/cgi/content/short/28/8/1166

A. Parks and J. Peters, Tn7 elements: Engendering diversity from chromosomes to episomes, Plasmid, vol.61, issue.1, pp.1-14, 2009.
DOI : 10.1016/j.plasmid.2008.09.008

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2614081

B. Pié-gu, S. Bire, P. Arensburger, and Y. Bigot, A survey of transposable element classification systems ??? A call for a fundamental update to meet the challenge of their diversity and complexity, Molecular Phylogenetics and Evolution, vol.86, pp.90-109, 2015.
DOI : 10.1016/j.ympev.2015.03.009

M. Price, P. Dehal, A. A. Pritham, E. Putliwala, T. Feschotte et al., FastTree 2?approximately maximum-likelihood trees for large alignments Mavericks, a novel class of giant transposable elements widespread in eukaryotes and related to DNA viruses, PLoS One Gene, vol.5, issue.390, pp.3-17, 2007.

P. Rice and T. Baker, Comparative architecture of transposase and integrase complexes, Nature Structural Biology, vol.8, issue.4, pp.302-307, 2001.
DOI : 10.1038/86166

A. Roberts and P. Mullany, A modular master on the move: the Tn916 family of mobile genetic elements, Trends in Microbiology, vol.17, issue.6, pp.251-258, 2009.
DOI : 10.1016/j.tim.2009.03.002

C. Rollie, S. Schneider, A. Brinkmann, E. Bolt, M. White et al., Intrinsic sequence specificity of the Cas1 integrase directs new spacer acquisition Protospacer recognition motifs: mixed identities and functional diversity, Elife RNA Biol, vol.4, issue.10, pp.8716891-899, 2013.

K. Shirasu, A. Schulman, T. Lahaye, and P. Schulze-lefert, A Contiguous 66-kb Barley DNA Sequence Provides Evidence for Reversible Genome Expansion, Genome Research, vol.10, issue.7, pp.908-915, 2000.
DOI : 10.1101/gr.10.7.908

J. Soding, M. Remmert, A. Biegert, and A. Lupas, HHsenser: exhaustive transitive profile search using HMM-HMM comparison, Nucleic Acids Research, vol.34, issue.Web Server, pp.374-378, 2006.
DOI : 10.1093/nar/gkl195

URL : http://doi.org/10.1093/nar/gkl195

R. Sorek, V. Kunin, and P. Hugenholtz, CRISPR ??? a widespread system that provides acquired resistance against phages in bacteria and archaea, Nature Reviews Microbiology, vol.7, issue.3, pp.181-186, 2008.
DOI : 10.1038/nrmicro1793

M. Sullivan, N. Petty, and S. Beatson, Easyfig: a genome comparison visualizer, Bioinformatics, vol.27, issue.7, pp.1009-1010, 2011.
DOI : 10.1093/bioinformatics/btr039

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3065679

H. Tang, Genome Assembly, Rearrangement, and Repeats, Chemical Reviews, vol.107, issue.8, pp.3391-3406, 2007.
DOI : 10.1021/cr0683008

M. Tollis and S. Boissinot, The Evolutionary Dynamics of Transposable Elements in Eukaryote Genomes, Genome Dyn, vol.7, pp.68-91, 2012.
DOI : 10.1159/000337126

J. Van-der-oost, E. Westra, R. Jackson, and B. Wiedenheft, Unravelling the structural and mechanistic basis of CRISPR???Cas systems, Nature Reviews Microbiology, vol.41, issue.7, pp.479-492, 2014.
DOI : 10.1093/nar/gku120

S. Venner, C. Feschotte, and C. Biemont, Dynamics of transposable elements: towards a community ecology of the genome, Trends in Genetics, vol.25, issue.7, pp.317-323, 2009.
DOI : 10.1016/j.tig.2009.05.003

URL : https://hal.archives-ouvertes.fr/hal-00428403

T. Wicker, A unified classification system for eukaryotic transposable elements, Nature Reviews Genetics, vol.8, issue.12, pp.973-982, 2007.
DOI : 10.1038/nrg2165

URL : https://hal.archives-ouvertes.fr/hal-00169819

. Yinh, Comparative Genomic Analysis Reveals Multiple Long Terminal Repeats, Lineage-Specific Amplification, and Frequent Interelement Recombination for Cassandra Retrotransposon in Pear (Pyrus bretschneideri Rehd.), Genome Biology and Evolution, vol.6, issue.6, pp.1423-1436, 2014.
DOI : 10.1093/gbe/evu114

N. Youngblut, Genomic and phenotypic differentiation among Methanosarcina mazei populations from Columbia River sediment, The ISME Journal, vol.47, issue.10, pp.2191-2205, 2015.
DOI : 10.5194/gmd-3-565-2010

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4579472