Requirements for reversible extra-capacity in Li-rich layered oxides for Li-ion batteries - Archive ouverte HAL Accéder directement au contenu
Article Dans Une Revue Energy & Environmental Science Année : 2017

Requirements for reversible extra-capacity in Li-rich layered oxides for Li-ion batteries

Résumé

The structural stability and the redox mechanism of Li-rich layered oxides (LLOs) are two very important aspects for high energy density. The former is related to the irreversible loss of lattice oxygen and capacity fading during cycling, while the latter determines the overall capacity of the materials. This paper aims at clarifying the factors governing the structural stability, the extra capacity and the redox mechanism of LLOs upon Li-removal. The results show that the structural stability against oxygen vacancy formation is improved with increasing M–O covalency, while it decreases with increasing d-shell electron number and with electrochemical extraction of lithium from the lattice. The redox mechanism of Li2-xMO 3 electrodes formed by 3d metals or by heavier metals 0with a d electronic configuration is related to the electron depletion from the oxygen lone-pairs (localized non- bonding O(2p) states) leading to an irreversible anionic redox ending with the reductive elimination of O 2 upon cycling. For these phases, long-term cycling is predicted to be very unlikely due to the irreversible loss of lattice noxygen upon charging. For the electrodes formed by 4d and 5d metals with intermediate d electronic configurations, reversible cationic and anionic redox activities are predicted, therefore enabling reversible extra- capacities. The very different redox mechanisms exhibited by Li2-x MO3 electrodes are then linked to the delicate balance between the Coulomb repulsions (U term) and the M–O bond covalency (D term) through the general description of charge-transfer vs. Mott–Hubbard insulators. The present findings will provide a uniform guideline for tuning the band structures of Li2MO 3 phases and thus activating desired redox mechanisms, being beneficial for the design of high-energy density electrode materials for Li-ion battery applications
Fichier non déposé

Dates et versions

hal-01443838 , version 1 (23-01-2017)

Identifiants

Citer

Ying Xie, Matthieu Saubanère, Marie-Liesse Doublet. Requirements for reversible extra-capacity in Li-rich layered oxides for Li-ion batteries. Energy & Environmental Science, 2017, 10 (1), pp.266-274. ⟨10.1039/c6ee02328b⟩. ⟨hal-01443838⟩
114 Consultations
0 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More