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PANTOGRAPHIC LATTICES WITH NON-ORTHOGONAL FIBRES: EXPERIMENTS AND

THEIR NUMERICAL SIMULATIONS

EMILIO TURCO, MACIEJ GOLASZEWSKI, IVAN GIORGIO, AND FRANCESCO D’ANNIBALE

Abstract. Current research in metamaterials design is pushing to fill the gap between mathematical mod-

elling and technological applications. To meet these requirements predictive and computationally effective

numerical tools needs to be conceived and applied. In this paper we describe the performances of a nat-

urally discrete model [1] and those of a second gradient continuum model [2] for pantographic structures

with non-orthogonal fibres comparing them with some experimental results. The interest in these structures

resides in the exotic behaviour that they have already shown [3] and their study seems promising. The com-

parison which we present here shows that, depending on the length scale characterising the structural cell of

pantographic sheets, either discrete or continuum model performance and/or behaviour may prevail. Some

homogenization interesting problems are listed in the conclusions in the hope that they may be rigorously

studied with the most advanced mathematical tools.

1. Introduction

Current research in metamaterials design is pushing to fill the gap between mathematical modelling

and technological applications. Although both evolutionary selection in living organism and the past

engineering scientifically based research have already promoted of “exotic” metamaterials (the bone

tissue is one example while woven fabrics gives another one) it is only a recent issue the systematics

research of tailored materials having fixed (well-determined a priori) uses and applications.

To meet all the requirements imposed by determined and well-specified applications it is needed to

establish a designing procedure which involve the important step concerning the development of some

predictive and computationally effective numerical tools. These tools will be then used to verify experi-

mental measurements output and subsequently to design specifically adapted materials.

In this paper we focus on a specific, but in our opinion relevant, task: to formulate and to compare the

performances of a discrete versus a continuum model for pantographic lattices, sometimes also called

pantographic sheets.

The interest in these structures resides in the exotic behaviour that they have shown [2, 3] and their

study seems promising. In particular pantographic structures:

• are the actual realisation of a (often disputed) continuum model: i.e. second gradient materials;

indeed pantographic sheets are one of the first mechanical structures which have been proven

[4, 5] to need a second gradient models at a given macroscopic length-scale;

• have been proven to have very promising properties in wave propagation, representing an exam-

ple of effective wave-guides [6];

• have shown promising toughness properties, which suggest that they could be fruitfully embed-

ded in novel composite materials.

The comparison between continuum versus discrete models which we present here shows that de-

pending on the length scale characterising the structural cell of pantographic sheets some mechanical

properties may prevail. Moreover the performances, in a given situation, of one of the two models may

be more satisfactory than the other one, and this may happen independently of the real physical structure

of the pantographic lattice depending only on the numerical properties of considered codes. We remark

that some homogenization interesting problems are now to be faced, in order to give an effective and

reliable mathematical basis to the presented results.
1
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Figure 1. Three-dimensional drawing of pantographic lattice fabrics.

The paper, after this brief introduction, is organised in accordance with the following plan. In Sec-

tion 2 there is a brief discussion relative to two simple displacement-controlled traction tests: their main

difference consists in the different orientation of the fibres. In Section 3 are described two models which

are strictly correlated: indeed the first one, discrete model, is the meso-mechanical basis of the second

one, continuum model. From these models, in Section 4, the numerical simulations relative to the two

experiments are presented and discussed thoroughly highlighting the closeness of the simulations to the

experiments. Finally, in Section 5 there are some concluding remarks which anticipate future perspec-

tives and challenges.

2. Some experimental evidences

We consider the two fabrics depicted in Figure 1. Both of them are pantographic structures formed

by two arrays of beams with rectangular cross-section connected by means of cylindrical pivots in their

intersection points.

A more technical representation is reported in Figures 2 and 3 for the fabric on the left and on the right

of Figure 1 respectively. It is evident that the two fabrics have exactly the same fibres (cross-section ad

length) but arranged in a different way (in both cases the fibres are non-orthogonal): the angle between

them is ϕ = 120◦ in the first case, see Figure 2, and ϕ = 60◦ in the second one, see Figure 3.

In some recent papers, see [7, 8, 9] similar structures, but with orthogonal fibres, have been inten-

sively studied from the experimental point of view and their results compared with the predictions of

some numerical simulations deriving from a generalised Hencky-type model and from a second gradient

continuum model, see [2].

The fabrics sketched in Figures 2 and 3 were built by using the 3D printing technology, in polyamide

(PA 2200) by a SLS Formiga P100. For this material the Young’s modulus was estimated between 1.5-

1.7 GPa following the rules of EN ISO 527 and EN ISO 178.

Both the fabrics have been tested by means of a traction test: the left side is clamped and on the right

side is assigned a constant displacement u parallel to the greater sides, from zero to umax, by using the

MTS Bionix system strength machine selecting a velocity of about 5 mm/min.

The first experiment concerns the fabric reported in Fig. 2. In this case the imposed maximum dis-

placement is umax = 23.7 mm and the three pictures reported in Fig. 4 show the initial, the intermediate

and the final configuration.
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Figure 2. Drawing of a pantographic lattice with non-orthogonal fibers (ϕ = 120◦).

Figure 5 reports the global structural reaction of the right side of the fabric (in the direction of the

greater sides) as the non-dimensional displacement parameter u/L1 increases being L1 the length of the

greater sides of the fabric.

The second test concerns the fabric depicted in Fig. 3 which is made by the same polyamide of the

previous test and of the same fibres but, this time, arranged using the angle ϕ = 60◦.

Also in this case the fabric has been tested by means of a simple traction test: an increasing assigned

displacement u on the right side (parallel to the greater sides) from zero to the value umax = 74.7 mm.

Three pictures have been taken during the loading process (the strength machine and the velocity of the

test are unchanged), see Fig. 6, corresponding to the initial, the intermediate and the final configuration

respectively.

As before, during the experimental test the global structural reaction R on the right side (in the direc-

tion of the greater sides) has been measured. Figure 7 reports R as the non-dimensional displacement

parameter u/L1 increases being L1 the length of the greater side of the fabric.

Looking at Figs 5 and 7 we remark the different behaviour of the two fabrics built using exactly the

same quantity of polyamide: the first one, ϕ = 120◦, is much more stiff than the second one showing the

relevance of the fibres orientation in the mechanical behaviour of this kind of metamaterial.

3. Discrete and continuum models for pantographic sheets

In this Section we shortly describe a discrete Lagrangian model, or a generalized Hencky-type model

(see [1]), and a second gradient continuum model, see [2], which we consider here to be possible models

for planar pantographic structures. Their predictive performances will be analysed in the following

section, here we limit ourselves to remark that the Lagrangian model and the second gradient continuum

model are strictly connected since the first is the meso-mechanical basis of the second one (macro-model).

In rough terms, the continuum model is obtained from a limiting process from the discrete Lagrangian

model. For this reason, we present the basics, kinematics and strain energy, of the two models together

starting, obviously, from the discrete Lagrangian (meso-mechanical) model.

3.1. Discrete and continuous kinematics. Starting from the observation of the physical model obtained

by the 3D printing technology, see again Figure 1, we deduce that a basic model, already discrete since
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Figure 3. Drawing of a pantographic lattice with non-orthogonal fibres (ϕ = 60◦).

it is generated in the Hencky-vision, can be conceived by modelling the interconnecting pivots as nodes

linked each other by means of extensional springs (pairwise interaction) and by means of rotational

springs, both bending springs (triple interaction on a fibre) and shear springs (triple interaction on a fibre

of the same array and also on the nearest pivots on the other direction). In this way, we can represent the

pantographic sheet (schematically) as in Figure 8 by using the kinematical descriptors well-depicted in

the sketch reported in Figure 9.

Discrete and continuum models deal with a finite or infinite configuration spaces, respectively. To be

precise:

• the discrete model involves the introduction of a set of Lagrangian parameters specifying the

position of all the material particles modelling the pivots: they are initially located in the nodes

of the reference configuration and then displace to be located in the actual configuration. In

planar motion a set of 2N coordinates is sufficient (if N is the number of considered nodes, the

generic of which has referential position given Pi, j), such a set of Lagrangian coordinates could

be given by the corresponding position pi, j;

• the continuous model involves a regular field χ (at least C0, its further regularity being specified

by the postulated strain energy) defined in the reference configuration and mapping a generic

material particle in its actual position.

Following Piola’s Ansatz (see [10]) we may assume (see also [2]) that the correspondence between

discrete and continuous model is given by assuming that the following equality holds:

χ(Pi, j) = pi, j (1)
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3.2. Discrete and continuous energies. Total energy, in hard devices induced deformations (and in

absence of relevant volume forces) reduces to the strain energy only. Therefore, in both discrete and

continuous models, it is the only kind of energy to be specified.

The postulated expression for the discrete Lagrangian strain energy, see [2, 1] for a comprehensive

description, (in terms of the Lagrangian coordinates pi, j) is given by:
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where the first two addends are related to the extensional energy of the fibres in αm-directions (m = 1, 2,

ε is the distance between to nearest pivots), see Figs. 8 and 9(a), being a
(αm)

i, j
the extensional stiffness

parameters in αm-direction; the second two ones to the bending energy of the fibres, again in αm-direction,

having used the bending stiffness parameter b
(αm)

i, j
; the last contribution is instead related to the shear

energy of the springs with stiffness parameter s
(q)

i, j
where q (ranging from 1 to 4) distinguishes each

one of the four quadrants defined by the fibres around Pi, j-node forming the angle σ̄
(q)

i, j
in the reference

configuration.

Instead, the expression for the second gradient Piola’s strain energy in the continuum model (in terms

of the placement field χ, see [2] for a depth insight, is given by:
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where the stiffness parameters of the continuum model (macro) A(αm), B(αm) and S are related to the

stiffness parameters of the discrete model (meso) a
(αm)

i, j
, b
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i, j
and si, j as follows:
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having used the notation
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and considering that the area element dΩ can be identified with ε2 sin σ̄ in the limit in which ε approaches

zero.
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Some remarks:

(1) In [2], Eqs. (2) and (3) were written in a more general form by using for the shear strain term the

exponent γ instead of 2; this is particularly useful to improve the fit of the experimental tests by

theoretical models.

(2) The bending stiffness is expressed by means of the cos β
(αm)
i, j

instead of the corresponding an-

gle β
(αm)
i, j

, these two possibilities are equivalent, in principle, but the first, avoiding the uses of

arccos(·) function, results more convenient from the computational point of view since it pro-

duces a more compact and effective code.

Having completely defined the strain energy of the pantographic structure, the solution consists in

searching the complete equilibrium path, that is in a sequence of configurations defined by pi, j, related

to the non-dimensional parameter u/L1, which satisfy the equilibrium equations deriving from the sta-

tionarity condition of the total potential energy. The reconstruction of the equilibrium path is pursued by

means of an incremental-iterative procedure thoroughly described in [1].

4. Comparison discrete and continuum model with experiments

The reader will remark that very few parameters are postulated to characterise both the discrete and

the continuum models. On the contrary a wealth of experimental data are nearly perfectly fitted using

these few parameters. In [2] an identification of the parameters of the continuum model in terms of the

discrete model has been proposed. This strategy leads to the values reported in Table 1 for the springs

stiffnesses, axial a, bending b and shear s.

Table 1. Stiffnesses of axial (a), bending (b)and shear (s) springs.

a (N/mm ) b1 (Nmm) b2 (Nmm) s (Nmm)

165.6 148.9 148.9 0.977

Using an in-house made code for discrete model, see [1, 7, 8, 9] for details and results, and the Comsol

Multiphysics for the second gradient continuum model, with the values springs stiffnesses reported in

Table 1 we simulate the two traction tests, already discussed in Section 2, changing the orientation of the

fibres.

In particular, to perform numerical simulations for the continuum model, a Hellinger–Reissner type

variational principle is employed as done in [2, 11]. In addition, cubic Hermite polinomial are used as

shape functions in the FE scheme. The used meshes consist of 3250 quadrilateral elements for the case

φ = 120◦ and 2800 quadrilateral elements for the case φ = 60◦ which correspond to 232388 degrees of

freedom and 199658, respectively, see Fig. 10.

Figure 11 reports the strain energies and the global structural reaction when the non-dimensional

assigned displacements u/L1 on the right side increases (umax = 23.7 mm). In particular Fig. 11(a)

reports the strain energies for the discrete (continuous line) and continuum (dot-dashed line) models

divided into the three distinct components: axial, bending and shear energies.

Figure 11(b) reports the comparison between the global structural reaction R (in x1-direction) eval-

uated both by means of the discrete (red continuous line) and the continuum (red dot-dashed line). In

addition, it is also reported the same quantity measured during the experimental test (black continuous

line). We remark that both the closeness of the two curves obtained by means of the numerical simula-

tions and the goodness of fitting the experimental evidence.

Figure 12 reports the density r of the global structural reaction R of the side x1 = 0. This result is

obtained by using the discrete model but, although non reported here, is confirmed by the 2nd gradient

continuum model. We highlight the negative (compression) values of r1 in the central part of the side

x1 = 0 in a traction test.
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Somewhat interesting is the evolution of the deformation and of the strain energy. The discrete model

furnishes the results reported in Fig. 13 for u/umax = 0.25, 0.5, 0.75 and 1 (reference configuration is

depicted in grey, colours show the strain energy density level).

Conversely, Fig. 14 reports the final deformation (u = umax) along with the strain energy density level

attained by using the second gradient continuum model.

Finally, for this test, Figure 15 reports an overlapping of the picture taken at the final stage of deforma-

tion (u = umax) of the experiment and the correspondent deformation computed via numerical simulation

using the discrete model: the overlapping clearly shows the capability of the numerical simulation to

represent accurately the experiment.

The second test concern the problem depicted in Fig. 3. In this case the angle between non-parallel

fibres is ϕ = 60◦. Also in this case displacement-controlled traction test has been considered until a

displacement u1 = umax = 74.7 mm on the side x1 = L1.

Duplicating the same scheme of results of the first test, Figure 16 reports the strain energies and the

global structural reaction when the non-dimensional assigned displacements u/L1 on the right side in-

creases (umax = 74.7 mm). In particular Fig. 16(a) reports the strain energies for the discrete (continuous

line) and continuum (dot-dashed line) models divided into the three distinct components: axial, bending

and shear energy.

Figure 16(b) reports the comparison between the global structural reaction R evaluated both by means

of the discrete (red continuous line) and the continuum (red dot-dashed line). In addition, it is also

reported the same quantity measured during the experimental test (black continuous line). We remark

that in this case there is a good agreement between the numerical simulations (that which uses the discrete

model and that which considers the second gradient continuum model) but the experimental curve moves

away from the simulations for value of the strain parameter u/L1 greater than 0.2.

Figure 17 reports the density r of the global structural reaction R of the side x1 = 0. This result is

obtained by using the discrete model but, although non reported here, is confirmed by the 2nd gradient

continuum model. We highlight the negative (compression) values of r1 in the central part of the side

x1 = 0 in a traction test.

The deformation history computed by using the discrete model is reported in Fig. 18 for u/umax =

0.25, 0.5, 0.75 and 1 (reference configuration is depicted in grey, colours show the strain energy density

level).

Figure 19 reports the final deformation (u = umax) along with the strain energy density level computed

by using the second gradient continuum model.

Also for this test a confirmation of the goodness of the results of numerical simulation is obtained

overlapping the deformation of the experiment at the final stage with the correspondent deformation

obtained via numerical simulation (the reported results are obtained by using the discrete model but

those computed by using the second gradient continuum model are indistinguishable, see Figure 20.

We remark that the solid lines in the Figs. 14 and 19 are simply material lines in the actual configu-

ration which correspond to the “real fibres” of the pantographic structure. Besides, the mesh adopted is

chosen completely independent from the real arrangement of the fibres as shown in Fig. 10.

It is somewhat interesting to give some details about the times used to perform the numerical simula-

tions advertising that the platforms are completely different. Indeed, the numerical simulations concern-

ing the second gradient numerical model are obtained by using a 3 GHz Intel core i7 equipped with 8

GB 1600 MHz DDR3 RAM and the Comsol Multiphysics software: in this case we obtain the results

for traction tests in 1555 seconds for the case of ϕ = 120◦ and 1546 seconds for the case of ϕ = 60◦.

Conversely, the discrete model runs on the Matlab platform on a 3.5 GHz 6-Core Intel Xeon E5 equipped

with 64 GB 1866 MHz DDR3 RAM: in this case we obtain the results for traction test in 66 seconds for

the case of ϕ = 120◦ and 79 seconds for the case of ϕ = 60◦.
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5. Concluding remarks and future perspectives

In [5, 4, 12] more or less rigorous homogenization results are presented, in the framework of linear

elasticity: i.e. small deformations and quadratic deformation energies. The model presented here, instead,

tries to model the behavior of real pantographic structures undergoing large displacements. While the

majority of the beams constituting the pantographic lattice are in the small deformation regime, we

can however distinguish some boundary layers in which the involved beam elements are undergo very

large deformations (more than 5% of elongations, for instance, as remarked in [2]). These experimental

evidence compelled us to introduce strongly nonlinear models in order to be able to design a priori

pantographic sheet having tailored properties.

While the numerical simulations show a surprising agreement with experimental evidence, we feel that

a rigorous basis on the homogenization results presented in [2] needs to be firmly established. We expect

that Γ-convergence results can be now confidently formulated and conjectured, see [13]. Moreover we

expect that the methods exploited in [14] could be adapted to get also a priori error estimates in the

replacement process involved when passing from discrete to continuum models.

A further remark is needed: many cases of out of plane buckling of exotic pantographic sheets were

observed. A phenomenological model proposed in [15, 16] has been successfully used to get qualitative

predictions. However to get more general quantitative predictions an identification procedure involving

discrete Lagrangian models with concentrated springs is needed, which applies to three-dimensional

motion of two-dimensional pantographic sheets.

Finally, we list here some future developments and challenges:

(1) Although pantographic structures were conceived to give an example of second gradient meta-

material, see e.g. [17, 18, 19, 11, 20, 21, 22, 23, 24, 25, 26], the development of 3D printing tech-

nology allowed for the practical synthesis of such metamaterials. It deserves to be investigated

how to improve the design of 3D printed fabrics in order to fully exploit the exotic behaviour

of higher gradient metamaterials. We remark that, as seen in [2, 10], the behaviour of higher

gradient continua shows many peculiarities which deserve deeper experimental investigations.

(2) The discrete nature of suitably designed beam lattices may be modelled also by means of more

refined tools, see e.g. [27, 28, 29, 30, 31, 32, 33, 34] for an in-depth description of NURBS

interpolation or using the generalized beam theory, see [35, 36], this in order to design even

more complex metamaterials also in the 3D case where could be efficiently used the Pipkin

model described in [37] and in the review paper [38].

(3) Another crucial point concerns the modelling of the breakdown evolution of pantographic sheets.

Indeed some evidence has been already gathered about the onset and the evolution of failure. It

is rather evident that have to be considered ruptures concerning both fibers and pivots. A first

modelling effort to model such rupture phenomena was presented in [39] when the attention was

limited to the rupture mechanism initiated by the rupture of a fiber, see also [40] for an insight

on the modelling of fibres defects. In this context, surely deserve models able to consider the

out-of-plane deformations and the related buckling phenomena, see [41, 42, 43, 44, 45] for a

quick insight on this argument.

(4) The experimental identification of the parameters of the discrete model, i.e. the stiffnesses of

the springs, require a specific investigation (see [46]). In particular methods of best fitting must

be coupled to those used in extended sensitivity analysis by adapting, for example, the tools

described in [47, 48] and exploited in [49, 50, 51, 52, 53, 54, 48], see also [55, 56] for a more

specific application to the description of huge and innovative structures.

(5) Experimental evidence shows the onset of some vibration phenomena in some specific exper-

imental conditions. Therefore, it is relevant the extension of modelling to dynamic regimes,

which can be obtained following the methods presented in see [57, 58] and also in [59, 60]. The

relevant analyses in nonlinear dynamic regimes could be performed also via semi-analyitical

methods, such as the Multiple Scale Method, see [61, 62, 63, 64].
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(6) The discrete Hencky-type model and the related numerical discretization technique could also

be used to model granular media interactions, see [65], or generalized and micro-structured

continua, see [17, 66, 67, 68, 69] and, in particular, [70, 71, 72, 73] for applications in civil

engineering and [74] in biomechanics.

(7) In various experiments the contact between fibres was observed, if this kind of phenomenon has

to be considered they could be interesting the guidelines reported in [75, 76].
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Figure 4. Pantographic lattice with non-orthogonal fibers (ϕ = 120◦): sequence of deformations.
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Figure 5. Pantographic lattice with non-orthogonal fibers (ϕ = 120◦): global structural

reaction R vs. u/L1.
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Figure 6. Pantographic lattice with non-orthogonal fibers (ϕ = 60◦): sequence of deformations.
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Figure 7. Pantographic lattice with non-orthogonal fibres (ϕ = 60◦): global structural

reaction R vs. u/L1.
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Figure 8. Hencky-type mechanical model of a pantographic lattice.
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Figure 9. Kinematics of axial (a), bending (b) and shear (c) springs: reference (dashed

line) and current (continuous line) configurations.

(a) ϕ = 120◦

(b) ϕ = 60◦

Figure 10. Meshes used for the simulation of the traction tests by using the second

gradient numerical model: ϕ = 120◦ (a) and ϕ = 60◦ (b).
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(a) Strain energy W vs. u/L1 distinct for axial (blue), bending (red) and shear (green) contribu-

tion for the discrete (continuous line) and 2nd gradient continuum (dot-dashed) model.
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(b) Global structural reaction R vs. u/L1 for the discrete model (continuous red line), 2nd gra-

dient continuum model (dot-dashed red line) and for the experiment (continuous black line).

Figure 11. Pantographic lattice with non-orthogonal fibres (ϕ = 120◦): strain energy W

and global structural reaction R for discrete and 2nd gradient continuum model.
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Figure 12. Pantographic lattice with non-orthogonal fibres (ϕ = 120◦): density of global

structural reaction r on the side x1 = 0 for u = umax.
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Figure 13. Pantographic lattice with non-orthogonal fibres (ϕ = 120◦): history of defor-

mation by using the Hencky-type numerical model (reference configuration is depicted

in grey, colours indicate the strain energy level).

Figure 14. Pantograph lattice with non-orthogonal fibres (ϕ = 120◦): deformation com-

puted by the 2nd gradient continuum model (colours represent the energy level).
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Figure 15. Pantographic lattice with non-orthogonal fibers (ϕ = 120◦): overlapping

of the final deformation for the experiment and the numerical simulation by using the

Hencky-type numerical model.
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Figure 16. Pantographic lattice with non-orthogonal fibres (ϕ = 60◦): strain energy W

and global structural reaction R for discrete and 2nd gradient continuum model.
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Figure 17. Pantograph lattice with non-orthogonal fibres (ϕ = 60◦): density of struc-

tural reaction r on the side x1 = 0 for u = umax.
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Figure 18. Pantographic lattice with non-orthogonal fibres (ϕ = 60◦): history of defor-

mation by using the Hencky-type numerical model (reference configuration is depicted

in grey, colours indicate the strain energy density level).
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Figure 19. Pantograph lattice with non-orthogonal fibres (ϕ = 60◦): deformation com-

puted by the 2nd gradient continuum model (colours represent the strain energy density

level).
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Figure 20. Pantographic lattice with non-orthogonal fibers (ϕ = 60◦): overlapping of

the final deformation for the experiment and the numerical simulation by using the

Hencky-type numerical model.
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