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Modeling of thermoacoustic systems using the nonlinear
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When modeling thermoacoustic (TA) devices at high amplitude, nonlinear effects such as time-average mass flows, and the 
generation of higher harmonics can no longer be neglected. Thus far, modeling these effects in TA devices required a 
generally computationally costly time integration of the nonlinear governing equations. In this paper, a fast one-dimensional 
nonlinear model for TA devices is presented, which omits this costly time integration by directly solving the periodic steady 
state. The model is defined in the frequency domain, which eases the implementation of phase delays due to viscous resistance 
and thermoacoustic heat exchange. As a demonstration, the model is used to solve an experimental standing wave 
thermoacoustic engine. The obtained results agree with experimental results, as well as with results from a nonlinear time 
domain model from the literature. The low computational cost of this model opens the possibility to do optimization studies 
using a nonlinear TA model.

I. INTRODUCTION

When designing thermoacoustic (TA) systems, fast

computational models are required for quick feedback on

design decisions. However, fast computational models are

often based on some crude simplifications of the underlying

physics. Hence, generally a trade-off has to be made between

the accuracy of the physics and the computational cost. On

the one hand, we have well-established one-dimensional

linear TA theory,1,2 which is fast to solve, but only valid for

low amplitude, while on the other hand, multi-dimensional

computational fluid dynamics (CFD) simulations offer deep

insight into the physical processes of a TA system, but these

simulations demand significantly more time to solve.

From a computational time perspective, simulating a

complete TA system with CFD is considered too costly and

therefore not suitable for optimization purposes. Hence,

additional assumptions are often applied. In the work of

Hamilton et al.,3 the Courant number restriction on the time

step is loosened by neglecting the momentum equation in

the direction perpendicular to the wave propagation direc-

tion. In other multi-dimensional modeling efforts, a low

Mach number analysis4,5 has been applied and/or only a

subdomain of the full system6 is taken into account. For the

interaction with the part of the system not modeled in detail,

typically a linear acoustic model is used, or linear acoustic

boundary conditions are applied. Consequently, nonlinear

effects are neglected in that part of the system which is not

modeled.

The main focus of this paper is the development of a

nonlinear one-dimensional TA model. The research on such

a model has been started by Watanabe et al.7 and Yuan

et al.8 With this time domain model, they were able to simu-

late a thermoacoustic system starting from initial conditions,

up to the periodic steady-state. The onset of a self-excited

system was triggered with an initial pressure disturbance.

Initially, their model suffered from spurious instabilities,

caused by unstable linear eigenmodes which are introduced

by the viscous resistance and heat transfer models. To

suppress these instabilities, artificial diffusion was added.

Later, Karpov and Prosperetti9 solved this problem with bet-

ter models for resistance and heat transfer, which they call

the “exchange terms” as they are responsible for exchanging

mass and momentum with the surrounding solid. Still, their

exchange terms are only in agreement with linear theory for

the first and second harmonic of the solution’s spectrum.

The frequencies of these harmonics needed to be determined

before starting the simulation, which makes their model, in

some sense, dependent on global (tunable) parameters.

A more recent work discusses the application of the

method of characteristics10 to model the experimental stand-

ing wave thermoacoustic engine of Swift.11 Here, heat trans-

fer and viscous resistance is computed using semi-empirical

models.

The model presented in this work is based on the quasi-

one-dimensional model for thermoacoustic devices used by

Karpov and Prosperetti.9 Computational time is diminished

by directly solving the periodic steady-state. This is facili-

tated by a reformulation in the frequency domain using the

nonlinear frequency domain (NLFD) method.12,13 Earlier

work has shown that the NLFD method is able to solve the

periodic steady-state of a one-dimensional acoustic system

with a computational time of �1 s. With the NLFD method,

all physical quantities are assumed to be periodic in time,
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hence, they can be described by a Fourier series. Then,

instead of doing a time integration, all Fourier coefficients

are simultaneously solved. Using the Fourier coefficients,

the periodic time domain response can be reconstructed by

applying an inverse discrete Fourier transform. An additional

advantage of a frequency domain formulation is that the

frequency domain exchange models of linear TA theory can

be used in unmodified form, which makes the model in exact

agreement with linear thermoacoustic theory. A drawback of

the method is that the initial transients of a system cannot be

modeled. However, in most cases of engine and refrigerator

design, the interest lies primarily on the performance of a

TA system in steady-state.

In Sec. II, the model is explained, including the applica-

tion of the NLFD method. Furthermore, a frequency domain

form is derived for the exchange terms. Then, in Sec. III, the

numerical method used to solve the model of Sec. II will be

described. Notably, several problems accompanying the

NLFD method, which are related to solving for closed self-

excited systems (TA prime movers), are treated. Then, in

Sec. IV, the model will be applied to solve the steady-state

of an experimental standing wave TA engine.14 The results

are discussed, and finally in Sec. V conclusions are drawn.

II. MODEL

A. Governing equations

As shown by, for example, Watanabe et al.,7 a quasi-

one-dimensional nonlinear continuity, momentum, and

energy equation can be derived from the governing equa-

tions. For convenience, the model is restated here,

@q
@t
þ 1

Sf

@

@x
Sf quð Þ ¼ 0; (1a)

@

@t
quð Þ þ

1

Sf

@

@x
Sf qu2
� �

þ @p

@x
¼ �Ru; (1b)

@

@t

p

c�1
þ1

2
qu2

� �
þ 1

Sf

@

@x
uSf

c
c�1

pþ1

2
qu2

� �� �

¼Hu�Qu
dTw

dx
; (1c)

accompanied by the perfect gas equation of state

p ¼ qRsT; (1d)

where x is the wave propagation direction, t is time, q density,

u (axial) velocity, p pressure, T temperature, c the ratio of spe-

cific heats, Rs the specific gas constant, and Sf is the fluid

cross-sectional area. So Sf ¼ /S, where / is the porosity and

S the total cross-sectional area. Ru is the resistive drag force

[N m�3] in the wave propagation direction due to shear stress

from the fluid acting on the wall. It is by definition,

Ru � �
1

Sf

þ
P

s � nð ÞxdP; (2)

where s is the viscous stress tensor and n is the unit normal

pointing transversely from the fluid in the direction of the

solid. The transverse direction is perpendicular to the wave

propagation direction. P is the “wetted perimeter,” the con-

tact line between solid and fluid. The two terms on the right

side of Eq. (1c) together describe heat flow from the solid to

the fluid,

Hu �Qu
dTw

dx
� � 1

Sf

þ
P

q � nð ÞdP; (3)

where q is the heat flux vector.

Unless otherwise stated, all quantities in Eq. (1) are

area-averaged. With the emphasis on modeling of TA sys-

tems, Watanabe et al.7 also provide an overview of the major

assumptions behind this model. In the energy equation, two

sources are defined for heat exchange with the wall. The

source Hu, is due to transverse conduction as a result of a

difference between the wall temperature and the fluid

area-averaged temperature. The source QuðdTw=dxÞ is due to

convective enthalpy flow, originating from the velocity and

temperature boundary layer close to the wall. In Sec. II C,

the momentum and energy exchange terms Ru; Hu, and Qu

are treated in detail. We assume that the temperature of the

wall is constant in time, but a known function of space:

Tw ¼ TwðxÞ.

B. Application of the NLFD method

We assume a periodic steady state, so all dependent var-

iables can be described by a Fourier series. The basis of the

NLFD method13 is to substitute a truncated Fourier series for

each dependent variable in Eqs. (1) and to solve for the

Fourier coefficients. To explain this method, we take the

density as the example dependent variable. The truncated

Fourier series for the density is

qðx; tÞ ¼ q̂c;0ðxÞ þ <
XNf

n¼1

q̂c;nðxÞeinxt

2
4

3
5; (4)

where x is the fundamental radial frequency, n the harmonic

index, Nf is the total number of harmonics taken into

account, <½� � �� denotes the real part of its argument, and q̂c;i

with 0 � i � Nf is the Fourier coefficient (phasor) for har-

monic i. We store all Fourier coefficients in a real-valued

vector q̂ as

q̂¼fq̂c;0 <½q̂c;1� =½q̂c;1� <½q̂c;2� =½q̂c;2� ��� =½q̂c;Nf
�gT;

(5)

where =½� � �� denotes the imaginary part of its argument. The

imaginary part of the time-averaged Fourier component

(q̂c;0) is zero and is therefore not taken into account in the

storage vector. From the vector of density Fourier coeffi-

cients, a vector of time instances q can be constructed by

applying the inverse discrete Fourier transform (DFT),

qm �qðtmÞ ¼ q̂0þ<
XNf

n¼1

ðq̂2n�1þ iq̂2nÞeinmxDt

2
4

3
5;

0�m< 2Nf þ 1; (6)
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where tm ¼ mDt and Dt is the time step between each time

instance, which can be computed from the fundamental fre-

quency and the number of harmonics with

Dt ¼ 2p
x 2Nf þ 1ð Þ

: (7)

The operation of Eq. (6) applied to all time instance

simultaneously is written as

q ¼ F�1 � q̂; (8)

where F is referred to as the discrete Fourier transform ma-

trix, and hence F�1 the backward discrete Fourier transform

matrix. For the continuity equation, we also need the time

derivative of the density. For the periodic function of Eq.

(4), the time derivative can be decomposed in terms of the

time derivatives of the individual complex exponentials. So

the vector of the time derivatives of the density can be eval-

uated as

@

@t
q ¼ F�1 � x�D � q̂; (9)

where �D is the “time-derivative matrix,” scaled with x,

x�D ¼ x

0 0 0 0 0 � � �
0 0 �1 0 0 � � �
0 1 0 0 0 � � �
0 0 0 0 �2 � � �
0 0 0 2 0 � � �
..
. ..

. ..
. ..

. ..
. . .

.

2
66666664

3
77777775
: (10)

Thus, the time derivative of the density in the frequency do-

main is

@̂q

@t
¼ F � xF�1 � �D � q̂ ¼ x�D � q̂: (11)

To compute the spatial derivative of the mass flux, the

nonlinear product m ¼ qu is required. This is done by first

applying the backward discrete Fourier transform to the den-

sity and velocity vectors of Fourier coefficients, then com-

puting the product of density and velocity at each time

instance, and finally transforming back into the frequency

domain. Accordingly, the Fourier coefficients of the mass

flux are computed as

m̂ ¼ F � ððF�1 � q̂Þ � ðF�1 � ûÞÞ; (12)

where the operator � denotes the elementwise product of two

vectors15 yielding a vector.

We apply this method to Eqs. (1a)–(1d). As dependent

variables the frequency domain storage vectors for cross-

sectional area averaged density ðq̂ðxÞÞ, volume flow ðÛðxÞ),
temperature (T̂ðxÞ), and pressure (p̂ðxÞ) are chosen. The con-

tinuity, momentum, and energy equation are multiplied with

the fluid cross-sectional area. For the continuity equation, we

find

Sf x�D � q̂ þ d

dx
F � q � Uð Þ ¼ 0: (13)

For brevity, the inverse DFT inside the parentheses is not

shown. Therefore, for the time domain vectors q and U, one

should read F�1 � q̂ and F�1 � Û, respectively. The volume

flow can be related to the velocity by

U � uSf : (14)

For the NLFD momentum equation we find

x�D �F � q�Uð Þþ d

dx
F � q�U2

Sf

 !
þSf

dp̂

dx
¼�R̂U;

(15)

and for the NLFD form of the energy equation

x�D � Sf p̂

c� 1
þF � 1

2Sf
q � U2
� �!

� d

dx
F � Sf j �

dT

dx

� �

þ d

dx
F � U � c

c� 1
pþ 1

2S2
f

q � U2
� �!!

¼ ĤU � Q̂U
dTw

dx
; (16)

where j is the thermal conductivity, and hence j the vector

of time instances for the thermal conductivity. Equation (16)

is not the full NLFD-equivalent variant of Eq. (1c), because

we have added an extra term corresponding to axial conduc-

tion. As stated by Karpov et al.,9 this term is only important

near walls. The reason for adding this term is explained in

Appendix A. The last equation to solve for is the NLFD per-

fect gas equation of state

p̂ ¼ RsF � ðq � TÞ: (17)

In Eqs. (15) and (16), viscous resistance and heat trans-

fer terms are redefined such that R̂U ¼ Sf R̂u, ĤU ¼ Sf Ĥu,

and Q̂U ¼ Sf Q̂u, where the exchange terms with lower case

u are defined as the Fourier transform of the resistance and

heat transfer operators of Eqs. (1a)–(1d).

C. The exchange terms

We assume laminar, fully developed—oscillating—

flow, so the resistance R̂ is a linear function of the volume

flow. A closed form laminar resistance coefficient R̂ in fre-

quency domain is derived from the linearized momentum

equation, as is explained by Watanabe et al.7 Applying the

NLFD method to this model results in

R̂U ¼ R̂ � Û; (18)

where R̂ is the frequency domain resistance coefficient. The

symbol � denotes the product in the frequency domain.

Since the real and imaginary part of the value at each fre-

quency is stacked in the form of Eq. (5), an equivalent

matrix-vector product is generated. For example, for R̂ this

matrix is
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MðR̂Þ ¼

R̂0 0 0 0 0 � � �
0 <ðR̂1Þ =ð�R̂1Þ 0 0 � � �
0 =ðR̂1Þ <ðR̂1Þ 0 0 � � �
0 0 0 <ðR̂2Þ =ð�R̂2Þ � � �
0 0 0 =ðR̂2Þ <ðR̂2Þ � � �
..
. ..

. ..
. ..

. ..
. . .

.

2
66666666664

3
77777777775
:

(19)

Then, the frequency domain product R̂ � Û is computed as

MðR̂Þ � Û, where the operator � is the matrix-vector product.

The components of R̂ are defined such that

R̂2n�1 þ iR̂2n ¼
l̂0

r2
h

is2
nf�;n

1� f�;n
for n > 0; (20)

where l̂0 is the time-averaged dynamic viscosity, f�;n
¼ f�;nðsnÞ is the cross-sectional geometry-dependent viscous

Rott function1,2 evaluated at shear wave number sn. sn is the

shear wave number for harmonic n, given as

sn ¼ rh

ffiffiffiffiffiffiffiffiffiffiffi
q̂0xn

l̂0

s
; (21)

where rh is the hydraulic radius. It is defined as the cross-

sectional area divided by the wetted perimeter

rh ¼
Sf

P
: (22)

The shear wave number can be related to the viscous pene-

tration depth for harmonic n as

sn �
ffiffiffi
2
p rh

d�;n
: (23)

If one would use this definition of the viscous resistance in

the time domain, computing the viscous drag would require the

computation of the convolution integral of the inverse Fourier

transform of the frequency domain resistance coefficient with

the volume flow. However, performing this integration over all

cycles necessary to reach steady-state is completely impracti-

cal.7 Moreover, for simple geometries, such as circular tubes

and parallel plates, no closed form solution exists for the

inverse Fourier transform of the resistance coefficient. These

are important reasons for choosing a frequency domain formu-

lation rather than a time domain formulation.

In the drag model it is assumed that nonlinear effects in

the viscous boundary layer are small, such that the boundary

layer flow can be regarded as a superposition of linear

boundary layer velocity profiles. Hence, the drag coefficient

is based on the following transverse velocity distribution:

u x; r; tð Þ ¼ <
XNf

n¼0

hûni xð Þ
1� h�;n x; rð Þ

1� f�;n xð Þ einxt

2
4

3
5; (24)

where r is the transverse coordinate, h� � �i denotes area-

averaging, and h�;n is the transverse velocity shape function,

from which the Rott functions are derived:

hh�;ni ¼ f�;n: (25)

For example, for parallel-plate pores, h�;n is

h�;n sn; yð Þ ¼
cosh sn

ffiffi
i
p y

rh

� �
cosh sn

ffiffi
i
p� � ; (26)

where y is the distance from the center line between two plates.

Equation (24) implies that the transverse “modes” of the

axial velocity distribution do not mix, hence in the boundary

layer the linear (viscous) effects dominate.

As R̂n becomes singular for n¼ 0, we evaluate R̂0 by

computing

R̂0 ¼ lim
nx!0

l̂0

r2
h

is2
nf�;n

1� f�;n
: (27)

This procedure is done for the viscous Rott functions for the

earlier mentioned parallel-plate pores, for cylindrical tubes,

for which the viscothermal Rott functions are defined in

terms of Bessel functions,16,17 and for the boundary layer

approximation. In Table I, the computed limits are listed.

For the heat exchange terms, ĤU and Q̂U, the same

procedure is followed as for the viscous resistance. For ĤU

we obtain

ĤU ¼ Sf Ĥ � ðTw1̂ � T̂Þ; (28)

where

Ĥ2n�1 þ iĤ2n ¼
Prĵ0

r2
h

is2
nfj;n

1� fj;n
; (29)

where Pr is the Prandtl number and fj;n is the thermal Rott

function. The thermal Rott function can be evaluated as the

viscous Rott function at shear wave number
ffiffiffiffiffi
Pr
p

sn:

fj;n ¼ fjðsn; PrÞ ¼ f�ð
ffiffiffiffiffi
Pr
p

snÞ: (30)

The vector 1̂ is

1̂ �

1

0

0

..

.

8>>><
>>>:

9>>>=
>>>;
¼ F � 1 � F �

1

1

1

..

.

8>>><
>>>:

9>>>=
>>>;
; (31)

so it only acts on the time-averaged part of the heat transfer.

Similarly to Eq. (28), for Q̂ we find

TABLE I. Derived low-frequency limits for the thermoacoustic exchange

terms.

fv R̂0 Ĥ0 Q̂0

Parallel-plate pores
tanh

ffiffi
i
p

sn

� �
ffiffi
i
p

sn

3l̂0

r2
h

3ĵ0

r2
h

1

5
q̂0cp

Cylindrical pores
J1 2i

ffiffi
i
p

sn

� �
i
ffiffi
i
p

J0 2i
ffiffi
i
p

sn

� � 2l̂0

r2
h

2ĵ0

r2
h

1

3
q̂0cp

Boundary layer approximation
�i

ffiffi
i
p

sn
0 0 �q̂0cp

4



Q̂U ¼ Q̂ � Û; (32)

where

Q̂2n�1 þ iQ̂2n ¼
q̂0cp

1� Pr

f�;n
1� f�;n

� Pr
fj;n

1� fj;n

� �
: (33)

In Eq. (33), cp is the specific heat at constant pressure.

The results for Ĥ0 and Q̂0 are also listed in Table I. Note

that if we linearize Eqs. (13) and (15), (16) with Eqs. (18),

(28), and (33) for the thermoacoustic exchange terms and

neglect axial conduction, the model reduces to the exact line-

arized model of Swift and Rott, except that multiple non-

interacting harmonics can be computed simultaneously.

Likewise, for an inviscid non-conducting gas, R̂U; ĤU,

and Q̂U all reduce to the null vector and we obtain the

quasi-one-dimensional Euler equations for a calorically

perfect gas.

It is striking that the boundary layer approximation of

Q̂0 in Table I has a different sign than the limit for parallel-

plate and cylindrical pores. Nevertheless, this solution is in

contradiction with its underlying assumption. This assump-

tion states that the boundary layer thickness is small com-

pared to the typical cross-sectional length scale, yet the

boundary layer thickness for fully developed steady flow

is infinite by definition, because as x! 0, d�;j !1.

Therefore, this boundary layer approximation limit of

Table I is nonphysical and should not be used to model time-

averaged interaction with the wall. Note that this does not

mean that in general the boundary layer approximation is in-

valid, but that the boundary layer approximation is inconsis-

tent for the steady (time-average) frequency component. For

the case of Sec. IV, the cylindrical resonator and hot end are

modeled using the boundary layer approximation for n> 0,

while for n¼ 0, the cylindrical pore limit is used.

A problem with the heat exchange terms is that the

model for wall heat exchange significantly underestimates

the time-averaged heat transfer between the solid and the

fluid. This is because as a nonlinear effect, the presence of

an acoustic wave affects the time-averaged transverse

temperature profile, which in effect influences the time-

averaged heat transfer. In previous work, this effect is mod-

eled in the framework of second order thermoacoustic

theory.18,19 Additionally, empirical models have been

developed to compute time-averaged heat transfer.20 The

latter uses a clear distinction between oscillating heat trans-

fer by the acoustic wave and induced time-averaged heat

transfer. The oscillating heat transfer is modeled using lin-

ear thermoacoustic theory, and time-averaged heat transfer

with an empirical model. The empirical model needs statis-

tical input from the acoustic field, such as the root mean

square (RMS) acoustic Reynolds number. A fully nonlinear

model does not allow such a distinction, and the model pre-

sented in this section does not take such nonlinear heat

transfer effects into account. Inclusion of these effects

requires a complete revision of the current thermoacoustic

heat exchange terms. At this point, this is left for future

research.

III. NUMERICAL IMPLEMENTATION

In this section, the numerical method used to solve the

model of Sec. II will be explained. For the spatial discretiza-

tion, a staggered cell-centered finite volume method is used.21

For constant grid spacing this results in second order spatial

discretization. The volume flow is evaluated at the cell walls

and density, temperature, and pressure at the vertices.

For self-excited thermoacoustic systems, the fundamen-

tal frequency is unknown and part of the solution. This intro-

duces an extra degree of freedom for the numerical system,

which requires solving an extra equation. We add the addi-

tional equation that fixes the phase of the first harmonic at

one of the walls of the system. For example, for the left wall

we add

=ðp̂1ðx ¼ 0ÞÞ ¼ 0 (34)

to the system of equations. The details of this implementa-

tion are explained in Appendix B.

In the system of equations, one time-averaged continuity

equation is replaced by the global conservation of mass

equation

XNcells�1

j¼0

q̂0;jVf ;i ¼ mp; (35)

where j is the cell index, Ncells is the total number of cells

in the system, Vf ;j is the local volume of a cell and mp

the prescribed (fluid) mass in the system, which is com-

puted as

mp ¼
pref

RsTref

XNcells�1

j¼0

Vf ;j; (36)

where pref is the reference pressure (which is set when the

system is initially filled with gas), and Tref is the reference

temperature. Equation (35) guarantees that the total mass in

the system is conserved. The necessity of this replacement is

explained in Appendix A.

The inclusion of thermal conduction in the model results

in thermal boundary layers of thickness �dj at the tube ends

where the temperature is prescribed. One such temperature

boundary condition is always present, as at least one

Dirichlet boundary condition for the temperature is needed

to make the solution unique. The small thermal boundary

layer is responsible for so-called thermal hysteresis (thermal

relaxation),22 which dissipates acoustic power. To resolve

the acoustic temperature in the boundary layers, the grid

spacing needs to be <dj. Therefore, a local grid refinement

is made at the expected location of boundary layers. This

boundary grid stretches exponentially to the inner segment

(standard) grid spacing. This way, boundary layer effects

can be resolved while the number of grid-points stays

manageable.

The computations are done on a standard desktop com-

puter with Intel i7 860 cores running at a clock frequency of

2.80 GHz with 8192 kB of cache size. A Cþþ program has

been written, which runs serially and uses the ARMADILLO
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linear algebra package23 for computing the Jacobian terms.

For solving the linear system at each Newton iteration, the

direct SPARSELU solver of the EIGEN linear algebra package24

is used. Typical solution times range from 1 to 5 min, which

is fast compared to computation times of �10 h when using

the method of characteristics.10

IV. APPLICATION: STANDING WAVE TA ENGINE

In this section we introduce the application of the NLFD

method to solve the periodic steady-state of a standing wave

thermoacoustic engine. As the application test case, the

standing wave engine of Atchley14 is chosen, because we

have both experimental data of the linear and nonlinear

aspects of this device. Moreover, using the results of this test

case allows us to compare them with earlier numerical

results, presented by Karpov et al.9 and Yuan et al.8

Figure 1 shows a schematic overview of the geometry

of this standing wave engine. The geometry consists of dis-

crete “segments”: the resonator, cold heat exchanger, stack,

hot heat exchanger, and the hot duct. The geometrical and

modeling details for each segment are listed in Table II. The

total cross-sectional area of each segment is the same and is

based on the inner diameter of the tube, which is 38.2 mm.

One geometrical detail has been left out of the model. In the

experimental setup, the cold heat exchanger consists of two

identical structures. However, in our case this is modeled as

a single heat exchanger with twice the original length. The

wall temperature distribution Tw is prescribed. It is constant

everywhere except in the stack, where Tw is linear in x. For

the fluid temperature, the resonator segment has an adiabatic

wall boundary condition, while the hot end has an isothermal

wall at TH. On both sides, the volume flow is set to zero as a

result of the no-slip condition. The working gas is helium

and the system is filled to an elevated pressure of 3.76 atm.

Due to heating and the presence of thermoacoustic oscilla-

tions, the mean pressure increases to a steady-state value

which is 0.1–0.2 atm higher.

At the segment interfaces, the geometry has discrete

jumps in cross-sectional area and hydraulic radius. These

jumps are softened using a smooth transition of all geometric

parameters. However, the viscothermal Rott functions are

not smoothed. Smoothing the geometries together has sev-

eral disadvantages. First, the solution becomes dependent on

the chosen transition length. Second, flow “minor losses”25

due to sudden expansions and contractions cannot be mod-

eled. An improved approach (beyond the current scope)

would be to impose conservative jump conditions at the seg-

ment interfaces. This would also allow for “branching” dif-

ferent segments, as is required in (traveling wave) TA

systems with side resonators.

The amplitude of the acoustic oscillations in the system is

determined by the strength of the thermoacoustic effect, which

is controlled by the wall temperature gradient in the stack. This

temperature gradient is in turn determined by the temperature

difference between the cold and the hot side: DT ¼ TH � T0,

where TH is the wall temperature of the hot end, and T0 is the

ambient temperature, which is set to 293.15 K.

As a measure of grid convergence, the amplitude of the

first harmonic of the pressure is used. For all shown results,

this pressure amplitude does not change more than 1.5%

with a doubling of the number of grid-points. For the

low-amplitude cases, the number of harmonics in the simu-

lations is set to Nf¼ 6, which is sufficient to find the ampli-

tude of the first harmonic to have negligible dependence on

Nf. With Nf¼ 6, the number of grid-points is 1059, which

results in a total of 55 068 degrees of freedom for the

solution.

A. Results

Using this nonlinear model, the onset temperature dif-

ference can be determined approximately. Below onset, the

numerical method does not converge because, as discussed

in Appendix B, the fundamental frequency becomes unde-

fined when the oscillation amplitude goes to zero. We use

the following procedure to determine the onset temperature

difference. First, a temperature difference is chosen which is

higher than the onset temperature. Then, the temperature dif-

ference is lowered in fixed steps of 1 K, until the solution

FIG. 1. (Color online) Schematic over-

view of the standing wave engine of

Atchley. The picture is not to scale.

The wall temperature profile is shown

in the graph below. On the right side of

the stack, Tw is set to TH.

TABLE II. Geometrical and modeling details of the standing wave engine

of Atchley. The column “BL” denotes if for that segment the boundary layer

approximation for the viscothermal Rott functions is used. For circular

(circ.) tube geometries, rh ¼ 1=2R, where R is the tube radius. For parallel

(par.) plates, rh ¼ y0, which is half the plate spacing.

Segment Length (mm) rh (mm) / Shape BL

Resonator 879.7 9.55 1.00 Circ. tube Yes

Cold HX 20.4 0.51 0.70 Par. plates No

Stack 35.0 0.385 0.73 Par. plates No

Hot HX 7.62 0.51 0.70 Par. plates No

Hot end 473.0 9.55 1.00 Circ. tube Yes
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does not converge. The last value for which the solution

does converge is the onset temperature.

A close agreement has been found in the onset tempera-

ture difference between our computational results and the

experimental results. For the onset temperature difference

we find a value of 324 K. This value is only 1 K off from the

experimentally obtained value of 325 K. Close to the onset

temperature, the amplitude dependence on DT is strong. This

was also found by Karpov et al.9

Figure 2 shows the spatial distribution of the pressure

harmonics at DT¼ 325 K. From these distributions, it is clear

that the resulting time response of the pressure strongly

depends on the axial position. The shapes of the harmonic

profiles closely resemble the linear acoustic eigenmodes of a

tube closed at both sides. The relative phases are determined

by the nonlinear coupling. The resulting amplitudes of the

higher harmonics are determined by the eigenfrequencies

and quality factors of the linear acoustic modes. Specifically,

the amount of dissonance26 is of importance: the difference

between the acoustic eigenfrequencies and the higher har-

monics of the fundamental (driven) tone. To suppress this

cascade energy transfer to higher harmonics, more disso-

nance could be created by shaping the cross-sectional area of

the resonator.27,28 For x 	 0:9 m, the influence of the heat

exchangers and stack causes these profiles to deviate from

“pure” cosines.

For higher temperature differences—and hence higher

drive ratios—the shape of the pressure phasors does not

change significantly. However, the higher harmonics become

more prominent in relation to the fundamental tone, hence

nonlinear distortion increases.

Figures 3 and 4 show the acoustic pressure as a function

of time on the left side of the resonator for a stack tempera-

ture difference of DT¼ 325 and 368 K. The first temperature

difference is slightly above onset and the profile is nearly

sinusoidal. In the second case, the drive ratio has been

increased to approximately 10%. The fundamental frequency

of the DT ¼ 368 K is 520 Hz, which is a bit higher than the

fundamental of the DT ¼ 325 K case of 516 Hz. This is due

to the higher average speed of sound in the system. Figure 4

can directly be compared with Fig. 11 of Karpov et al. Some

small wrinkles are found in the wave valleys; these are also

found in the experimental results,29 and in the results of the

time domain model of Karpov et al.9 Increasing Nf does not

visibly change the wave profile. Moreover, the wrinkles in

the wave valleys do not disappear.

A typical quantity of interest in a thermoacoustic system

is the acoustic power flow, or the cycle-average of the work

flow

E ¼ pU ; (37)

where the overline means time-averaging. This quantity can

be computed from the frequency domain data by

E ¼ p0U0 þ
XNf

n¼1

En ¼ p0U0 þ
1

2
<
XNf

n¼1

pc;nU
c;n

2
4

3
5: (38)

In Eq. (38), En is the acoustic power flow of the nth har-

monic. Figure 5 shows the acoustic power in the first three

harmonics at DT ¼ 325 K. For all i, the power is zero at

both ends of the tube. It can be seen that both the fundamen-

tal and second harmonic gain acoustic power in the stack.

Yet the second harmonic loses nearly all its gained power in

the cold heat exchanger by viscothermal losses. All harmon-

ics higher than the second transport net power from the reso-

nator to the stack and are therefore dissipative. For this

situation, linear losses are dominant, since the power in the

higher harmonics is negligible compared to the fundamental,

as would be expected close to the onset temperature

FIG. 2. Spatial distribution of the real

(solid line) and imaginary (dashed

line) part of the acoustic pressure har-

monics in the engine running at the

lowest temperature difference of

325 K. The influence of the engine

core can be seen at x ’ 0:9 m, where

the curvature in the profiles is rela-

tively high.
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difference. This is no longer true in the high drive ratio/high

temperature case of Fig. 6, where the higher harmonics—

especially the second—have a visible effect on the

fundamental.

At the high drive ratio, the heat load in the heat

exchangers is relatively low, because the transverse tempera-

ture difference between solid and fluid in the heat exchang-

ers and stack is small compared to the axial temperature

difference of 368 K. Therefore, the underestimation of the

time-averaged heat transfer with the model of Sec. II C does

not have a significant influence on the computed saturation

amplitude. For a traveling wave engine running at similar

pressure amplitude, the wave would have 20 to 100 times

more acoustic power, and therefore the heat load would be

approximately that same factor higher. In that case, the over-

estimation time-average temperature difference in the heat

exchangers would have a significant effect on the saturation

amplitude.

For the high drive ratio, the peak RMS Reynolds

number is �3� 104. With a fundamental shear wave num-

ber of 273, this results in “weakly turbulent flow” according

to Fig. 7.4 of the book by Swift.30 Thus, the laminar flow

drag model fails. In order to obtain results closer to the ex-

perimental results, a turbulent flow drag model is required,

which is beyond the scope of this research.

The computed amplitude for the high temperature case

is about 40% higher than the result from the time domain

model of Karpov et al.,9 due to several differences between

the models. First, since the wall temperature is fixed in this

model, the wall temperature gradient is not decreased by

thermoacoustic streaming, i.e., the wall acts as a perfect heat

source/sink. Second, in the model of Karpov et al., heat

transfer is lowered by a factor Kh ¼ 25=35, to compensate

for the fact that not all plates “participate in the heat trans-

port along the stack.” We have not included this factor in our

model. Finally, their approximate drag and heat transfer

FIG. 3. Solution of the pressure waveform at x¼ 0 for DT ¼ 325 K and

Nf¼ 6.

FIG. 4. Solution of the pressure waveform at x¼ 0 for DT ¼ 368 K and

Nf¼ 6.

FIG. 5. Acoustic power of the first three harmonics as a function of position

in the tube slightly above onset (DT ¼ 325 K). From the left, the first verti-

cal line is located at the left side of the cold HX. The second line is at the

right side of the hot HX.

FIG. 6. Acoustic power of the first three harmonics as a function of position

in the tube at DT ¼ 368 K). The vertical lines are the same as in Fig. 5.
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model overestimates damping for the higher frequencies, as

can be seen from the drag curve (Fig. 1 in the paper by

Karpov et al.9). The combined differences bring their model

closer to the experimental results and this model closer to

linear thermoacoustic theory.

B. Time-average pressure

The system modeled in this paper is of the standing

wave type. As such, the walls at the ends of the resonator do

not allow a time-average mass flow (qU) through the system.

Because of this, there is no Gedeon streaming.31 This restric-

tion of mass streaming by the boundary conditions induces a

time-average pressure distribution in the system, which also

known as the acoustic radiation pressure. A correct predic-

tion of this radiation pressure verifies the implementation

and method of the current model.

Using Langevin’s first relation, for a single frequency

standing wave, the Eulerian excess pressure is found to be32

pE � p0 ¼
jp̂c;1j2x¼0

4q0c2
0

cos 2kxð Þ þ C; (39)

where C is a constant, that depends on external boundary

conditions, k ¼ x=c0 is the wave number of the fundamental

frequency, and c0 is the undisturbed speed of sound evaluated

at the ambient temperature in the resonator. To compare the

numerically obtained result with the analytical result, C is set

to zero and for the numerical result the spatial average over

the domain ð1=LÞ
Ð L

0
p̂0dx is subtracted. Figure 7 shows a

comparison of the time-average pressure profile of the simu-

lations with the analytical result of Eq. (39). For the low am-

plitude case, the result matches well with the analytical result

in the resonator. At the position of the stack, a deviation is

visible. This is due to the change in the cross-sectional area,

as well as the non-constant time-average temperature in the

stack. In case of a higher amplitude, the agreement is poorer.

This is because in the high amplitude case, the influence of

the higher harmonics plays a larger role.

From this we conclude that the time-averaged pressure

profile shows a good agreement with the theoretical results.

This gives confidence that Gedeon streaming in systems

with a “looped tube” will correctly be modeled.

V. CONCLUSIONS

The periodic steady-state of a standing wave thermoa-

coustic engine has been numerically solved using a quasi-

one-dimensional thermoacoustic model. The periodic

steady-state is found in the frequency domain by applying

the nonlinear frequency domain method to this model.

Several difficulties are treated related to solving self-excited

thermoacoustic systems with the nonlinear frequency do-

main method. Among them, a method to obtain the unknown

fundamental frequency of the periodic steady-state. The low-

amplitude limit of this model is in exact agreement with linear

thermoacoustic theory. Nonlinear effects appear in the results

in the form of the generation of higher harmonics. It has been

found that taking only six harmonics into account is enough to

accurately describe nonlinear effects in the experimental setup

and to reach global convergence. The results are in good

agreement with a time domain model from literature, which

shows a similar qualitative agreement with numerical experi-

ments. Typical computation times of the developed computer

code are in the order of minutes, which is small enough so that

the model can be used in future optimization studies.
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APPENDIX A: MASS BALANCE

When a time domain model for a closed system is

solved using a conservative integration scheme, global quan-

tities such as mass and momentum are conserved as the solu-

tion progresses in time. If the NLFD equivalent of this time

domain model is solved, this is no longer true as the solution

does not follow physical states during the solution process. It

results in a numerical problem, which can be explained by

assuming a steady-state system. This can be done using the

NLFD method by setting Nf¼ 0. For Nf¼ 0 all storage vec-

tors have length one, so they contain only the time-average

of the state. The model we consider is a piece of prismatic

tube of length L with an isothermal wall on both sides, as

shown in Fig. 8. On the left side, the temperature is kept at

the reference temperature T0. On the right side, the tube is

heated to a temperature TH. In the domain, we assume adia-

batic tube walls and we neglect viscothermal effects. The

problem is one-dimensional and we consider a calorically

perfect gas with constant thermal conductivity. Then, the

continuity equation states

FIG. 7. Analytical (solid line) vs numerical (dashed gray line) result for the

time-average pressure profile in the system. Above: low amplitude case

(DT ¼ 325 K), below: high amplitude case (DT ¼ 368 K). The vertical lines

are the same as in Fig. 5.
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u
dq
dx
þ q

du

dx
¼ 0: (A1)

This equation can be integrated to obtain

u xð Þ ¼ qref

q xð Þ
uref : (A2)

So if we set uref ¼ uð0Þ � 0, the solution we find is that the

velocity is zero at all positions in the tube: the tube is quies-

cent. If we use this result for the momentum equation, we find

dp

dx
¼ 0; (A3)

for which we find the solution p ¼ constant in the domain.

Next, the energy equation reduces to

d2T

dx2
¼ 0: (A4)

Using the left and right boundary condition, we find the lin-

ear temperature distribution T ¼ T0 þ ðTH � T0Þx=L.

Finally, using the perfect gas equation of state, the density

can be determined up to the same constant:

q ¼ constant=RsT. Since we do not have a boundary condi-

tion where the pressure or the density is prescribed, the value

of the pressure and the density cannot be determined.

Moreover, we have too many boundary conditions for the

velocity: when the velocity is zero at one boundary, it has to

be zero at the other boundary due to Eq. (A2). For the nu-

merical method, this situation results in a singular Jacobian

matrix.

Nevertheless, the pressure in the system can uniquely be

determined by applying knowledge of the global state of the

system. For example, if we know the amount of mass in the

tube, we obtain the global equationð
Vf

qdV ¼ mp; (A5)

where Vf is the total fluid volume in the tube and mp the

amount of fluid mass in the tube. Then we can obtain the

pressure as

p ¼ TH � T0ð Þ

ln
TH

T0

� � Rsmp

Vf
: (A6)

For the numerical method, we apply a discretization of

the governing equations, which results in a nonlinear system

of algebraic equations. Adding Eq. (A5) to this system yields

an over-determined system. Therefore, the time-averaged

continuity equation for one grid-point is replaced by the

equation describing the global conservation of mass. For a fi-

nite volume scheme, we replace one local DC continuity

equation with Eq. (35). Since closed thermoacoustic systems

are often filled at room temperature, a beneficial effect of

this global equation is the fact that we obtain the DC pres-

sure increase in the system under operating conditions. For

systems with large resonators, this increase in mean pressure

is small. Yet for thermoacoustic systems which have a high

heated volume with respect to the total volume, such as

engines with mechanical resonators, the mean pressure can

increase significantly.

At this point, we are in the position to say something

about the inclusion of axial conduction in Eq. (16). If we had

neglected conduction, Eq. (A4) would reduce to an identity

and the system would be completely under-determined.

Inclusion of the conduction term solves this problem.

Moreover, it enables us to resolve the thermal boundary

layer adjacent to an isothermal wall.

APPENDIX B: THE FUNDAMENTAL FREQUENCY

A TA engine is a self-excited system, therefore the fun-

damental frequency is unknown and part of the solution.

This Appendix describes the numerical implementation used

to solve for unknown fundamental frequency. A global resid-

ual operator L is introduced, which combines the governing

equations for all degrees of freedom. A state vector x is the

solution if

LðxÞ ¼ 0: (B1)

This solution is searched for using the Newton-Raphson

method, where we analytically evaluate the Jacobian matrix

dL=dx.

Since for a self-excited system no boundary conditions

are given for the phase, this residual operator is invariant to

a shift in time. So if a global time shift is applied to one solu-

tion, this yields another valid solution. A unique solution is

found by fixing the phase. Therefore, an extra equation is

added to the system, following the original idea of Nakhla

and Vlach,33 as developed by Gilbert et al.34 To obtain one

extra equation, the phase of the solution is fixed by adding

an extra equation. We call this extra equation the timing con-

straint. This timing constraint can be set to any dependent

variable. As explained in Sec. III, we add the equation set-

ting the imaginary part of the amplitude of the first harmonic

of the pressure at the left wall equal to zero, as represented

by Eq. (34). Note that the relative phase of higher harmonics

with the fundamental tone is determined by the nonlinear

coupling.

We define a new system of equations in which the funda-

mental frequency is added as unknown and the timing con-

straint as an equation. So the augmented solution vector is

y ¼ ðx;xÞ; (B2)

and the augmented residual is

FIG. 8. Example situation of a closed system with adiabatic walls on the

side. At x¼ 0, and x¼L, two isothermal walls are present. A cell-centered

grid is shown, where the discrete density variables lie in the middle of the

cells.
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M ¼ ðLðxÞ;=ðp̂1ðx ¼ 0ÞÞÞ: (B3)

To search for the solution, Newton iterations are done using

the Jacobian of the augmented residual operator M:

dy ¼ �dM

dy

�1

�M; (B4)

where

dM

dy
¼

@L

@x

@L

@x
@= p̂1 x ¼ 0ð Þ
� �
@x

0

2
664

3
775: (B5)

In Eq. (B5), @=ðp̂1ðx ¼ 0ÞÞ=@x is a single row which is

zero everywhere, but is one at the global degree of freedom

number corresponding to =ðp̂1ðx ¼ 0ÞÞ. The column

@L=@x, is the sensitivity of the residual to a change in fre-

quency. For brevity we only show the semi-discrete form of

these sensitivities. These sensitivities can be derived from

the governing equations. For the continuity equation this

sensitivity is

@Lc

@x
¼ Sf

�D � q̂: (B6)

For the momentum and energy equation, however, we

neglect the sensitivity to the operators D̂; Ĥ, and Q̂, so for

the momentum equation we use

@Lm

@x
’ �D �F � q � Uð Þ; (B7)

and for the energy equation

@Le

@x
’ �D � Sf

c� 1
p̂ þ 1

2Sf
F � q � U2

� �� �
; (B8)

and finally for the equation of state

@Ls

@x
¼ 0: (B9)

In most cases it is only the fundamental mode which is

unstable.35 The frequency of the instability can be found

using linear theory. For the application of Sec. IV, a close

enough guess for the numerical solution is

x ’ pc0

L
; (B10)

where c0 is the ambient undisturbed speed of sound and L is

the length of the engine.

It should be noted that for self-excited systems the qui-

escent situation cannot be used as an initial guess for the

solver, since a quiescent solution makes the augmented

Jacobian matrix singular. This is because at quiescent condi-

tions, the solution is no longer dependent on the fundamen-

tal frequency. Therefore, as a starting guess, a “driven”

solution is used. For the application of Sec. IV, the starting

guess is the solution of this system driven at the left bound-

ary with frequency as defined in Eq. (B10) and unit

amplitude.
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