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High Cycle Fatigue Damage Model
for Delamination Crack Growth in
CF/Epoxy Composite Laminates

LAURENT GORNET AND HASSAN IJAZ

GeM-UMR-CNRS 6183, Ecole Centrale de Nantes � 1 Rue de la 
Noë, BP 92101, 44321 Nantes Cedex 3, France

ABSTRACT: This article presents the development of a fatigue damage model
which helps to carry out simulation of the evolution of delamination in the laminated
composite structures under cyclic loadings. A classical interface damage evolution
law, which is commonly used to predict the static debonding process, is modified
further to incorporate fatigue delamination effects due to high cycle loadings. An
improved formulation is also presented to incorporate the ‘R’ ratio effects. The
proposed fatigue damage model is identified using fracture mechanics tests like
double cantilever beam, end-notched-flexure and mixed-mode bending. Then a non-
monotonic behavior is used to predict the fatigue damage parameters able to carry
out delamination simulations for different mode mixtures. Linear Paris plot behav-
iors of the above-mentioned fracture mechanics tests are successfully compared with
available experimental data on HTA/6376C and AS4/PEEK unidirectional
materials.

KEY WORDS: fiber-reinforced materials, damage mechanics, delamination,
high cycle fatigue, finite element analysis.

INTRODUCTION

F
OR WEIGHT SAVING purposes in aircrafts, trains, ships, and sailing race
boats applications, the use of composite materials is no longer limited

to secondary structure, but is expending to primary load bearing parts. Due
to their laminated nature, composite laminates are prone to delamination
failure under static (Davies, 1989; de Morais and Pereira, 2007) and fatigue
loadings (Martin and Murri, 1990; Kenane and Benzeggagh, 1997; Hojo and
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Gustafson, 1987; Asp et al., 2001). Delamination phenomenon consists of
the separation of the adjacent layers of laminated composites. Under fatigue
loading conditions, this problem becomes more severe and can cause dra-
matic reduction of the load carrying capability of the laminated structures.

During the past 20 years, for monotonically applied loading, a lot of work
has been carried out at the meso-scale level by authors to model damage
mechanism of composite laminates (Allix and Ladevèze, 1992; Chaboche
et al., 1997; Allix et al., 1998). Meso scale is strongly connected to the lam-
inated scale, which lies between micro scale (fiber scale) and macro scale
(structural scale). A strategy to model laminated composite uses two basic
damageable constituents: the layer and the interface. The interlaminar inter-
face, which is a mechanical surface, connects two adjacent layers and
depends on the relative orientation of their fibers (Allix et al., 1995). An
overview of delamination modeling for static loading can be found in
(Tay Te, 2003). Few articles focus on delamination modeling in composite
materials under fatigue loadings (Robinson et al., 2005; Tumino and
Cappello, 2007; Turon et al., 2007).

In this article, a comprehensive interlaminar interface fatigue damage
evolution law is proposed to model the delamination phenomenon under
fatigue loadings. The modeling was implemented in the finite element code
Cast3M (CEA) through the user subroutine material (UMAT). The double
cantilever beam (DCB), end-notched-flexure (ENF) and mixed-mode flexure
(MMF) tests were chosen to identify the proposed model for simulations of
the crack growth in unidirectional carbon-fiber epoxy-matrix materials.

The proposed model takes its foundations from the classical static damage
evolution law proposed by Allix et al. (1992, 1998). The main idea for the
fatigue crack growth modeling was first introduced by Peerlings et al. (2000)
for metallic parts. The idea of fatigue damage evolution law introduced by
Peerlings is also very close to the one proposed by Paas et al. (1993).
Robinson et al. (2005) presented the fatigue-driven delamination for the
laminated composites using the idea of Peerlings et al. (2000) for the
cyclic load, varying between maximum and zero values. In Robinson
et al. (2005), fatigue damage evolution is a function of relative displacement
of adjacent layers. In this article, the framework of thermodynamics of
an irreversible process is used to derive a damageable interface modeling
(Allix and Ladevèze, 1992).

The fatigue damage evolution law proposed in this article is a function of
thermodynamic forces Ydi (also called damage energy release rate) and of
critical damage energy release rate YC (Allix et al., 1992, 1998). The pro-
posed fatigue damage evolution law permits us to reproduce the linear crack
growth rates as obtained by using classical Paris law for fracture mechanics
tests (Martin and Murri, 1990; Juntti et al., 1999, Asp et al., 2001). The Paris
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law, which depends on two parameters namely B and m, can be expressed
as follows:

da

dN
¼ B

�G

GC

� �m

, ð1Þ

where a is the crack length and N the number of cycles. �G ¼ ðGmax � GminÞ
is the cyclic variation of energy release rate with Gmax and Gmin representing
the maximum and minimum values of energy release rates during the oscil-
lation, respectively. GC is the fracture toughness of the material,B and m are
constants and they are determined experimentally.

In some continuum damage mechanics theories, the failure of interface is
taken into account by three damage variables d1, d2, and d3. The delamina-
tion crack growth under high cycle fatigue can be considered as a combina-
tion of delamination due to the quasi-static loading and due to the cyclic
variation of the loading; hence, the total damage evolution for three differ-
ent modes of failure can be expressed as follows:

_diT ¼ _di ¼ _diS þ _diF i ¼ 1, 2, 3 ð2Þ
where the term _diS corresponds to delamination growth under static loading
and _diF is related to the one under fatigue. The details of static and fatigue
damage variables will be discussed later.

The article is organized as follows: in ‘Review of Static Interface Damage
Model’ section, classical damage model proposed by Allix et al. (1992, 1998)
for the prediction of delamination in laminated composites is recalled.
In ‘Fatigue Interface Damage Model’ section, the proposed fatigue
damage model along with simulations and results is presented in detail. In
‘Mixed-mode Delamination Criteria’ section, a comprehensive criterion for
mixed-mode delamination under fatigue is presented and simulation results
are successfully compared with the experimental data available. Finally,
some concluding remarks are given in the last section.

REVIEW OF STATIC INTERFACE DAMAGE MODEL

The interface is a surface entity which ensures the transfer of stress and
displacement between two adjacent layers as shown in Figure 1. This model-
ing coupled with the damage mechanics makes it possible to take into
account the phenomenon of delamination which can occur during the
mechanical loading of structural parts. The relative displacement of one
layer to other layer can be written as follows:

U ¼ U½ � ¼ Uþ �U� ¼ U1N1 þU2N2 þU3N3 ð3Þ
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The deterioration of the interface is taken into account by three internal
damage variables (d1, d2, and d3). It should be noted that in compression,
there will be no damage. The relationship between stress and displacement in
orthotropic plane of axis can be expressed as follows:

�13
�23
�33

0
@

1
A ¼

k01 1� d1ð Þ 0 0
0 k02 1� d2ð Þ 0
0 0 k03 1� d3ð Þ

0
@

1
A U1

U2

U3

0
@

1
A, ð4Þ

where, k01, k
0
2, and k03 are interface rigidities associated to damage variables

in orthogonal directions. The thermodynamic model is built by taking into
account the three possible modes of delamination. Three different damage
variables can be distinguished according to the three modes of failure. The
thermodynamic forces combined with the damage variables associated to the
three modes of delamination are (Allix et al., 1998):

Yd3 ¼
1

2

�33h i2þ
k03ð1� d3Þ2

, Yd1 ¼
1

2

�2
13

k01ð1� d1Þ2
, Yd2 ¼

1

2

�2
32

k02ð1� d2Þ2
, ð5Þ

where Xh iþ represents the positive part of X. It is supposed that the three
different damage variables corresponding to three modes of failure are very
strongly coupled and governed by equivalent single energy release rate func-
tion as follows (Allix et al., 1998):

Y tð Þ ¼ max ��t Yd3

� ��þ �1 Yd1

� ��þ �2 Yd2

� ��� �1=�� ���� , ð6Þ

where, �1 and �2 are coupling parameters and a a material parameter which
governs the damage evolution in mixed mode. The static damage evolution
law is then defined by the choice of a material function as follows (Allix
et al., 1998):

if d3S 5 1ð Þ and Y5YRð Þ½ �
then

d1S ¼ d2S ¼ d3S ¼ ! Yð Þ
else

d1S ¼ d2S ¼ d3S ¼ dc

ð7Þ

Ply –

Ply +

Interface N1

N2

N3

Figure 1. Interface between plies.
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An isotopic damage evolution law is supposed here in order to simulate
the delamination process in composite laminates. The damage function ! Yð Þ
is selected in the form (Allix et al., 1998):

! Yð Þ ¼ n

nþ 1

Y� YO

	 

þ

YC � YO

" #n

: ð8Þ

where YO is the threshold damage energy, YC, critical damage energy, n,
characteristic function of material, higher values of n corresponds to

brittle interface, YR, damage energy corresponding to dC failure
YR ¼ YO þ ðnþ 1Þ=n d1=nC YC � YOð Þ 05 dC � 1ð Þ:

A simple way to identify the propagation parameters is to compare the
mechanical dissipation yielded by two approaches of damage mechanics and

linear elastic fracture mechanics (LEFM). In the case of pure mode situations
when the critical energy release rate reaches its stabilized value at the prop-
agation, it is denoted by GC. Comparison of dissipations between fracture

mechanics and damage mechanics approaches leads to (Allix et al., 1998):

GIC ¼ YC; GIIC ¼ YC

�1
; GIIIC ¼ YC

�2
: ð9Þ

In order to satisfy the energy balance principle of LEFM, the area under

the curve of stress�displacement curve for the whole debonding process
(DP) obtained through damage mechanics formulation is set equal to critical
energy release rate GiC, see Figure 2. Following relations for the modes I, II,

and III, critical energy release rates can be written:

GIC ¼
Z
DP

�33 dU3, GIIC ¼
Z
DP

�13 dU1, GIIIC ¼
Z
DP

�23 dU2 ð10Þ

s13

GCII

GCII GCI

U1
U3

s33

Figure 2. Constitutive model, mode I (right) and mode II (left) (the constitutive behavior of
mode III is similar to mode II).
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For mixed-mode loading situation, a standard LEFM model is recovered
as follows:

GI

GIC

� ��

þ GII

GIIC

� ��

þ GIII

GIIIC

� ��

¼ 1 ð11Þ

In a general mixed-mode DP, the global fracture energy can be computed
as follows:

GCT ¼ GI þ GII þ GIII ð12Þ

FATIGUE INTERFACE DAMAGE MODEL

Principle of the Modeling

Some assumptions are made here to simplify the numerical calculation
procedure for fatigue delamination modeling. The actual applied cyclic load
is oscillating between maximum and minimum values as shown in Figure 3.
Hence in the case of high cycle fatigue, the load applied numerically to the
structure will be equal to the maximum value of the actual load cycle, see
Figure 3. In the case of interface debonding model, Robinson et al. (2005)
introduced relative displacement based fatigue damage evolution law.

A
pp

lie
d 

lo
ad

Actually applied load

Numerically applied load

Time

Figure 3. Envelope of applied cyclic load between maximum and minimum values.
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However in this article, a fatigue model based on damage energy release

rates is proposed as follows:

_dF ¼ @dF
@t

¼ g d,
Y
YC

� � _YðtÞ
YC

if _Y � 0 and f � 0

0 if _Y5 0 or f5 0

8<
: ð13Þ

where f is a damage loading function and defines the threshold of fatigue

delamination growth. This function can be written in terms of damage

energy release rate as f ¼ Y� Y�, where Y� is the threshold damage

energy release rate, and damage will grow only and only if f � 0. This

threshold value Y� is assumed to be zero for all computations done in this

article. Here g is a dimensionless function and it depends on damage energy

release rate Y, its critical value YC, and on total damage.
Since the damage growth defined by Equation (13) is in rate format,

it should be integrated over each time increment in the numerical analy-

sis, in order to obtain the damage at the end of the increment. The

damage variable at the end of a time increment �t can be written as

(Peerlings et al., 2000):

dFðtþ�tÞ ¼ dFðtÞ þ
Z tþ�t

t

_dF dt ¼ dFðtÞ þ
XNþ�N

n¼N

Pðd,YÞ ð14Þ

Here t and tþ�t are the times corresponding to end of cycles N and

Nþ�N, respectively. Here Pðd,YÞ represents the small variation of damage

d within one cycle compared to the total number of cycles and is expressed

through the following form:

Pðd,Ymax,YminÞ ¼
Z Ymax

Ymin

g d,
Y

YC

� �
dY

YC
¼ C� ð1� R2Þ1þ�

1þ �
e� d

Ymax

YC

� �1þ�

ð15Þ
Here R2 can be defined as follows:

R2 ¼ Y
min

	 

þ

Y
max

, ð16Þ

where Y
min

corresponds to minimum and Ymax corresponds to maximum

load value during a cycle (envelope of the cyclic load, Figure 3). � is a

constant parameter. � and C are functions of mode ratios which can also

be expressed in more general form as �ð�Þ and Cð�Þ. Here d is total damage,

and subscript i (indicating any specific mode of failure) is omitted for the
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sake of simplicity. For a mode mixture, comprising modes I and II, one can
define a local definition of � in damage mechanics formulation as:
� ¼ Yd1=ðYd1 þ Yd3Þ. Where Yd3 and Yd1 are damage energy release rates
for modes I and II, respectively, and are already defined through Equation
(5). Similarly, one can also write a global definition of � in fracture mechan-

ics formulation as: � ¼ GII=ðGII þ GIÞ, where GI and GII are modes I and II
energy release rates, respectively.

Hereafter, for the convenience in writing, Equation (15) is rewritten and
Ymax is replaced by Y:

Pðd,YÞ ¼ CR

1þ �ð�Þ e
� d Y

YC

� �1þ�ð�Þ
ð17Þ

The effect of load ratio ‘R,’ for loads varying between maximum and
minimum values, is taken into account by CR:

CR ¼ Cð�Þ � ð1� R2Þ1þ�ð�Þ ð18Þ
The sum over the cycle numbers in Equation (14) can be approximated

by using numerical integration schemes like trapezoidal rule or Simpson’s
rule for definite integrals (Hamming, 1987). Here, trapezoidal rule is used
by estimating the average of the integrals evaluated at the beginning

and end of the increment multiplied by the number of cycles in the
increment �N.

dF Nþ�Nð Þ ¼ dF Nð Þ þ 1

2
P d Nþ�Nð Þ,Y Nþ�Nð Þð Þ þ P d Nð Þ,Y Nð Þð Þ½ ��N

ð19Þ
The delamination crack growth under high cycle fatigue can be

considered as a combination of delamination due to the quasi-static loading
and due to the cyclic variation of the loading. The variation of damage

under cyclic loading is expressed above. Similarly, the variation of static
damage evolution as a function of loading cycles can be expressed as
follows:

dSðNþ�NÞ ¼ dSðNÞ þ n
nþ1

1
YC�YO

h in
YðNþ�NÞ � YO

	 
n
þ� YðNÞ � YO

	 
n
þ

h i
if YðNþ�NÞ � YðNÞ

(

ð20Þ
where YðNþ�NÞ and dSðNþ�NÞ correspond to end of cycles Nþ�N.
YðNÞ and dSðNÞ correspond to end of cycles N. If d ðNÞ is the total damage at
the end of cycles N, then the total damage after the increment of number of
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cycles �N can be evaluated by combining Equations (19) and (20) for cyclic
loading as follows:

d ðNþ�NÞ ¼ d ðNÞ þ 1

2
Pðd ðNþ�NÞ,YðNþ�NÞÞ þ Pðd ðNÞ,YðNÞÞ½ ��N|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Fatigue delamination

þ

n

nþ 1

1

YC

� �n
YðNþ�NÞ � YO

	 
n
þ� YðNÞ � YO

	 
n
þ

h i
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Static delamination

if YðNþ�NÞ � YðNÞ

8>>>>>>>><
>>>>>>>>:

ð21Þ
Relation (21) is a nonlinear equation in terms of damage variable

d ðNþ�NÞ, because it appears on both sides of the equation. This can be
solved iteratively by applying the standard Newton�Raphson method to
Equation (21) (Hamming, 1987). One can avoid solving this equation iter-
atively by replacing d ðNþ�NÞ on the right-hand side of the Equation (21),
with predictor dP based on forward Euler step (Peerlings et al., 2000) and
defined as,

dp ¼ d ðNÞ þ Pðd ðNÞ,YðNÞÞ�N ð22Þ
In this article, predictor integration scheme is used for all the simulations.

Identification of the Model

The fatigue damage model presented here is implemented in finite element
code in Cast3M (CEA) (Verpeaux et al., 1988). The effectiveness of the
fatigue damage model is tested by the finite element simulations of
mode I, mode II, and mixed-mode delamination tests.

Two dimensional meshes are used to model the beam arms and interface
elements (Beer, 1985) are employed for the modeling of DP. The material
used is unidirectional HTA/6376C carbon/epoxy laminate and its properties
taken from Asp et al. (2001) are given in Table 1. The experimental results of
Asp et al. (2001) are also used for the comparison with the predicted fatigue
delamination behavior. The specimen with total length, L¼ 150mm; width,
b¼ 20mm; initial crack, a0¼ 35mm; and thickness, h¼ 3.1mm is used for
the simulations. For all the simulations conducted in this article, load is
applied in two steps. In the first loading phase, load is applied monotoni-
cally to a maximum load point, but this maximum load point should be low
enough to avoid the static delamination. Then in the second step, load
oscillates between maximum and zero values to simulate the fatigue loading
condition.
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From the corrected critical energy release rates at propagation (Figure 4)

and from the relationship existing between fracture mechanics and damage

mechanics, Equation (9), one can find the critical energies YC and the cou-

pling coefficient �1. Without any further information on mode III interla-

minar fracture, one can have �2 ¼ �1 (Allix et al., 1998). The identification

of �, which governs the energy release rate in case of mixed-mode delami-

nation, is done experimentally by performing tests for different mode mix-

tures and the same is directly used in interface damage modeling. As a

general case, normally the value of � is chosen between 1.0 and 2.0

(1:0 � � � 2:0) (Harper and Hallet, 2008). The identified interface parame-

ters for UD HTA/6376C using Equation (9) are given in Table 2.

1600

1400

1200

1000

800

600

400

200

0
DCB ENF MMB

G
C

 (
J/

m
2
)

Figure 4. Energy release rates at propagation for UD HTA/6376C.

Table 1. Material properties for UD HTA/6376C.

E11 (GPa) 120
E22 ¼ E33 (GPa) 10.5
G12 ¼ G13 (GPa) 5.25
G23 (GPa) 3.48
	12 ¼ 	13 0.30
	23 0.51

Source: Asp et al. (2001).
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For the model proposed by Allix, the following relationship is derived to

calculate the interface rigidities:

with i 2 1,2f g

k03 ¼
ð2nþ 1Þð2nþ1Þ

n

8nðnþ 1ÞYC
�2
33, k

0
i ¼

�ið2nþ 1Þð2nþ1Þ
n

8nðnþ 1ÞYC
�2
3i

ð23Þ

Now using Equation (23), the interfacial rigidities in normal and shear

directions can be identified. The values for maximum interfacial stresses are

assumed as 30MPa (Robinson et al., 2005). Taking n ¼ 0:5 and using

Equation (23), the normal and shear rigidities are calculated as

k30 ¼ 9:3� 103MPa=mm and k10 ¼ 2:4� 103 MPa=mm, respectively, for

UD HTA/6376C.
Figure 5 presents the variation of normal interfacial stress �33 with respect

to relative displacement U3, and area under the curve is equal to critical

energy release rate GIC. Similarly, Figure 6 presents the variation of shear

35

s 3
3 

(M
P

a)

30

25

20

15

10

GIC = YC

k3
0=9.3×103MPa/mm

YC=0.26KJ/m2

n=0.5

5

0

0.E+00 4.E–03 6.E–03 8.E–03

U3 (mm)

1.E–02 1.E–02 1.E–022.E–03

Figure 5. Variation of �33 with respect to U3 for UD HTA/6376C.

Table 2. Interfacial material parameters for
UD HTA/6376C.

Interface Yc (kJ/m2) �1
0�/0� 0:26	 0:01 0:25
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interfacial stress �13 with respect to relative displacement U1, and area under
the curve is equal to critical energy release rate GIIC. As a general case,
proper values of interfacial stresses and interfacial rigidities are found by
making a comparison between numerical and experimental results under
static loading conditions.

Interfacial fatigue damage parameters �,�, and C are directly identified
from experimental results for values giving the good fit of numerical results.
The influence of three fatigue damage parameters �, �, and C on Paris plot
under mode I fatigue delamination condition is discussed here. The three
different values of parameters �, �, and C are selected in such a way that the
simulation results always fall inside the scattered data. Figure 7 shows the
influence of C on the crack growth rates as a function of normalized critical
energy release rate. From Figure 7, it is clear that varying the value of C
strongly affects the cyclic crack growth rates, but the influence on the slope
of the curve is not very significant.

Figure 8 presents the effect of � on the Paris plot, different values of �
considerably affect the slope of the curve. However, the variations in � do
not seem to affect the slope of the curve significantly, see Figure 9. By taking
into account the influence of these fatigue damage parameters on the linear
Paris plot behavior, their values can be determined for different modes of
failure. The value of � is fixed to 0.5 for all the simulations, and then values
of � and C are determined to suit the slope of Paris plot for different modes
of failure.

35

30
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20

15

10

5

0

s 1
3 

(M
P

a)

GIIC=—
YC
g1

k1
0=2.3×103MPa/mm

YC=0.26KJ/m2

n=0.5

0.E+00 2.E–02 3.E–02 4.E–02

U1 (mm)

5.E–02 6.E–021.E–02

Figure 6. Variation of �13 with respect to U1 for UDHTA/6376C.
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Figure 7. Paris plot under pure mode I fatigue delamination for different values of C.
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Figure 8. Paris plot under pure mode I fatigue delamination for different values of �.
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The delamination toughness values obtained through experiments (Asp
et al., 2001) and the associated identified interface and fatigue parameters
for UD HTA/6376C are given in Table 3.

Finite Element Simulations

Fatigue delamination simulations are performed in pure mode I, pure
mode II, and mixed mode (for mixed mode, modes I, and II, the components
are equal (� ¼ 0:5)). Two-dimensional meshes comprising of four nodes
plane strain elements are used to model the beam arms and interface ele-
ments are employed for the modeling of DP. Linear elements of constant
size 0.2mm are used along the length of the arm and four elements are used
in thickness direction. No friction effects are considered for the modeling
and simulations in this work. For pure mode I, specimen arms are loaded
with opposing moments, Figure 10. The opposing moment condition gives
the mode I energy release rate that is independent of crack length and there-
fore fatigue loading at a constant applied moment M results in a constant
crack growth rate. Similarly, the loading condition for pure mode II is
shown in Figure 11, and that for mixed mode (� ¼ 0:5) is shown in

0.1 1
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l=0.1
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Figure 9. Paris plot under pure mode I fatigue delamination for different values of � .
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Figure 12. For a mode ratio of 50% mode II, the ratio 
 between the two

applied moments is calculated as follows (Williams, 1988):


 ¼
1�

ffiffiffi
3

p

2

1þ
ffiffiffi
3

p

2

: ð24Þ

The energy release rate for pure mode I is (Williams, 1988):

GI ¼ M2

bEI
, ð25Þ

Table 3. Delamination toughness values for UD HTA/6376C and associated
Fatigue parameters.

Test method GC (kJ/m2) Interface Fatigue parameters

Mode I
� ¼ 0

0.26±0.01 n ¼ 0:5 YO ¼ 0: kJ=m2
YC ¼ 0:26	 0:01 kJ=m2
k30 ¼ 9:3� 103 MPa=mm

� ¼ 0:5
�ð�Þ ¼ 2:0
Cð�Þ ¼ 6:0� 10�4

Mode II
� ¼ 1:0

1.002±0.063 n ¼ 0:5 YO ¼ 0 kJ=m2
YC ¼ 0:26	 0:01 kJ=m2
k10 ¼ 2:4� 103MPa=mm
�1 ¼ 0:25

� ¼ 0:5
�ð�Þ ¼ 2:0
Cð�Þ ¼ 6:0� 10�3

Mixed-mode
� ¼ 0:5

0.447±0.023 n ¼ 0:5 YO ¼ 0 kJ=m2

YC ¼ 0:26	 0:01 kJ=m2

k30 ¼ 9:3� 103MPa=mm
k10 ¼ 2:4� 103MPa=mm
�1 ¼ 0:25 � ¼ 2:0

� ¼ 0:5
�ð�Þ ¼ 3:5
Cð�Þ ¼ 8:0� 10�2

c P P
c

P
L

P

Figure 11. Specimen under pure mode II loading condition.

M

M

Figure 10. Specimen under pure mode I loading condition.
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where the width of specimen is b, E the longitudinal flexural Young’s mod-

ulus, and I the second moment of area of the specimen’s arm.
The energy release rate for pure mode II is (Williams, 1988):

GII ¼ 3

4

M2

bEI
: ð26Þ

In which,M ¼ cP=2, see Figure 11. The value of c is 30mm. For mixed-

mode case (Williams, 1988):

GI ¼ GII ¼ 3

4 1þ ffiffiffi
3

p
=2

� �2 M2

bEI
: ð27Þ

Figure 13 shows the Paris plot behavior for modes I, II, and mixed-mode

(50% mode II) delamination results. Simulation results are found in good

agreement with experimental results (Asp et al., 2001).
Simulations presented above are based on the assumption that cyclic load

is varying between maximum and zero values. However, in many practical

situations, load is varying between maximum and minimum values. The

effect of this type of load variation can be taken into account by load

ratio R (Equation (18)).
In order to check the effectiveness of Equations (18), experimental results

of Martin and Murri (1990) on delamination growth have been selected for

comparison purposes. Martin and Murri (1990) performed fatigue delami-

nation growth experiments for two different load ratios, R¼ 0.1, 0.5, on

unidirectional AS4/PEEK laminated composite material. The material

properties for AS4/PEEK laminate are given in Table 4 (Jen and Lee, 1998).
The proposed fatigue damage evolution law with load ratio R effect is

tested for pure mode I (DCB) and pure mode II (4ENF) loading conditions.

The associated delamination toughness values (Martin and Murri, 1990) and

fatigue parameters are given in Table 5. The identification procedure for

different values in Table 5 is the same, as explained in ‘Principle of the

Modeling’ section. The geometry of the specimen for DCB test has the

with following dimensions, L¼ 140mm, b¼ 25.4mm, a0¼ 50mm, and

h¼ 4.6mm, whereas the geometry of the specimen for 4ENF test has the

M

rM

Figure 12. Specimen under mixed-mode loading condition.
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following dimensions, L¼ 102mm, b¼ 25.4mm, a0¼ 25mm, and

h¼ 4.6mm (Martin and Murri, 1990).
The results of simulations of fatigue delamination growth along with

experimental results for modes I and II loading conditions are shown in

Figures 14 and 15, respectively. It should be noted that Martin and Murri

(1990) used British system of units. That is why the same system of units is

adopted here for comparison purposes; and for similar reasons the critical

energy release rates are also given in both types of system of units in Table 5.
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Figure 13. Comparison between numerical results and experiments. (Asp et al., 2001).

Table 4. Material properties for UD AS4/PEEK
laminate.

E11 (GPa) 140.35
E22 ¼ E33 (GPa) 9.44
G12 ¼ G13 (GPa) 5.403
G23 (GPa) 3.48
	12 ¼ 	13 0.253
	23 0.51

Source: Jen and Lee (1998).
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A good agreement is found between numerical and experimental results for

the mode I fatigue-driven delamination. While the comparison between
numerical and experimental results for mode II loading condition is not
as good as for mode I, they still can be considered to be in acceptable

range. But one could give more conclusive comments, if more experimental
results of fatigue delamination with different R would be available for
comparison. Similarly, more experimental data on fatigue delamination
with different R values will also help to further improve the relation for

CR, if needed.
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Figure 14. Comparison between experimental (Martin and Murri, 1990) and numerical
results for pure mode I fatigue delamination with different load ratios.

Table 5. Delamination toughness values of UD AS4/PEEK and associated
fatigue parameters.

Test method GC (kJ/m2) Interface Fatigue parameters

Mode I
� ¼ 0:

1.69�2.47
(9.65�14.14 in-lb/in2)

n ¼ 0:5 YO ¼ 0 kJ=m2

YC ¼ 1:69� 2:47kJ=m2
k30 ¼ 9:3� 103 MPa=mm

� ¼ 0:5
�ð�Þ ¼ 2:5
Cð�Þ ¼ 2:0� 10�3

Mode II
� ¼ 1:0

2.49�3.76
(14.2�21.5 in-lb/in2)

n ¼ 0:5 YO ¼ 0 kJ=m2

YC ¼ 1:69� 2:47kJ=m2
k10 ¼ 2:4� 103 MPa=mm
�1 ¼ 0:7

� ¼ 1:5
�ð�Þ ¼ 2:5
Cð�Þ ¼ 3:0� 10�2
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MIXED-MODE DELAMINATION CRITERIA

Principle of the Modeling

Experimental results show that the Paris plot behavior can be expressed

by Equation (1). Different authors tried to develop a relation between these

parameters (m and B) and mode-mixture �, so that if values of these param-

eters are known for certain mode mixtures, then the values for others can be

predicted. Value of � varies between 0 and 1, where 0 indicates the pure

mode I state and 1 represents the pure mode II state. For glass fiber rein-

forced plastics (GFRP) materials, Kenane and Benzeggagh (1997) showed

that variation of these two parameters with respect to � is monotonic. For

carbon fiber reinforced plastics (CFRP) materials, Blanco et al. (2004)

showed a nonmonotonic type trend and also developed a relation between

parameters (B, m) and mode-mixture �.
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Figure 15. Comparison between experimental (Martin and Murri, 1990) and numerical
results for pure mode II fatigue delamination with different load ratios.
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Tumino and Cappello (2007) also used the nonmonotonic equation

to establish a relation between fatigue damage parameters and mode-

mixture �. In this article, the same approach is used to test the predic-

tive power of proposed fatigue damage evolution law for different

mode mixtures.
Expressing Equation (16) in a more general form:

Pðd,YÞ ¼ Kð�Þð1� RÞ�ð�Þe� d Y

YC

� ��ð�Þ
where Kð�Þ ¼ Cð�Þ

1þ �ð�Þ , �ð�Þ ¼ 1þ �ð�Þ

8>><
>>: : ð28Þ

In order to establish a nonmonotonic relation, values of fatigue damage

parameters for three different fracture mechanics test should be known in

advance. Hence, for known values of pure modes I and II and for any mode

mixture, one can define KI, KII, Kmix, �I, �II, �mix, respectively. Then, new

values of �ð�Þ and Kð�Þ corresponding to any other mode-mixture � can

be determined by using following equations (Blanco et al., 2004; Tumino

and Cappello, 2007):

�ð�Þ ¼ A1��
2 þA2��þA3� ð29Þ

lnðKð�ÞÞ ¼ A1K�
2 þA2K�þA3K ð30Þ

where the expressions for AiK and Ai�, i ¼ 1,2,3 are given below (Tumino

and Cappello, 2007).

A1� ¼ �I � �mix þ ð�II � �IÞ�
�� �2

, A2� ¼ �mix � �I þA1��
2

�
, A3� ¼ �I ð31Þ

A1K ¼ lnðKIÞ � lnðKmixÞ þ lnðKIIÞ � lnðKIÞ½ ��
�� �2

A2K ¼ lnðKmixÞ � lnðKIÞ þA1K�
2

�
, A3K ¼ lnðKIÞ

9>>=
>>; ð32Þ

Equations (29)�(32) use the same analogy as used by Tumino and

Cappello (2007) in their studies. Here Equations (29) and (30) are used to

find the values of �ð�Þ and Kð�Þ for any value of mode mixtures, and then

corresponding values of Cð�Þ and �ð�Þ are calculated from the definition of

Equation (28). The critical values for the energy release rate are connected to

� through the following equation (Tumino and Cappello, 2007):

GC ¼ GIC þ ðGIIC � GICÞ�2 ð33Þ
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Results and Simulations

In the previous section, the values of fatigue parameters (Cð�Þ and �ð�Þ)
for pure mode I (� ¼ 0:), mode II (� ¼ 1:), and for mode-mixture � ¼ 0:5
are already found for UD HTA/6376C laminate. The new values of fatigue

parameters for any mode-mixture � can be found by using Equations

(29)�(32). In this study, mode mixture of � ¼ 0:25 and � ¼ 0:75 are selected

for the simulations in addition to those already described in the section

‘Fatigue Interface Damage Model.’ The loading scheme used is the same

as shown in Figure 12. Now the values of 
 and the energy release rate G for

the mode-mixture � ¼ 0:25 can be calculated as follows (Williams, 1988):


ð�¼0:25Þ ¼ � 1

5
, GIð�¼0:25Þ ¼ 9M2

bEI
, GIIð�¼0:25Þ ¼ 3M2

bEI
ð34Þ

And similarly for the mode-mixture � ¼ 0:75, G can be expressed as fol-

lows (Williams, 1988):


ð�¼0:75Þ ¼ 1

3
, GIð�¼0:75Þ ¼ M2

bEI
, GIIð�¼0:75Þ ¼ 3M2

bEI
ð35Þ

The trends obtained for B and m as a function of � from experiments by

Blanco et al. (2004) are found to be in reasonably good agreement with

numerical results (Figures 16 and 17). The predicted behavior of fatigue

parameters �ð�Þ and Cð�Þ, as functions of mode ratio, � are given in

Figures 18 and 19. The predicted behaviors of Paris plots for mixed mode

0.75 and 0.25 obtained through simulations are given in Figure 20.
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Figure 16. Paris law coefficient Bvs �.
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Figure 20. Predicted behavior of Paris plots for UD HTA/6376C laminate for 75% mode II
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CONCLUSION

In this article, a comprehensive elastic fatigue damage model based on
damage energy release rate is presented. The effectiveness of the proposed
model has been tested by performing the finite element simulations of dif-
ferent fracture mechanics specimens under cyclic loading conditions. A
slightly modified formulation is also proposed, in order to take into account
the ‘R’ effect. The linear Paris plot behaviors predicted by the proposed
model for pure mode I, pure mode II and for mixed-mode specimens
under fatigue loading condition are found in good agreement with experi-
mental results.

Then, the same fatigue damage model is modified by introducing the
nonmonotonic behavior, for the prediction of fatigue damage parameters
for different mode mixtures. Results generated by this law for Paris plot
parameters are found to be in good accordance with experimental results.

Hence, the proposed fatigue damage model is not only able to reproduce
the linear Paris plot behavior for composite laminates, but also capable of
predicting the fatigue behavior for different mode mixtures.
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