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Hybrid Hidden Markov Model for Marine
Environment Monitoring

Kévin Rousseeuw, Ph.D. Student Member, IEEE, Émilie Poisson-Caillault, Alain Lefebvre, and Denis Hamad

Abstract

Phytoplankton is an important indicator of water quality assessment. To understand phytoplankton dynamics, many fixed buoys
and ferry boxes were implemented, resulting in the generation of substantial data signals. Collected data are used as inputs of an
effective monitoring system. The system, based on unsupervised Hidden Markov Model (HMM), is designed not only to detect
phytoplancton blooms but also to understand their dynamics. HMM parameters are usually estimated by an iterative Expectation-
Maximisation approach. We propose to estimate HMM parameters by using spectral clustering algorithm. The monitoring system is
assessed on database signals from MAREL-Carnot station (Boulogne-sur-Mer, France). Experiment results show that the proposed
system is efficient to detect environmental states such as phytoplankton productive and non productive periods without a priori
knowledge. Furthermore, discovered states are consistent with biological interpretation.

Index Terms

Hybrid Hidden Markov Model, marine water monitoring, Phytoplankton blooms, spectral clustering.

I. INTRODUCTION

IN the framework of coastal and river water quality assessment and management, phytoplankton plays an important role as
an indicator of short- and long-term changes in water quality. Indeed phytoplankton cells are capable of integrating natural

and human induced disturbances by changing their physiology. The Marine Strategy Framework Directives (MSFD) underlined
the importance to prevent and early detect phytoplankton blooms (harmful, and non-toxic as well), and to understand their
physical and outbreak nutrient conditions [1], [2].

Advances in monitoring systems arise from the evolution of computer technology, the availability of effective low-cost
sensors, and the deployment of remote sensing generating multidimensional signals. Mathematical models and powerful tools are
therefore needed to effectively monitor complex systems with multivariate time series. Recently, machine learning approaches
are used to detect harmful algae blooms thanks to available information on cell taxonomy. Such systems are trained from
global observation by remote sensing (Support Vector Machine [3], Probabilistic Neural Networks [4]) or local observations
like flow cytometry datasets (Radial Basis Function Neural Network [5]).

To monitor phytoplankton dynamics, many marine instrumented stations, fixed buoys and ferry boxes, were implemented
with High Frequency (HF) multi-sensor systems. Often, collected data are incomplete due to problems of sensor readings,
communication failures and the lack of environmental information (taxa). Accordingly, unsupervised or semi-supervised machine
learning approaches are suitable for phytoplankton dynamics monitoring.

This paper focuses on how to build a marine monitoring system based on HF multisensor signal collected from MAREL-
Carnot station (IFREMER, Boulogne-sur-Mer, France) in an unsupervised context. This marine station measures physico-
chemical and biological parameters every 20 minutes. A lack of information stops to set up a training database at high frequency.
Indeed, no information are directly acquired by MAREL-Carnot station about phytoplankton taxonomic composition and local
activities (e.g., dredging, opening dams). And, the resolution of complementary regional monitoring programmes in the area
is too low (the objectives are differents).

Hidden Markov Model, noted HMM, is a well-adapted stochastic signal model to represent time series dynamics. The success
of HMM in speech and handwriting recognition [6] leads to their application in marine monitoring. HMM approaches are
based on static parameters defined by states and symbols, and dynamic parameters related to state transition and observation
symbol probabilities. For instance, in speech recognition, a word is a sequence of phonemes (states) structured by transition
probabilities where each phoneme is considered to be a spectral fingerprint (symbols) with some occurrence probabilities.

HMM building needs to estimate not only the number of states but also the characteristics of each of them. Commonly,
HMM parameters are learned with labeled database or fixed with a priori information. Here, we address phytoplankton bloom
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forecasting issue using a hybrid HMM. The specific objective of this work is to design a system able to model phytoplankton
dynamics from large database and no prior knowledge. For this purpose, a fully unsupervised HMM is built using spectral
clustering algorithm to generate HMM symbols and states.

The paper is organized as follows. Section II describes the monitoring system and the proposed hybrid HMM with three
parts. Part II-A discusses about usual unsupervised techniques to build HMM, and spectral clustering approach is argued to
estimate HMM static parameters (states and symbols). Part II-B details HMM symbol generation by a self tuning fast K-means
proposed algorithm. Part II-C defines HMM state generation by spectral clustering algorithm. Section III describes protocol of
experimentations and collected data used from the IFREMER MAREL-Carnot station that registers water characteristics at HF
resolution. First a fixed 2-state HMM is built in order to assess symbol and state generations thanks to an artificial labeling.
Thus, our algorithms are compared with other machine learning techniques. Then, in section IV experiment results of a fully
unsupervised N-state HMM are presented, and are related to examine biological expectations.

II. MONITORING SYSTEM BASED ON HYBRID HMM

Fig. 1 presents the proposed monitoring system architecture. Data collected at high frequency resolution from 2005 to 2008
are first pretreated. Then, the clustering step is applied in order to find environmental states. The final step relies on temporal
information between these states to develop a phytoplakton dynamics model. The built model is used to predict a new or
forthcoming phytoplankton bloom, or specific states (classification/alert box in Fig. 1).

Fig. 1. General scheme of the monitoring system.

A. Hidden Markov Model

According to normal course of phytoplankton succession highlighted by Margalef [7] and Reynolds et al. [8] works, we
assume that phytoplankton biomass is constrained by a high level of dependence among successive observations. Besides, it
may be viewed as the result of a probabilistic walk along the environmental states. So let us see how to design one ergodic
Hidden Markov Model to characterize the dynamics of phytoplankton blooms from physico-chemical and biological parameters
in an unsupervised context.

A HMM noted λ = λ(S,V,π,A,B) is defined with 2 static sets (S,V) and 3 computed sets of probabilities (π,A,B)
that we recalled as follows [6]:

1) S = {s1, s2, . . . , sN} is the set of states with N the number of distinct states. For instance: non-productive period,
pre-bloom, bloom, post-bloom and other rare events, like dam opening, factory or agricultural discharge. The number
of states is generally set by expert people in relation with the applications, or automatically determined by penalized
maximum likelihood criterion.

2) V = {v1,v2, . . .vM} is the set of symbols and M is the number of distinct symbols. In the simpliest cases, observation
symbols correspond to the system outputs. Environmental state is not characterized by a unique representative per state,
and two system outputs can belong to several states. Thus, it is necessary to build a codebook of symbols by vector
quantization [9]–[11]. So data space will be represented by this codebook V of M symbols.

3) π = {πi} of size N , defines the initial probability distribution, πi = P (s(t = 1) = si)}. There is no information about
the state that will be predominant during data acquisition. A priori initial states are equiprobable.

4) A = {aij} of size N×N , defines the transition matrix with aij = P (s(t) = si|s(t−1) = sj) the conditional probability.
Therefore, the number of times that we move from a state si to state sj is estimated, then A is normalized in row.

5) B = {bik} of size N ×M , defines the emission probability with bik = P (v(t) = vk|s(t) = si).
From a finite observation sequence without any labeled states, HMM symbols, transition and emission matrices [12] are

adapted iteratively. Expectation-Maximisation approach (EM) is used with entropy criterion with Minimum Description Length
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(MDL) constraint as Penalized Maximum Likelihood criterion [13]. Whatever the used criterion is (Bayesian Information
Criterion and its derived), EM performance depends on initialization step, and can be time-consuming for large complex
database. To avoid HMM iterative parameter estimate and the initialization step, we choose to use a spectral clustering approach
to generate HMM state and symbol parameters from spatial information in one-pass algorithm.

Spectral clustering (SC) [14], [15] is a multi-cut method based on the eigen-decomposition of the Gram affinity matrix
from the original dataset. Eigenvectors represent a new feature space where data are simply clustered by a K-means algorithm.
It succeeds in clustering convex and non-convex distributed data. SC algorithm has been addressed for several applications:
image segmentation, speech recognition, information retrieval, and so on [16]. Recently, algorithms have been developped to
avoid their tuning requirements: to build the affinity function and to find the number of clusters. These steps are automatically
completed using techniques, especially from [17], [18]. And, works [19], [20] allow to treat applications with a high volume
of data.

The hybrid HMM building is schematically shown in Fig. 2. A step of vector quantization allows to extract HMM symbols.
From these symbols, SC algorithm extracts HMM states. The HMM emission and transition probability matrices are then
computed from the observed sequence. The transition matrix A is determined with the number of occurences moving from
one state to another. B matrix corresponds to the number of times that observation ot is both in a state si and in a symbol vk.

Fig. 2. Hybrid HMM building scheme. Dotted line separates HMM modelling on left side from state prediction of a new observation obst on right side.

When new data ot is collected, it is associated with its nearest symbol. Viterbi algorithm [21], [22] is then applied to estimate
its environmental state.

B. Symbol generation

MAREL-Carnot database consists of 26,280 × 19 parameters per year as from November 2004. To discover underlying
states in this large database, instance selection is required. K-means algorithm is a well-adapted vector quantization method,
and is popular for data clustering too [23]. The main idea is to build vector prototypes from a set of observations denoted
O = {o1,o2, . . . ,oNp} of Np data points preserving HF information. The fast K-means algorithm [24] is modified to obtain a
self tuning K-means based on Hartigan-Wong algorithm [25], and on Elbow criterion: the number of clusters K is incremented
until a fixed percentage of explained variance or a Kmax number of retained prototypes (i.e. symbols) is met. The principle
of this proposed algorithm, named Self Tuning Fast K-Means (STFKM), is described in Fig 3. The center initialization for
large databases (number of points Np > 20, 000) is very important here to speed up the process convergence. Kmax is the
maximum number of reduced points specified by the user or in the default case, the number of measures in the time series.
varExplained is the explained variance desired by the user, by default this number is set to 95 percent.
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1: procedure STFKM(O,Kmax, varExplained)
2: if varExplained not defined then
3: varExplained=0.95
4: end if
5: if Kmax not defined then Kmax=nrow(O)
6: end if
7: Variable: k=1, vE=0;
8: while k < Kmax or vE < varExplained do
9: k = k + 1;

10: Step 1: Initialization of k centers
11: ..Cut Data in n subsamples of 20,000 points
12: ..Compute K-means (K=k) on each subsample
13: ..Select the k clusters centers from the best partition according MS(within)/MS(between)
14: Step 2: Decide the class memberships of the Np points by assigning them to the nearest center.
15: Step 3: Re-estimate the k cluster centers, by assuming the new memberships found
16: Step 4: If none of Np points changed membership in the last iteration, Otherwise goto 2.
17: Step 5: vE =MS(between)/MS(total)
18: end while
19: return k obtained centers
20: end procedure

Fig. 3. Outline of Self Tuning Fast K-Means algorithm noted STFKM. The variance, MS(.) for Mean Square defined the variance between or within groups,
or the total.

C. State generation by spectral clustering

After STFKM procedure on the pretreated data, M symbols summarize the entire database. From these M symbols, N
states are detected by unsupervised clustering. Each MAREL-Carnot physico-chemical parameter follows a stochatic, non-
linear and non-stationary process (except sea-level), see section III. They have not-gaussian distributions, and environmental
state characterisation is unknown. So, SC method is the best way to avoid some assumptions about data shape. SC is capable
of classifying data which are connected, but which are not necessarily compact, or clustered within convex boundaries. Indeed,
the key idea of SC is to transform the input data space into a new feature space where K-means clustering could be applied.
The most typical method by Ng, Jordan et al. [14] is recalled in Fig. 4.

1: procedure SPECTRALCLUSTERING(O, K)
2: Variable: W,D,Lap,X,Y, l
3: Compute a Gram affinity matrix WM×M from O
4: D = diag(W); . Degree matrix
5: Lap = D−1/2WD−1/2; . Laplacian matrix
6: Select the K-largest eigenvectors x of Lap;
7: Form the matrix X = [x1x2 . . .xk] ∈ RM by stacking the eigenvectors in column
8: Form the Y matrix from the row-normalisation of X thus yij = wij/(

∑
j x

2
ij)

1/2

9: l =K-means(Y,K) . each row of Y is a point
10: Assign original Point oi to the cluster li
11: return label vector : l
12: end procedure

Fig. 4. Spectral clustering algorithm

The number of clusters K in input of the SC algorithm and the way to build the Gram Affinity matrix W have both significant
effects on the classification result. Gaussian kernel function is the most widely used function for constructing W = {wij}
defined as:

wij = exp(−‖oi − oj‖2

2σ2
) (1)

The scaling parameter σ helps to sparse the matrix and tends to obtain an ideal case with a robust eigen-decomposition (i.e. in
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TABLE I
LIST OF MAREL-CARNOT SIGNALS: ACRONYM, NAME AND MEASUREMENT FREQUENCY.

Acronym Name Frequency RD NC

E TA Air temperature 20 minutes X

C O21 Corrected dissolved oxygen 20 minutes X X

CSAL1 Salinity 20 minutes X X

CSAT1 Oxygen saturation percentage 20 minutes X

E CO1 Conductivity 20 minutes X

E LU1 P.A.R. Photosynthetically 20 minutes X X

Available Radiation

E O21 Non-corrected dissolved oxygen 20 minutes X

E PH1 pH 20 minutes

E TU1 Turbidity 20 minutes X X

E VDM Direction wind 20 minutes

E VVR Gust wind speed 20 minutes X X

E VVM Average wind speed 20 minutes X

ECHL1 Fluorescence 20 minutes

EMAHH Sea-level (measured) 20 minutes

ETCO1 Water temperature 20 minutes X X

XMAHH Sea-level (calculated) 20 minutes X X

C PO1 Phosphate concentration 12 hours X X

C NI1 Nitrate concentration 12 hours X X

C SI1 Silicate concentration 12 hours X X

the ideal case, the first K eigenvalues are equal to one). However, a bad choice of σ brings an incorrect classification. Zelnik
and Perona (ZP) [17], or Kong et al. [18] proposed a local scale parameter σi for each data oi based on its neighborhood,
instead of selecting a uniform scaling parameter σ. The ZP affinity matrix W is chosen with a z-neighborhood (onz the zth

neigborhood of the point oi):

wij = exp(−‖oi − oj‖2

2σiσj
) with σi = ‖oi − onz‖ (2)

Many authors proposed to overcome the choice of the number of clusters K by analysing either eigenvalues magnitude (equal
or nearest to one) or eigengap, or eigenvectors (see [18], [26], [27]). To select the number of states N for HMM topology, the
eigengap method is used: it is the simpliest one to implement, and it has the lowest complexity.

From the spectral clustering of the M symbols V = {v1,v2, . . .vM} issued from the STFKM step, we assign the observation
data O = {o1,o2, . . . ,oNp

} thanks to the label si = lk of their cluster center vk.

III. DATA AND FIXED 2-STATE HMM VALIDATION

One HMM is built according to the scheme described in the previous section from MAREL-Carnot multivariate marine
signals in order to model the phytoplankton dynamics in the French Channel coast around Boulogne-sur-Mer. Data and their
curves are available on the website (http://www.ifremer.fr/difMarelCarnot/) with authorisation request. These data are first
presented, then the experiment validation protocol follows.

Without ground truth on the environmental states and in order to assess our system, we decide to create an automatic data
labeling based on the monitoring sampling strategy for the EU Water Directive Framework (EU-WFD). Thus, data from March
to October are labeled s1, corresponding to the productive period (in terms of biomass production capacity), and the others
s2 for the non-productive period. Furthermore, this labeling will allow to compare our sytem with other machine learning
algorithms.

A. Data presentation

MAREL-Carnot station registers 19 signals: 16 water characteristics every 20 minutes, and 3 nutrient levels every 12 hours.
These signals are detailed in Table I. Collected data signals come from different sensors. They require pretreatments to respect
sensor range, and sensor time alignment. In case of sensor failures, its measurements are not retained (all pH values and
measured sea-level values are removed). The sensor ranges are adapted to Boulogne-sur-Mer ecosystem. Time alignment is
obtained by a moving average technique on a small sampling rate (20 minutes). Nutrient parameters are duplicated to obtain
the same time resolution. From this step, signal database for 2005-2008 contains 105,192 points in R19. Only half of the data
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(48,157 points) have no missing values (due to sensor default). To reduce missing value, a moving average over one week
(temporal scale of a bloom) is applied, leading to a completed data of Np =84,614 points.

Fig. 5. Five completed MAREL-Carnot signals from 2005 to 2009 by mobile average: C SAL1, E TU1, C NI1, C PO1, C SI1. Vertical line separates
data into 2 subsets. Subset O corresponds to 2005-2008 period which is used for HMM building. Subset Obs relates to the year 2009 which is used for
generalisation and accordingly does not participate in HMM building.

Fig. 5 illustrates 5 signals after this data completion: Salinity, Turbidity and nutrients (Nitrate, Phosphate and Silicate);
residual missing measurements of nitrate concentrations, for instance, can be visualized. After a correlation analysis, Nf =10
physico-chemical parameters, not correlated, are retained and detailed in NC column of the Table I. Note that Fluorescence
signal is not taken into account, but is used to validate clustering results since we have no ground truth: it is a presence
indicator of phytoplankton cells.

When an observation data contains at least one missing value (among in R10), this point does not participate to the generation
of symbols and states. Centering and standard deviation scalings are achieved on each parameter to avoid parameter range
influence.

Data from 2005 to 2008 are considered to build HMM parameters. To test the time modeling, data from 2009 will be tested
with the same pretreatment protocol.

B. Vector quantization validation

The number of symbols V required to characterize a state is first analyzed. Selection of the M symbols from the data
is performed by 100 random drawings. A 1-Nearest Neighbor algorithm (1-NN) is used to evaluate the approximation of a
mixture of components per state. 1-NN is first applied on each parameter, and then on the multidimensional matrix (from 2005
to 2008). K-means algorithm is also applied to build K =M representatives per state.

Two scores are considered: Rate Recognition (RR) and the monthly Overlap defined by the following equation:

Overlap =

∑
i [|s1(i)|+ |s2(i)| −max(|s1(i)|, |s2(i)|)]

|s1 ∪ s2|
(3)
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TABLE II
1-NN RR AND OVERLAP SCORES (MEAN AND STANDARD DEVIATION IN PERCENT) FOR M REPRESENTATIVES PER STATE ACCORDING EU-WFD

LABELING : 2005-2008 DATABASE

M values Random selection K-means
RR Overlap RR Overlap

1 68.1 (8.9) 18.4 (6.8) 82.7 (0.1) 11.3 (0.1)
10 79.4 (4.0) 18.5 (3.7) 89.8 (0.8) 10.0 (0.7)
100 87.6 (0.9) 12.2 (0.9) 95.1 (0.2) 4.9 (0.2)
1,000 94.7 (0.2) 5.2 (0.2) 98.4 (0.1) 1.6 (0.1)

TABLE III
STFKM INFLUENCE MEASURED WITH A SVM APPROACH: RR AND OVERLAP SCORES (IN PERCENT)

Sampling Training Test
RR Overlap RR Overlap

No sampling-SVM 97.9 2.1 92.9 7.0
Random 1,000-SVM 93.3 6.7 92.2 6.7
STFKM-SVM 95.4 4.6 92.6 7.4

|.| is the cardinal operator and |s1(i)| defines the number of points labeled s1 during the ith month. Phytoplankton productive
and non-productive periods are expected to have no overlap according to EU-WFD.

For the monodimensional analysis, water temperature ETCO1 is the most discriminative parameter, with a recognition rate
from 75.1% (± 3.5) for one representative per state, to 77.8% (± 0.4) for 1,000 representatives. For the multidimensional
analysis, Table II summarizes the mean and standard deviation of the two scores, RR and Overlap, for different M-values.
Approximating data distribution with one unique random representative gives poor recognition rate (68.1%) and often an
important Overlap (18.4%) of the two desired environmental states. To decrease this Overlap around 10%, more than 100
random representatives are required.

K-means is a geometric approach adapted for linearly separable data sets. This algorithm requires to know the desired
number of symbols (centers) M . Here with 10 symbols per state, the Overlap is around 10%. To reduce this Overlap around
5%, 100 representatives per state are required.

The proposed STFKM automatically searches the number of symbols that describes the data structure, and it is fast running.
The impact of the STFKM selection is tested with a learning machine: a Support Vector Machine (SVM). A SVM model
(radial basis kernel) was trained on 2005-2008 data and was tested on 2009 data with 10 cross-validation. Three experiments
for the SVM training were led: on all training data, on 1,000 randomly selected representatives per state (M =2,000) of this
data, and on symbols issued from STFKM vector quantization.

Table III summarizes SVM capacities of training and generalisation (test) for these 3 studies with RR and Overlap scores. In
generalisation, STFKM algorithm allows to keep a similar recognition rate (92.6%) and Overlap score (7.4%) to no sampling-
SVM. STFKM-SVM gives better training capacity than a random selection of M symbols. In this supervised context, we can
conclude that the obtained vector quantization by STFKM is a relevant data reduction.

The stability of STFKM algorithm is then assessed according to the Rand Index (RI) of 10 achieved symbol generations. RI
score [28] is a measure of similarity between two data clusterings P1 and P2 of a given set of n elements E = {e1, . . . , en}.
Note that the number of clusters in each partition can be different. RI is computed according to the following equation:

RI(P1,P2) =
(a+ b)(

n
2

) (4)

where a (resp. b) is defined by the number of pairs of elements in E that are in the same set in P1 (resp. in different sets)
and in the same set in P2 (resp. in different sets) .

In a fully unsupervised context, STFKM approach allows to respect the high frequency information without losing data
structure. Table IV shows that RI scores of the 10 obtained partitions and the number of retained symbols are quite similar.
The RI score near to one shows that STFKM algorithm gives a robust vector quantization.

TABLE IV
RAND INDEX AND M-VALUE BOXPLOT VALUES FOR 10 SYMBOL GENERATIONS

Boxplot Min Q1 Median Mean Q3 Max

RI 0.99 0.99 0.99 0.99 0.99 0.99
M 2744 2749 2754 2759 2763 2790
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TABLE V
RR AND OVERLAP SCORES (IN PERCENT) OF UNSUPERVISED CLASSIFICATION

Sampling Building Database Test Database
RR Overlap RR Overlap

S-EM (C SAL1) 70.1 14.7 77.0 11.9

STFKM-EM (EII) 83.6 13.4 91.2 4.3
STFKM-HC 66.9 0.6 66.9 0.5
STFKM-SC 79.1 11.9 84.1 5.7

TABLE VI
SIMILARITY SCORES FOR SIGNAL RECONSTRUCTION BASED ON STATE CLASSIFICATION FROM HMM MODEL.

Year 2005 2006 2007 2008 Mean 2009

sim 0.87 0.84 0.83 0.86 0.85 0.79

C. State generation validation

Then, the spectral clustering algorithm is compared to usual unsupervised approaches : EM, Hierarchical Clustering (HC)
for a set number of states N = 2 with the same STFKM symbols. For experiments, a 7-neighborhood is considered for the
scaling parameter of the similarity matrixin SC. We used EM and HC algorithms implemented in R-Gui (library Mclust and
stats: http://www.r-project.org/). Only the best or runnable options are retained: Expectation-Maximisation (EII model), HC
with complete linkage. EM is also performed on each of the 10 parameters, only results of the most discriminative parameter
(salinity CSAL1) are presented. 1-NN algorithm is used to label data from the built model. The 2005-2008 period is named
building database, and the year 2009 test database.

Table V presents RR and Overlap scores to analyse jointly. In spite of its very low Overlap score around 0.5%, hierarchical
clustering (cutting obtained tree to 2 clusters) does not separate productive and non-productive periods. State 1 represents
84,118 of 84,614 points, 99% of the building database and state 2 concerns few points in August, September and November
for the building database and February, April and June for the test database without any biological or sensor interpretation.
EM approach offers the best RR results for the two databases. STFKM approach gives lower RR than EM one, but its Overlap
for the largest database (building database) is reduced. STFKM-SC approach is a balanced one for EU-WFD labeling, and
will be relevant for a number of states greater than 2. Indeed, we expect that our hybrid HMM system can detect more than
2 states like phytoplankton spring bloom or automnal bloom, rare events.

D. Time modeling validation, fixed 2-state HMM

We evaluate, through experiments, the reliability of our hybrid model: the entire procedure for building one HMM from
clustering is repeated 10 times. The 10 partitions have a mean RI score of 0.95, so the whole STFKM-SC step (symbol and
state generation) is robust. We keep the symbol and state partition with the smallest normalised multi-cut, MNCut [14] to build
HMM. For experiments, the number of states is set: N = 2 and other parameters are automatically tuned: explained variance
is fixed to 95 percent. According to the MNCut criterion, HMM built has M = 2794 symbols.

According to the EU-WFD labeling, 79.3 percent of building database is well recognized with an Overlap of 11.7%, and
82.1 percent of 2009 test database is well recognized with an Overlap of 6.7%. Fig. 6 illustrates the distribution of labeled
states by HMM prediction for the building database and the 2009 test database. In 2005-2008, state s1 in red color ties in with
the period from March to December with a dominant April-November period whereas state s2 in green color is dominant in
the November-April period. Over the period 2009 state s2 ties in with the period from April to October, whereas state s2 in
green color is dominant in the December-April period. Many data in March and August-November have no estimated state
(noted NA in black color in Fig. 6) due to one least missing value in R10; that means the system forecasts confusions in
transition periods. But states s1 and s2 match well with the two main environmental EU-WFD states: s1 and s2 characterize
the phytoplankton dynamics, the productive and the non-productive periods.

To validate the relevancy of the built model from 2005-2008 and its symbol quantization in a fully unsupervised context,
MAREL-Carnot signals Ôbs on the year 2009 are reconstructed and compared with the original data Obs. For an observation
obst, the system estimates its state si with the higher likelihood. Then the most present symbols vk in this state are retained,
see Fig. 7. A similarity sim score is defined by the following equation 5:

sim(Obs, Ôbs) =
1

|Obs|

|0bs|∑
t=1

1∥∥∥obst − ôbst

∥∥∥+ 1
(5)
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(a) Period 2005-2008, HMM building database. (b) 2009, test database.

Fig. 6. State distribution per month for a typical seasonal cycle: state s1 is represented in red color and s2 in green color. The black color, named NA,
concerns measures whose state is not estimated (one least missing values).

Fig. 7. Time series reconstruction from HMM classification. Signal Ôbs is reconstructed from original observation Obs thanks to the M symbols.

From 2005 to 2008, each year participates to HMM building, and reconstructed signals are compared to the original ones
so as to assess the modeling power. Table VI shows the similarity scores, Eq.(5), between original and reconstructed signals
for each year over the period 2005-2008 and their related mean. The last column corresponds to the year 2009. This similarity
score is bounded by 0 and 1: 1-value implies that reconstructed signals are exactly the same as the original ones. The similarity
scores and their mean are greater than 0.83 from 2005 to 2008. So, we conclude that reconstruted signals are very close to
the original data, and that the vector quantization algorithm for HMM states is efficient. Therefore, the proposed system has
an interesting generalisation power, for the year 2009, which does not participate in HMM building. Indeed, the time series
are built with a high similarity score: 0.79 according to the choice of the most probable symbol of the state. Fig. 8 illustrates
original and reconstructed signal of one parameter, dissolved oxygen concentration C O21 for 2009.

IV. N-STATE HMM FOR PHYTOPLANKTON DYNAMICS

Considering that HMM is now validated on a fixed 2-state biological dynamics, the next step is to increase the number
of states to refine and to try to better understand the bloom determinism and its dynamics. A 7-state HMM with M =2,884
symbols is built from 2005-2008 database, N = 7 according to the eigengap technique. Time modeling validation is achieved
according to the same protocol as the one of the 2-state HMM. Reconstructed 2009 signals have a similarity score above 0.8
with the original data.

Fig. 9 is the color-state projection of the estimated states over the period 2005-2008 on Fluorescence signal; black color
denotes unlabelled observations due to missing value. The state distribution and sequencing are illustrated in Fig. 10 with the
same color standard.

To interpret this model and to relate a ecological meaning, we analyze the state sequencing and the characterization of each
state by a correlation analysis (Table VII).

State s6 (yellow) clearly highlights high salinity values, ranging from 33.9 to 36.2 with a mean value of 35.4 (Fig. 5).
These values are more representative of offshore waters. And then we can conclude in this coastal zone that mainly state s6
corresponds to salinity anomalies (sensor failures). Nevertheless, s6 may sometimes be explained when west winds persist and
consequently bring more offshore waters to the coast. State s3 (blue) is representative of the winter non-productive period,
with high nutrient concentrations and low temperature (Table VII).



PREPRINTS JSTARS 2014 10

(a) C O21 original signal. (b) Ĉ O21 estimated signal.

Fig. 8. 2009 - Dissolved oxygen concentration signals: original signal (a) and estimated signal (b) by HMM. In gray color, time measurements are not
estimated by HMM due to at least one missing parameter at this time.

Fig. 9. Clustering results: Color-state sequencing projection on the fluorescence signal for 2005-2008. Black color, named NA concerns measures whose state
is not estimated (one least missing value).

The initiation of the main phytoplankton bloom, and then the growing phytoplankton stage (between February and May: inter-
annual variability of the bloom) are characterized by s1 (red). High oxygen concentrations, explained by a high phytoplankton
production (photosynthesis) are observed during this stage (Table VII). During state s1, phytoplankton mainly uses the winter
nutrients stock, and consequently this state corresponds to the new production period [29]. States s2 and s4 follow state
s1, and are identified as the regenerated production period when phytoplankton production is based on regenerated nutrients
(transformation of the organic matter from the previous bloom - state s1 - into new available nutrients).

States s5 (pink) and s7 (grey) correspond to rare or short events, respectively, with high turbidity during storm events,
and high phosphate and silicate concentrations (C PO1 and C SI1 in Table VII). More investigations are required to better
understand the main processes involved during these periods.

Fig. 11 illustrates the predicted states for the year 2009 with their sequencing. The 7-state HMM succeeds in predicting
phytoplankton biomass dynamics. The state sequencing matches our assumption with a pre-bloom winter period (state s3
mainly) followed by the main phytoplankton bloom based on external nutrient inputs (state s1), and the regenerated bloom
(states s2 and s4).
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(a) State distribution per month for a typical seasonal cycle over
the period 2005-2008.

(b) Measure sequencing in each state over the period 2005-2008.

Fig. 10. Clustering results: NA concerns measures whose state is not estimated (one least missing value).

TABLE VII
CORRELATIONS BETWEEN PARAMETERS AND STATES (IN BOLD: THE HIGHEST CORRELATION COEFFICIENTS).

State s1 s2 s3 s4 s5 s6 s7

Color red green blue cyan pink yellow grey

C NI1 -0.14 -0.24 0.54 -0.24 0.12 0.02 -0.03
C O21 0.64 -0.16 -0.03 -0.38 0.05 -0.17 0.01
C PO1 -0.08 -0.03 -0.04 -0.07 -0.02 -0.03 0.57
C SI1 -0.11 -0.16 0.20 -0.25 0.15 0.04 0.47
CSAL1 0.12 0.13 -0.36 0.10 -0.25 0.42 0.00
E LU1 -0.08 0.73 -0.21 -0.24 -0.06 -0.06 0.00
E TU1 -0.11 -0.14 -0.01 -0.22 0.76 -0.03 -0.05
E VVR -0.25 -0.03 0.16 -0.05 0.31 -0.06 -0.03
ETCO1 -0.50 0.32 -0.37 0.56 -0.14 0.07 0.05
XMAHH -0.00 0.03 0.02 -0.03 0.01 0.01 0.00

V. CONCLUSIONS AND FUTURE WORKS

Two N-state HMM was built in order to forecast phytoplankton blooms near the French Channel coast from MAREL-Carnot
signals (IFREMER, Boulogne-sur-Mer) without any biological knowledge. HMM building requires at least two parameters:
a number of states, a number of symbols that characterize states. These parameters are commonly estimated iteratively by
Expectation-Maximisation. We propose a one-pass process to estimate HMM symbols and states in a fully unsupervised
context. A proposed Self Tuning Fast K-Means STFKM algorithm extracts symbols from observation data. From this vector
quantization, a spectral clustering approach, with no tuning too, generates HMM states that allows to treat non-convex data.
A signal reconstruction approach is proposed to assess HMM prediction.

Result analyses from the MAREL-Carnot buoy data first demonstrate interests and the stability of each used algorithm (state
and symbol generation) throughout the monitoring chain. The high resolution information is preserved. Built 2-state HMM
permits to detect the main productive and non-productive periods, as used for the purposes of the EU Water Framework Directive
to assess good environmental status. A 7-state HMM was proposed to refine knowledge about phytoplankton bloom dynamics
in a temperate ecosystem, temporarily dominated by a harmful algae (Phaeocsytis globosa). The obtained state sequencing
coincides with dynamics described using measurements from low resolution system near the MAREL-Carnot (Rephy/SRN
data [30]). The proposed HMM system succeeds in characterizing phytoplankton dynamics from new incoming data (in near
real-time approach). Using the main statistical characteristics of the parameters underlying the definition of a given state, the
system will allow to further increase knowledge about the main controlling or forcing parameters (i.e., nutrient pressure, light
availability, turbidity), the environmental status (e.g., phytoplankton biomass), and the direct and/or indirect effects of such
blooms (e.g., oxygen concentration).
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(a) Color-state projection on Fluorescence signal. (b) State sequencing.

Fig. 11. Predicted state results in 2009 by HMM: Predict state results in 2009 by HMM: (a) Color-state projection on Fluorescence signal and (b) state
sequencing. NA (black color) corresponds to measures with no estimated state.

The main limiting step in the monitoring chain is the removing samples with missing values. Indeed, the latter affects the
state estimation and characterization (symbol process). Some phytoplankton blooms were not taken into account for HMM
building.

Several environmental monitoring and research programmes could benefit from the proposed method to avoid the critical
expert labeling step when modelling. It could help to process large multivariate time series as generated by high resolution
(in time and/or space) platforms, more and more frequently implemented for the integrated observation of pelagic ecosystems
and biogeochemical cycles in the oceans. Moreover, the possibility of identifying environmental states (characterized by a
combination of several parameters) is a clear opportunity to better understand what a good environmental status is, as defined
and used for the needs of the WFD, the MSFD or other regional sea convention (as OSPAR).
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