
HAL Id: hal-01442921
https://hal.science/hal-01442921

Submitted on 21 Jan 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

An error estimate for the approximation of linear
parabolic equations by the Gradient Discretization

Method
Jérôme Droniou, Robert Eymard, Thierry Gallouët, Cindy Guichard,

Raphaele Herbin

To cite this version:
Jérôme Droniou, Robert Eymard, Thierry Gallouët, Cindy Guichard, Raphaele Herbin. An error
estimate for the approximation of linear parabolic equations by the Gradient Discretization Method.
FVCA 2017 - International Conference on Finite Volumes for Complex Applications VIII, 2017, Lille,
France. �hal-01442921�

https://hal.science/hal-01442921
https://hal.archives-ouvertes.fr


An error estimate for the approximation of
linear parabolic equations by the Gradient
Discretization Method

J. Droniou, R. Eymard, T. Gallouët, C. Guichard and R. Herbin

Abstract We establish an error estimate for fully discrete time-space gradient
schemes on a simple linear parabolic equation. This error estimate holds for all
the schemes within the framework of the gradient discretisation method: conform-
ing and non conforming finite element, mixed finite element, hybrid mixed mimetic
family, some Multi-Point Flux approximation finite volume scheme and some dis-
continuous Galerkin schemes.
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1 Introduction

The Gradient Discretization method (GDM) [5, 3] provides a common mathematical
framework for a number of numerical schemes dedicated to the approximation of
elliptic or parabolic problems, linear or nonlinear, coupled or not; these include
conforming and non conforming finite element, mixed finite element, hybrid mixed
mimetic schemes [4] and some Multi-Point Flux Approximation [1] and Discrete
Duality finite volume schemes [2] : we refer to [3, Part III] for more on this (note
that in the present proceedings, it is shown that in some way the Discontinuous
Galerkin schemes may also enter this framework [6]). Let us recall this framework
in the case of the following linear elliptic problem:{

Find u ∈ H1
0 (Ω) such that, for all v ∈ H1

0 (Ω),∫
Ω

∇u(xxx) ·∇v(xxx)dxxx =
∫

Ω

f (xxx)v(xxx)dxxx, (1)

Any numerical scheme that fits into the GDM is defined in the following way. A
finite dimensional real vector space XD ,0 is chosen, which describes the discrete
unknowns, along with two linear operators ΠD : XD ,0 → L2(Ω) and ∇D : XD ,0 →
L2(Ω)d , which respectively reconstruct, from the discrete unknowns, a function on
Ω , and its “gradient”, specified in such a way that ‖ · ‖L2(Ω)d is a norm on XD ,0.
Then, the scheme is written by replacing in (1) the continuous space and operators
by their discrete equivalent:{

Find uD ∈ XD ,0 such that, for all vD ∈ XD ,0,∫
Ω

∇DuD (xxx) ·∇DvD (xxx)dxxx =
∫

Ω

f (xxx)ΠDvD (xxx)dxxx. (2)

Of course, there are as many schemes as there are choices of (XD ,0,ΠD ,∇D ), which
is the reason why the GDM contains many different numerical methods. We then
define

CD = max
v∈XD ,0\{0}

‖ΠDv‖L2

‖∇Dv‖L2
, (3)

∀ϕ ∈ H1
0 (Ω), SD (ϕ) = min

v∈XD ,0

(
‖ΠDv−ϕ‖2

L2 +‖∇Dv−∇ϕ‖2
L2

)1/2
, (4)

∀ϕϕϕ ∈ Hdiv(Ω),

WD (ϕϕϕ) = max
v∈XD ,0\{0}

1
‖∇Dv‖L2

∣∣∣∣∫
Ω

(∇Dv(xxx) ·ϕϕϕ(xxx)+ΠDv(xxx)divϕϕϕ(xxx))dxxx
∣∣∣∣ . (5)

Following the proof in [3], it can be established that, if u is the unique solution to
(1) and uD is the unique solution to (2), the following error estimates hold

‖∇u−∇DuD‖L2(Ω)d ≤WD (∇u)+SD (u), (6)

‖u−ΠDuD‖L2(Ω) ≤CDWD (∇u)+(CD +1)SD (u). (7)
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Remark 1. In [3], the definition of SD is slightly different from (4). This has no
consequence on the proof of (6)–(7).

It can then be proved [3] that on all the mesh-based schemes which enter the Gradi-
ent Discretization Method, there exists C ≥ 0, only depending on regularity factors
of the mesh, such that

∀ϕ ∈W 2,∞(Ω)∩H1
0 (Ω), SD (ϕ)≤ChM ‖ϕ‖W 2,∞(Ω) , (8a)

∀ϕϕϕ ∈W 1,∞(Ω)d , WD (ϕϕϕ)≤ChM ‖ϕϕϕ‖W 1,∞(Ω)d (8b)

where the mesh size hM is the maximum diameter of all the grid cells. For these
methods, a linear error estimate with respect to the mesh size may be derived from
(6)–(7) in the case of sufficiently regular solutions.

The aim of this paper is to establish an error estimate for the GDM applied to
linear parabolic problems; error estimates for such problems are classical in the
framework of finite differences, finite elements and finite volumes. The advantage
of the GDM framework is that this error estimate applies to all the above mentioned
schemes. We consider here the GDM with an implicit Euler time-stepping for the
approximation of the heat equation with homogeneous Dirichlet boundary condi-
tions, which reads:

∂tu−∆u = f in Ω × (0,T ) , (9a)
u(·,0) = uini on Ω , (9b)

u = 0 on ∂Ω × (0,T ). (9c)

The diffusion operator −∆u could easily be replaced by −div(Λ∇u), with a uni-
formly coercive and bounded Λ , without major change in the analysis. The follow-
ing hypotheses are assumed throughout this paper:

Ω is an open bounded connected subset of Rd (d ∈ N?) and T > 0, (10a)

f ∈ L2(Ω × (0,T )), (10b)

uini ∈ L2(Ω). (10c)

Under these assumptions, there exists a unique function u of (9) in the following
(weak) sense:

u ∈ L2(0,T ;H1
0 (Ω))∩C([0,T ];L2(Ω)) , ∂tu ∈ L2(0,T ;H−1(Ω)) ,

u(·,0) = uini and, for all w ∈ L2(0,T ;H1
0 (Ω)),∫ T

0
〈∂tu(·, t),w(·, t)〉H−1,H1

0
dt

+
∫ T

0

∫
Ω

∇u(xxx, t) ·∇w(xxx, t)dxxxdt =
∫ T

0

∫
Ω

f (xxx, t)w(xxx, t)dxxxdt.

(11)

This paper is organized as follows. In Section 2, we define the GDM for the ap-
proximation of space-time parabolic problems, and we define, inspired by (8), the
notion of space size of a gradient discretization. We then apply in Section 3 the
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GDM to obtain a generic numerical scheme (“gradient scheme”) for the approxi-
mation of Problem (11). We then prove Theorem 1, which states an error estimate
under regularity hypotheses on the solution u of Problem (11). Throughout this pa-
per, ‖·‖L2(Ω) and ‖·‖L2(Ω)d are abridged as ‖·‖L2 .

2 Space–time Gradient Discretization

Definition 1 (Space–time Gradient Discretization). A space–time gradient dis-
cretisation is DT = (XD ,0,ΠD ,∇D ,ID ,(t(n))n=0,...,N) with

• XD ,0 a finite dimensional real vector space describing the discrete unknowns,
• ΠD : XD ,0→ L2(Ω) a linear mapping reconstructing a function defined over Ω

from an element of XD ,0,
• ∇D : XD ,0→ L2(Ω)d a linear mapping which reconstructs, from an element of

XD ,0, a “gradient” (vector-valued function) over Ω . This gradient reconstruction
must be chosen such that ‖∇D · ‖L2 is a norm on XD ,0.

• ID : L2(Ω)→ XD ,0 is a linear and continuous interpolation operator for the
initial conditions,

• t(0) = 0 < t(1) . . . < t(N) = T .

We set δt(n+
1
2 ) = t(n+1)−t(n), for n= 0, . . . ,N−1, and δtD =maxn=0,...,N−1 δt(n+

1
2 ).

To a family v=(v(n))n=0,...,N ∈XN+1
D ,0 we associate the functions vimp ∈L∞(0,T ;XD ,0),

ΠDv ∈ L∞(0,T ;L2(Ω)), and ∇Dv ∈ L∞(0,T ;L2(Ω)d) defined by

∀n = 0, . . . ,N−1 , ∀t ∈ (t(n), t(n+1)] , vimp(t) = v(n+1) and,
for a.e. xxx ∈Ω , ΠDv(xxx, t) = ΠD [vimp(t)](xxx) , ∇Dv(xxx, t) = ∇D [vimp(t)](xxx).

(12)

Define also, for v ∈ XN+1
D ,0 ,

∀n = 0, . . . ,N−1 , δ
(n+ 1

2 )

D v :=
ΠDv(n+1)−ΠDv(n)

δt(n+
1
2 )

. (13)

In the following, L2(Ω)×L2(Ω)d is endowed with the Hilbertian norm defined
by ‖(ϕ,ψψψ)‖2 = ‖ϕ‖2

L2 +‖ψψψ‖2
L2 .

Lemma 1 (Linear spatial interpolator). Under Hypotheses (10), let DT be a
space–time GD in the sense of Definition 1. Then the relation

∀ϕ ∈ H1
0 (Ω), PDϕ ∈ argmin

w∈XD ,0

(
‖ΠDw−ϕ‖2

L2 +‖∇Dw−∇ϕ‖2
L2

)
, (14)

defines a unique linear continuous operator PD : H1
0 (Ω)→ XD ,0, which statisfies

∀ϕ ∈ H1
0 (Ω), SD (ϕ) =

(
‖ΠDPDϕ−ϕ‖2

L2 +‖∇DPDϕ−∇ϕ‖2
L2

)1/2
. (15)
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Proof. Set V = {(ΠDw,∇Dw) : w∈ XD ,0} and let P : L2(Ω)×L2(Ω)d→V be the
orthogonal projection. Since ‖∇D ·‖L2 is a norm on XD ,0, for any z ∈ V there exists
a unique Rz ∈ XD ,0 such that (ΠDRz,∇DRz) = z. This defines a linear continuous
mapping R : V → XD ,0, and (14) shows that PDϕ = R ◦P(ϕ,∇ϕ). Hence, PDϕ is
uniquely defined and PD is linear continuous. Relation (15) follows from Definition
(4) of SD .

Using this operator PD , we can introduce the following definition.

Definition 2 (Space size of a space-time gradient discretization). Under Hy-
potheses (10), let DT be a space–time GD in the sense of Definition 1. Define the
following norms of continuous linear or bilinear operators:

‖SD‖ = sup
{‖SD (ϕ)‖L2×L2

‖ϕ‖W 2,∞(Ω)

: ϕ ∈W 2,∞(Ω)∩H1
0 (Ω)\{0}

}
,

where SD (ϕ) = (ϕ−ΠDPDϕ,∇ϕ−∇DPDϕ),

‖WD‖ = sup
{

|WD (ϕϕϕ,v)|
‖ϕϕϕ‖W 1,∞(Ω)d ‖∇Dv‖L2

: (ϕϕϕ,v) ∈ (W 1,∞(Ω)d)\{0}×XD ,0 \{0}
}
,

where WD (ϕϕϕ,v) =
∫

Ω

(divϕϕϕ(xxx)ΠDv(xxx)+ϕϕϕ(xxx) ·∇Dv(xxx))dxxx,

and

‖ID‖ = sup
{
‖ID (ϕ)‖L2

‖ϕ‖W 1,∞(Ω)

: ϕ ∈W 1,∞(Ω)\{0}
}
, where ID (ϕ) = ϕ−ΠDIDϕ .

The space size of the space-time GD is then defined by

hD = max(‖SD‖ ,‖WD‖ ,‖ID‖). (16)

It therefore satisfies

∀ϕ ∈W 2,∞(Ω)∩H1
0 (Ω), SD (ϕ)≤ hD ‖ϕ‖W 2,∞(Ω) , (17a)

∀ϕϕϕ ∈W 1,∞(Ω)d , WD (ϕϕϕ)≤ hD ‖ϕϕϕ‖W 1,∞(Ω)d , (17b)

∀ϕ ∈W 1,∞(Ω), ‖ΠDIDϕ−ϕ‖L2 ≤ hD ‖ϕ‖W 1,∞(Ω) . (17c)

Remark 2 (Link between hD and the size of the mesh for mesh-based gradient dis-
cretizations). If the gradient discretization is based on a polytopal mesh (see [3,
Definition 7.2]), and if ID is defined by means of local average values around the
degrees of freedom, then, for all the mesh-based examples of gradient discretiza-
tions given in [3], there exists C > 0 only depending on regularity factors of the
mesh such that hD ≤ChM .
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3 Gradient Scheme and error estimate

Using an implicit scheme for the time stepping, the GDM applied to Problem (11)
leads to the following gradient scheme: find a family (u(n))n=0,...,N ∈ XN+1

D ,0 such that
u(0) = IDuini and, for all n = 0, . . . ,N−1, u(n+1) satisfies: ∀v ∈ XD ,0 ,∫

Ω

δ
(n+ 1

2 )

D u(xxx)ΠDv(xxx)dxxx+
∫

Ω

∇Du(n+1)(xxx) ·∇Dv(xxx)dxxx

=
1

δt(n+
1
2 )

∫ t(n+1)

t(n)

∫
Ω

f (xxx, t)ΠDv(xxx)dxxxdt.

(18)

Here, of course, u(n) is expected to provide an approximation of u at time tn.
Let us now state our main result.

Theorem 1 (Error estimate, linear case and regular solution). Under Hypotheses
(10), let DT be a space–time GD in the sense of Definition 1. Let hD be defined by
Definition 2. Assume that the solution u to (11) belongs to W 1,∞(0,T ;W 2,∞(Ω)),
and let u be the solution to the implicit GS (18). Then there exists C > 0, depending
only on u, Ω , T and (in a non-decreasing way) of CD (defined by (3)), such that

max
t∈[0,T ]

‖ΠDu(·, t)−u(·, t)‖L2 +‖∇Du−∇u‖L2(Ω×(0,T ))d ≤C(δtD +hD ).

Proof of Theorem 1. Here, Ci denote various quantities having the same depen-
dencies as C in the theorem. Let u(0) = u(0) and, if n ∈ {0, . . . ,N−1} and g = f , u
or ∂tu,

g(n+1)(xxx) =
1

δt(n+
1
2 )

∫ t(n+1)

t(n)
g(xxx, t)dt. (19)

Step 1: Preliminary estimates. Since u ∈C([0,T ];W 2,∞(Ω)), we can write (15)
with ϕ = u(t(n+1)) and use (17a). The regularity on u also ensures that ∇u : [0,T ]→
L2(Ω)d is Lipschitz-continuous. Thus, recalling the definition (19) of u(n+1),∥∥∥∇u(n+1)−∇DPDu(t(n+1))

∥∥∥
L2

≤
∥∥∥∇u(n+1)−∇u(t(n+1))

∥∥∥
L2
+SD (u(t(n+1)))≤C1(δtD +hD ). (20)

Since ∂tu ∈ L∞(0,T ;W 2,∞(Ω)), (‖∂tu(n+1)‖W 2,∞(Ω))n∈N is bounded. Applying

(15) to ϕ = ∂tu(n+1) = [u(t(n+1))− u(t(n))]/δt(n+
1
2 ), using the linearity of PD and

invoking (17a), we obtain∥∥∥∥∥ΠDPDu(t(n+1))−ΠDPDu(t(n))

δt(n+
1
2 )

−∂tu(n+1)

∥∥∥∥∥
L2

≤C2hD . (21)
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Step 2: Proof of the error estimate. Since ∇u∈L∞(0,T ;W 1,∞(Ω)d), (∇u(n+1))n∈N
is bounded in W 1,∞(Ω)d . Hence, using the definition of WD and (17b), for all

v∈XD ,0,
∫

Ω

(
ΠDv(xxx)div(∇u(n+1))(xxx)+∇u(n+1)(xxx) ·∇Dv(xxx)

)
dxxx≤C3hD ‖∇Dv‖L2 .

Owing to the regularity of u, the equation ∂tu− f = div(∇u) is satisfied a.e. in space
and time. Averaging over time in (t(n), t(n+1)) gives ∂tu(n+1)− f (n+1) = div(∇u(n+1))
a.e. in space, and thus∫

Ω

(
ΠDv(xxx)

(
∂tu(n+1)(xxx)− f (n+1)(xxx)

)
+∇u(n+1)(xxx)·∇Dv(xxx)

)
dxxx≤C3hD ‖∇Dv‖L2 .

Use the GS (18) to replace the term f (n+1) in the left-hand side:∫
Ω

ΠDv(xxx)
(

∂tu(n+1)(xxx)− δ
(n+ 1

2 )

D u(xxx)
)

dxxx

+
∫

Ω

(
∇u(n+1)(xxx) −∇Du(n+1)(xxx)

)
·∇Dv(xxx)dxxx≤C3hD ‖∇Dv‖L2 . (22)

For k = 0, . . . ,N, set e(k) = PDu(t(k))−u(k) and notice that

δ
(n+ 1

2 )

D e =

[
ΠDPDu(t(n+1))−ΠDPDu(t(n))

δt(n+
1
2 )

−∂tu(n+1)

]
+

[
∂tu(n+1)−δ

(n+ 1
2 )

D u
]
,

and ∇De(n+1) =
[
∇DPDu(t(n+1))−∇u(n+1)

]
+
[
∇u(n+1)−∇Du(n+1)

]
.

Then (22), (21), (20) and the definition of CD give∫
Ω

ΠDv(xxx)δ
(n+ 1

2 )

D e(xxx)dxxx+
∫

Ω

∇De(n+1)(xxx) ·∇Dv(xxx)dxxx≤C4(δtD +hD )‖∇Dv‖L2 .

Take v = δt(n+
1
2 )e(n+1) and sum over n = 0, . . . ,m−1 for some m ∈ {1, . . . ,N}:

m−1

∑
n=0

∫
Ω

ΠDe(n+1)(xxx)
[
ΠDe(n+1)(xxx)−ΠDe(n)(xxx)

]
dxxx+

m−1

∑
n=0

δt(n+
1
2 )
∥∥∥∇De(n+1)

∥∥∥2

L2

≤
m−1

∑
n=0

C4(δtD +hD )δt(n+
1
2 )
∥∥∥∇De(n+1)

∥∥∥
L2
. (23)

Apply the relation b(b−a) = 1
2 b2− 1

2 a2 + 1
2 (b−a)2 ≥ 1

2 b2− 1
2 a2 to a = ΠDe(n)(xxx)

and b = ΠDe(n+1)(xxx). The Young inequality in the right-hand side of (23) leads to

1
2

∫
Ω

(ΠDe(m)(xxx))2dxxx+
m−1

∑
n=0

δt(n+
1
2 )
∥∥∥∇De(n+1)

∥∥∥2

L2
≤ 1

2

∫
Ω

(ΠDe(0)(xxx))2dxxx

+
1
2

m−1

∑
n=0

δt(n+
1
2 )
∥∥∥∇De(n+1)

∥∥∥2

L2
+

1
2

m−1

∑
n=0

C2
4(δtD +hD )2

δt(n+
1
2 ). (24)
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Owing to (17c) and Estimate (15), since u(0) = IDuini = IDu(0),∥∥∥ΠDe(0)
∥∥∥

L2
≤ ‖ΠDPDu(0)−u(0)‖L2 +‖u(0)−ΠDIDu(0)‖L2 ≤C5hD .

Recalling the definition of the space–time function ∇De and using ∑
m−1
n=0 δt(n+

1
2 ) ≤

T , Equation (24) yields

1
2

∥∥∥ΠDe(m)
∥∥∥2

L2
+

1
2

m−1

∑
n=0

δt(n+
1
2 )
∥∥∥∇De(n+1)

∥∥∥2

L2
≤C6(δtD +hD )2. (25)

The definition of e(m), a triangle inequality, (15) and Equation (25) lead on one hand
to the following estimate, valid for all m = 1, . . . ,N−1:∥∥∥ΠDu(m)−u(t(m))

∥∥∥
L2
≤C7(δtD +hD )+

√
2SD (u(t(m)))≤C8(δtD +hD ). (26)

On the other hand, using again (15) and a triangle inequality, Equation (25) with
m = N−1 leads to

N−1

∑
n=0

δt(n+
1
2 )
∥∥∥∇Du(n+1)−∇u(t(n+1))

∥∥∥2

L2

≤ 4C6(δtD +hD )2 +4
N−1

∑
n=0

δt(n+
1
2 )SD (u(t(n+1)))2 ≤C2

9(δtD +hD )2. (27)

The conclusion follows from (26), (27) and the Lipschitz-continuity of u : [0,T ]→
H1(Ω) to compare u(t) (resp. ∇u(t)) with u(t(n+1)) (resp. ∇u(t(n+1))) when t ∈
(t(n), t(n+1)]. �
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