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Abstract--. Wave chaos theory is used to study a modeled 

reverberation chamber (RC). The first 200 modes of an RC at a 

given stirrer position are determined by the finite element 

method, and the Weyl formula is checked for various RC 

geometries, from integrable to chaotic. The eigenfrequency 

spacing distribution varies according to the degree of ray chaos in 

the RC related to its geometry. The eigenmode distributions are 

also analyzed and compared to the theoretical Gaussian 

distribution: close to the lower useable frequency, the modes of 

the studied chaotic RC fairly respect this asymptotic property. A 

general result of chaotic systems is illustrated: when perturbed by 

the stirrer rotation, the resonant frequencies of an RC avoid 

crossing. This means that the frequency sweeps tend to vanish at 

high frequency. 

 
Index Terms— Eigenvalue perturbation, finite element method, 

quantum chaos, reverberation chamber. 

I. INTRODUCTION 

n the last decade, reverberation chambers (RCs) have 

been increasingly used for electromagnetic compatibility 

tests. The behavior of an electrically large RC can be easily 

explained by the ray propagation approach: on the basis that 

the electric field is a superposition of an infinite number of 

uncorrelated and isotropic plane waves reflected by the walls, 

the field is isotropic and uniform [1].  

Using this geometric optic point of view, Cappetta [2] has 

illustrated the chaotic behavior of an RC with a moving wall. 

In this paper, the chaotic behavior of a cavity equipped with a 

metallic stirrer will be discussed making use of quantum chaos 

theory.  

Quantum chaos (or wave chaos) theory is nowadays 

frequently validated by microwave experiments in metallic 

cavities: the analogy between the Schrödinger and Helmholtz 
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equations is total in the case of a flat metallic cavity [3-5], and 

the results [6-7] prove that 3-D electromagnetic problems are 

compatible with the universal laws of quantum chaos theory. A 

law is said to be universal if it depends only on the system 

symmetry, but not on the geometrical details.  

This paper presents an application of the quantum chaos 

theory to a modeled RC with the objective to study the 

pertinence of the universal laws for this particular 3-D 

electromagnetic problem. Another particularity lies in the 

restricted number of studied modes, whereas the theory applies 

to a large number of modes. 

The RC chaoticity can be assessed from the statistics of the 

eigenfrequencies that are numerically determined by the finite 

element method (FEM). The considerable computational 

effort, which had been pointed out by Bunting in [8], can now 

be overcome [9] due to progresses in solver algorithms and 

hardware. It is worth noting that this work only concerns the 

modes, with neither consideration about the total electric field 

nor the quality factor, and that the main part of the paper is 

devoted to the RC analysis for a given stirrer position. 

The outline of this paper is the following. First, we present 

the rationale for the use of quantum chaos theory [10] and we 

explain how the frequency distribution can be used to assess 

the RC chaoticity. This technique is then applied to three 

different kinds of RC, from integrable to chaotic ones. As well 

the eigenfield distributions are compared to the theoretical 

predictions in the integrable and chaotic cases. 

In the last section, an important property of chaotic systems 

is presented, relative to the perturbation of resonant 

frequencies by the stirrer displacement. This study is 

conducted using a specific mode tracking procedure (MTP) 

[11].  

II. THEORETICAL BACKGROUND 

A. Quantum Mechanics and Microwave Studies 

The analogy between Schrödinger and Helmholtz equations 

justifies the use of quantum mechanics theory to analyze the 

electromagnetic field inside a flat cavity. To show it, we recall 

the time-independent Schrödinger equation of a quantum 

Chaoticity of a Reverberation Chamber 

Assessed From the Analysis of Modal 

Distributions obtained by FEM 

G. Orjubin1, E. Richalot2, O. Picon2, and O. Legrand3 

I



> TEMC-022-2007 < 

 

2

mechanical system described by the wave function ψ of a 

particle of mass m and energy E: 
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where h  is the Planck constant. When the particle is inside a 

box, the boundary conditions are ψ = 0 on the frontiers. 

Quantum theory is validated from numerical simulations or 

experiments. In recent years, microwave analog experiments 

have become a well-established alternative to theoretical 

studies. The first 2D experiments were made with a flat cavity 

parallel to the plane Oxy for which the Helmholtz equation for 

the component Ez is 
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where λ is the wavelength of the harmonic wave. Equations (1-

2) reveal the one-to-one correspondence between the two 

applications.  

The validation technique consists in finding the resonant 

frequencies of a cavity from the transmission coefficient 

between two antennas [3-5][12]. Then the eigenfrequency 

distributions are analyzed with regard to the universal laws 

predicted by quantum chaos theory. 

It is important to note that the extension of quantum 

techniques to 3-D electromagnetic cavities is not obvious, 

since the Helmholtz equation is vectorial, and is not equivalent 

to the Schrödinger equation. However, recent studies [6-7] 

prove that the universal laws are still valid for 3D 

electromagnetic cavities.  

B. Semiclassical Mechanics and Geometric Optics 

The properties of quantum systems that will be considered in 

Sections II-E and F are related to the chaotic dynamics of a 

particle free to move inside a box, in the classical limit where 

the de Broglie’s wavelength is vanishing small compared to 

the typical size of the box. In the electromagnetic context, the 

analogue limit is the geometrical imit of rays that are reflected 

by the metallic walls of the cavity. The reader is referred to 

[13] for a review of results on time-harmonic wave 

propagation in a ray chaotic enclosure. It is explained that a 

system with separable geometry (such as a rectangular cavity) 

is said to be integrable and has a regular behavior, to be 

opposed to chaotic systems. 

On the basis of the close connection existing between ray 

and modal spectral properties, this paper will show how to use 

the modes of an RC to determine its degree of chaos. 

C. Eigenfield Distribution in a Chaotic RC 

As indicated in [13], the scalar eigenfunction ψ of a quantum 

system can be written as a superposition of plane waves (rays) 

with fixed wave vector amplitude. If the system is integrable, 

the number of these waves is limited (e.g. 8 plane waves for a 

3-D rectangular cavity). For a chaotic system, the number is 

large and the propagation directions are uniformly distributed: 

this is the random plane wave omdel introduced by Berry [14] 

for quatum mechanics and by hill [1] in the RC context. 

Applying the central limit theorem to this conjecture, one can 

deduce that ψ follows a Gaussian distribution for almost
2
 all 

modes.  As the eigenfields are real, their squared amplitudes 

fallow a Porter-Thomas distribution [10]. 

The experimental verification using 3D electromagnetic 

cavities shows that the first few hundred eigenfields seem to 

conform to that normal distribution [6-7]. It must be noted that 

this result is valid only for points distant from the walls by at 

least roughly a quarter of wavelength [7]. 

In the RC case, the normality of the eigenfield distributions 

implies that each squared rectangular component of the 

complex
2
 field is exponentially distributed, when evaluated 

over a stirrer rotation. This is one of the so-called asymptotic 

laws valid for chaotic RCs. The RC chaotic behavior may 

come from the stirrer presence, the corrugated walls, the cavity 

irregularities, or the cavity shape. As an illustration, a 

generalization of the 2-D Bunimovich stadium to a 3-D 

structure with moving corrugated walls has been proposed as 

an RC geometry [16]. 

D. Weyl Formula 

Much of the techniques used in quantum chaos are related to 

the study of the eigenvalues, i. e. the resonant frequencies of 

the cavity. Balian and Bloch [17] have treated theoretically the 

distribution of electromagnetic eigenmodes in a cavity with 

perfectly conducting walls. Using the notation of Arnaut [18], 

the expression for the averaged modal density as a function of 

the frequency f is 
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where c is the light speed in vacuum, V is the cavity volume 

and the geometric dependent constant κ is defined by 
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where S is the cavity surface, L is the edges length, and the 

( ) [ ] 1112
−−− += ϕθ ρρρ r

r
 is the averaged radius of curvature 

of surface element dσ at r for spherical angles θ and φ. 

Function ( )r
rϕ  is the local dihedral internal angle along edge 

dl.  

We can emphasize two main properties. First, at high 

frequency, the dominant term of (3) does not depend on κ: the 

average modal density is then independent of the RC surface. 

The integration of (3) leads to the approximate Weyl formula 

 
2 Deviations from this universal law may concern localized modes 

associated to short unstable (“scarred eigenfunctions”) [4] or to non-isolated 

marginally-unstable periodic orbits (“bouncing-ball modes”) [15]. 
2 Applying a perturbation technique to low losses enclosures leads to a 

complex field, even if this one is expanded on real irrotational modes [9].  
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of the cumulative number of modes N(f) below a given 

frequency f: 
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As a second property, we note that the formula (3) is the same 

for chaotic or non chaotic systems. The difference between 

these two kinds of system is embedded within the local 

fluctuations of the modal density. This point is presented in 

§IIF. 

E. Random Matrix Theory 

According to accepted conjectures
3
, generic chaotic systems 

follow the universal laws predicted by the random matrix 

theory (RMT) [10]. In RMT the linear wave equation (1) is 

replaced by a linear matrix equation where the elements of the 

matrix are random variables. The matrix statistics are those 

that would result if the matrix were drawn from different types 

of ensembles, where the relevant ensemble type depends only 

on the underlying symmetry of the system. The ensemble that 

is relevant to lossless electromagnetic problems is the 

Gaussian orthogonal ensemble (GOE) as GOE is generally 

suited to describe chaotic system with time reversal symmetry. 

To describe a lossless integrable system, the Poissonian 

orthogonal ensemble (POE) must be used. 

We will see in the next paragraph that, depending on the RC 

general property (chaotic or not), the distribution of the 

resonant frequencies is obtained from the GOE or POE 

hypothesis. Although RMT supposes that the number of modes 

to be analyzed should be infinite, we will see that some 

hundreds of them allow us to assess the chaotic behavior of an 

RC. 

F. Eigenvalue Spacing Distribution 

Derived from RMT, the distribution of the resonant 

frequency spacings is characteristic of the type of system 

(regular or not, chaotic or not). In order to deal with universal 

properties of the spectrum, independently from the cavity size, 

the so-called unfolding procedure has to be employed [13,20]. 

From the sequence of ordered eigenvalues (f1, f2,.., fn), we 

first determine the fitted curve Navg to the empirical values 

N(fi): in our case a third order polynomial approximation is 

sufficient. Then the nearest neighbor frequency spacing is 

defined as 

 

 )()( 1 iavgiavgi fNfNs −= + . (6) 

 

The frequency spacing distribution s is analyzed by its 

histogram. Normalizing by the total number of 

eigenfrequencies, one can estimate the probability distribution 

P(s), if the number n of studied modes is large. 

The general results of RMT are that i) regular systems show 

 
3 It is worth nothing that the RMT predictions have found a strong support not 

only experimentally, but also theoretically. For instance, Berry [19] has 

obtained the so-called spectral rigidity using a semiclassical approach. 

a Poisson distribution (in fact an exponential),  
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and ii) chaotic systems show a Wigner (or Rayleigh) 

distribution.  
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One can see from (8) that for chaotic systems, the probability 

for zero spacing is null. This phenomenon is called level 

repulsion by analogy with the repulsion between neighboring 

energy levels in the case of a quantum system. Note that (8) is 

the exact result for 2x2 GOE matrices but only an excellent 

approximation for large GOE matrices, which should be more 

suited to the systems under study. 

It follows from (7-8) that the eigenvalues spacing statistics 

reflect the degree of chaos of the system. In order to model this 

frequency spacing in a unified way, we can use the semi 

empirical Brody
4
 distribution [6][10 p.93] which depends on a 

unique parameter ν:  
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For ν = 0 and 1, this distribution reduces to the Poisson and 

the Wigner distribution, respectively. Therefore the closer the 

parameter ν is to unity, the harder the chaos of the underlying 

system. 

III. REGULAR STIRRERLESS CAVITY 

In this paragraph we present the case of a regular system 

that will serve as a reference when studying stirrer-equipped 

cavities (cf. Sections IV-V). The integrable cavity_1 

considered here is a parallelepipedic lossless enclosure of 

dimensions (Lx, Ly, Lz) = (3.10 m × 2.47 m × 3.07 m). 

A. Weyl Formula 

For the simple geometry of cavity_1, the averaged radius of 

curvature ρ  is infinite and the dihedral angle is ( )
2

πϕ =r
r

. 

The linear integration of (4) leads to zyx LLL ++=κ . In 

this case, the Weyl formula becomes
5
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This expression has been shown [22] to be equal to the 

 
4 This a a Weibull distribution with mean value 1. 
5 As indicated in [21], the constant is predicted only for parallelepiped-

shaped domain; for electromagnetism problem, its value is ½. 
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mean number of modes of the regular cavity, whose 

eigenfrequencies have well known analytical expressions. This 

result is easily illustrated in Fig. 1, where both the actual 

cumulative number of modes N(f), found analytically, and 

Navg, obtained from (10) are plotted versus the frequency, for 

the first 200 modes. 

 
 

Fig. 1.  Cumulative number of modes for cavity_1. 

 

Equation (10) is more than an approximation: it gives the 

mean value of the number of modes. 

B. Eigenvalue Spacing Distribution 

As explained in Section II-F, the eigenvalue spacing 

distribution can be used to check if a system is chaotic or not. 

The resonant frequency spacing is unfolded following the 

procedure described in Section II-F, leading to a normalized s 

spacing. As TE/TM degeneracies occur, s is calculated from 

the sorted eigenfrequencies without degeneracy [6]. Figure 2 

gives the probability density function (pdf) of exponential, 

Wigner and s empirical distributions. 

 
 

Fig. 2.  Probability density function of the eigenfrequency spacings s for 

cavity_1 and the theoretical exponential and Wigner pdfs, issued from (7) and 

(8). 

 

Figure 2 shows clearly that the empirical data do not follow 

a Wigner distribution, characteristic of chaotic systems. 

Instead of binning the data to obtain the histogram of 

frequencies, we prefer to compare in the empirical cumulative 

density functions (cdf) to the theoretical cdfs, as shown in Fig. 

3. 

 
 

Fig. 3.  Cdf of s parameter, integrable cavity_1. 

 

Figure 3 indicates that the s parameter follows an exponential 

distribution, as expected for this regular system. This point is 

confirmed by the low value ν = 0.07 of the Brody parameter 

estimated by curve fitting. 

A last fact must be brought to light: although no antenna is 

modelled in our modal approach, the mere insertion of a wire 

into the cavity for excitation purpose transforms the integrable 

system into a pseudointegrable one. This phenomenon has 

been studied theoretically and experimentally in [5] and [23].  
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IV. REGULAR CAVITY WITH STIRRER_1 

The RC_1 contains a metallic stirrer, which is a 2D 

rectangular plate parallel to the cavity bottom and which 

rotates around a vertical axis placed at the stirrer center at the 

height h = 2.2 m. The stirrer dimensions in meters are (la, lb) = 

(1.5, 0.75). The stirrer orientation used in this Section (28° 

between the larger stirrer dimension and Ox axis) is sketched 

in Fig. 4. 

 
Fig. 4.  RC_1 with stirrer_1 into the integrable cavity_1. 

 

Figure 4 also represents the 140 points (*) at which the field 

is calculated (cf. Section IV-D). 

A. Mode Determination 

Using FEM, the discretization of the electromagnetic 

problem leads to a generalized eigenproblem that is solved 

using Jacobi-Davidson algorithm [9]. We are looking for the 

first N = 200 modes: the subspace dimension is taken to be 2N, 

and the amount of memory required for such task does not 

permit to solve a very large eigenproblem. In order to reduce 

the number of DoFs, first order shape elements (instead of 

second order) are used to model the field on the unstructured 

mesh which is hand made reffined on the stirrer. This results in 

60 103 DoFs for the stirrer position indicated in Fig. 4, and the 

run time is 4.5 10
3 

s (Pentium IV, 3.2 GHz). It must be pointed 

out that the solver determines all the modes, even if they 

degenerate. Thus there is no risk of missing some modes, as 

happens in experimental procedures using the spectrum peaks. 

This is an important issue when the cumulative number of 

modes is estimated [6]. 

Another important issue is the existence of a systematic 

error in the eigenfrequency determination, due to FEM 

discretization. This is particularly true for the higher rank 

modes. 

As a result we notice that the stirrer presence suppresses 

mode degeneracy: for instance, the perturbation by the stirrer 

of the TE111 and TM111 modes (resonant frequency 91.6 MHz) 

leads to two distinct resonance frequencies (90.2 and 92.3 

MHz). This important fact means that RC designers do not 

need to choose cavity dimensions such that degeneracy is 

avoided. For instance, it has been experimentally and 

numerically shown by Bruns and Vahldieck in [24] that cubic 

cavities can yield the same field uniformity as rectangular 

cavities. 

B. Weyl Formula 

As the stirrer modifies the RC geometry, the mean number of 

modes must be evaluated using equations (3-4). The dihedral 

angle is still ( )
2

πϕ =r
r

, but the contribution of Stirrer_1 

leads to ( )bazyx llLLL +−++=κ . The cumulative 

number of modes of RC_1 is determined numerically by FEM 

calculations, and is theoretically predicted by the Weyl 

formula. The result is plotted in Fig. 5 and can be compared to 

the case of cavity_1. 

 
 

Fig. 5.  Cumulative number of modes for RC_1 obtained by FEM and the 

Weyl formula. 

Figure 5 proves that the insertion of the stirrer in Cavity_1 

leads to a negligible increase of the mode number. The slight 

difference between the Weyl formula and the averaged curve 

deduced from mode counting can be attributed to 

discretization errors inherent to the FEM: this makes 

impossible a precise determination of the resonant frequencies. 

In order to estimate the fluctuations of the density of modes, a 

polynomial curve fitting of order 3 is used to determine Navg(f). 

C. Eigenvalue Spacing Distribution 

From the first 200 eigenvalues of RC_1 and the numerical 

expression of Navg, the normalized spacings s are calculated 

then classed into bins of width 0.2. The empirical pdf and the 

theoretical predictions are given in Fig. 6. 



> TEMC-022-2007 < 

 

6

 
 

Fig. 6.  Probability density function of the eigenfrequency spacings s for 

RC_1 and the theoretical exponential and Wigner pdfs. 

 

A slight level repulsion, predicted in §IIF for chaotic systems, 

can be observed in Fig. 6, as confirm the cdfs plotted in Fig. 7. 

 
 
Fig. 7.  Cdf of s parameter, stirrer_1 into the integrable cavity_1. 

 

In spite of a little discrepancy for small s values, the general 

behavior deduced from the first 200 modes of RC_1 is 

characteristic of an integrable system. The Brody parameter is 

ν = 0.15. 

D. Eigenfields 

The solver of the modal FEM problem provides the 

eigenfrequencies and the eigenfields inside the RC. These 

fields are projected onto a grid whose steps in the x, y and z 

directions are respectively Lx/10, Ly/10 and Lz/10, thus 

roughly 0.2 m. The x, y, and z components of the electric field 

are then collected; we only retained the values corresponding 

to points distanced from the walls by at least 0.5 m, as 

indicated in Fig. 4. In order to process uncorrelated data, we 

adopt 100 as the minimum mode rank, or f = 242 MHz: this 

way, the spatial step is larger than λ/4. 

Figure 8 shows two kinds of histogram occurring for the Ex 

component. 

 

 
Fig. 8.  Histograms of Ex values for the mode rank 106 and 190, RC_1. 

 

The Ex component of mode #106 does not seem to follow a 

Gaussian distribution, unlike mode #190. 

In order to quantify the goodness-of-fit (GoF) of the empiric 

data to a Gaussian distribution with unknown parameters, the 

Shapiro-Wilks test is used. The result of this test is 0 if the 

hypothesis (data follow a normal distribution) is retained and 1 

if rejected. The result of the GoF for the Ex component is 

shown in Fig. 9, at a 0.05 significance level. 

 
 
Fig. 9.  Result of Shapiro-Wilks normality test for the Ex component, RC_1. 

Result is 0 when the data follow a normal law, at 0.05 significance level. 

 

Figure 9 proves that Ex is not normally distributed for many 

modes of RC_1. To get a global idea, the mean values of GoF 

tests for the mode ranks between 100 and 200 (i.e. 242 and 

304 MHz) are respectively 0.22, 0.29, and 0.44 for the 

components Ex, Ey and Ez
6
. This discrepancy can be explained 

by the poorly chaotic behavior of RC_1.  

V. NON REGULAR CAVITY_2 WITH STIRRER_2 

A cavity corner is replaced by one eighth of a spherical 

surface of radius r, transforming the integrable cavity_1 into a 

nonintegrable cavity_2 of Sinai type. This technique is derived 

from the work of Dorr [7]. A V-folded Stirrer_2 with centered 

vertical rotating axis is oriented by 28° angle as shown in Fig. 

10. 

 
6 The difference between the 3 components is due to the shape of RC_1 

where x and y play a rather similar role. 
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Fig. 10.  Modeled RC_2 with stirrer_2 into the nonintegrable cavity_2. The 

140 points at which the field is evaluated are indicated by (*). 

A. Weyl Formula 

As explained by Arnaut in [18], the corner modifies the 

cavity geometry but (3-4) can still be used. Despite the small 

reduction of the cavity volume, the negative κ parameter is 

increased, resulting from the increase of the edge length and 

the curved surface. The overall consequence is that the mode 

density for cavity_2 can be larger than for cavity_1. Because 

of the complex geometry of the stirrer_2, we will not try to 

predict the accurate Weyl formula for RC_2, but we consider 

(11), obtained for cavity_1, as a good approximation of the 

cumulative number of modes for RC_2. To check this point, 

we compare in Fig. 12 the number of modes (10) of the 

cavity_1 to the one determined after FEM solving for RC_2. 

 
 

Fig. 11.  Cumulative number of modes for RC_2 obtained by FEM and Weyl 

formula for Cavity_1. 

 

As seen in Fig. 11, Eq. (10) provides a good approximation of 

the number of modes of RC_2 even if it does not strictly apply 

to this enclosure. This satisfactory concordance justifies the 

use by practitioners of (10) or (5). 

B. Eigenvalue Spacing Distribution 

Navg(f) is obtained by a third order curve fitting of Fig. 11. 

Then the variate s is calculated using (6) and the pdf of s is 

plotted in Fig. 12. 

 
 

Fig. 12.  Probability density function of the eigenfrequency spacings s for 

RC_2 and the theoretical exponential and Wigner pdfs. 

 

The level repulsion at s = 0 can be clearly seen in Figure 12 

for empirical data. 

 
 
Fig. 13.  Cdf  of s parameter, stirrer_2 into nonintegrable Cavity_2. 

 

A clear difference exists between Fig. 13 and Figs. 3 and 7. 

The Brody parameter is ν = 0.61. The Wigner distribution 

acceptably
7
 fits the empirical data issued from solely 200 

eigenfrequencies. Small spacings are less probable (level 

repulsion) and large spacings are also improbable, as the 

maximum value is sMax = 3.16.  

This tends to prove that the level fluctuation laws, derived 

from RMT, are also valid for the vectorial solution of the 

Helmholtz equation. Finally, the RC chaoticity is easily 

 
7
 A better result is reported in [6], where the cavity shape is very irregular, 

and the number of modes is higher (466). 
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assessed from a relatively small set of eigenvalues, as indicates 

Table I. 

 
TABLE I 

BRODY PARAMETER FOR DIFFERENT RC GEOMETRY. 

 

Cavity_1 RC_1 RC_2 

0.07 0.16 0.61 

 

It is worth noting that despite the complex geometry of 

RC_2, the frequency spacing does not follow exactly the 

Wigner distribution. This is consistent with the fact that RMT 

is supposed to strictly apply in the limit λ/L <<1, where L is a 

geometric dimension. 

C. Eigenfields 

The result of the GoF for the Ex component is shown in Fig. 

14. 

 
 

Fig. 14.  Result of Shapiro-Wilks normality test for the Ex component, RC_2. 

Result is 0 when the data follow a normal law, at 0.05 significance level. 

 

Comparing Fig. 14 to Fig. 9, one can see that the Gaussian 

hypothesis is reasonable for more modes with RC_2 than with 

RC_1. For instance, the mean values of the GoF tests for ranks 

between 100 and 200 (i.e. 242 and 304 MHz) are respectively 

0.14, 0.23 and 0.19 for the Ex, Ey and Ez component
8
. 

Moreoever, the small
9
 values show that most of the modes 

close to the Lowest Useable Frequency
10

 (LUF) correspond to 

a Gaussian distribution.  

Nevertheless, the strict interpretation of Figs 13 and 14 leads 

to the following conclusion: as the eigenfield distribution is 

not perfectly Gaussian, RC_2 presents a non universal 

behavior at low frequencies. This means that the geometry 

details, such as the shape of the stirrer, play a crucial role to 

obtain the desired uniformity and isotropy of the field. 

Because of this non universality, the performance of two RCs 

can be compared: it is usually done by a uniformity test on the 

overall field, but could also be deduced from comparisons of 

the distributions of the eigenfrequency spacings or of the 

 
8 The isotropy of the modes is better for RC_2 rather for RC1: RC_2 has 

no particular symmetry. 
9 If the data are normally distributed, as for high rank modes, the GoF test 

with 5% significance level rejects the Gaussian hypothesis with a probability 

of 0.05. 
10 Here we use the common estimation that gives LUF = 3 fmin = 206 

MHz.. This is close to the 60th mode criterion, as shows Fig. 11.  

eigenfield. In this case, ensemble statistics should be used for 

various RC realizations associated to independent stirrer 

positions. 

VI. FREQUENCY PERTURBATION IN A CHAOTIC RC 

A. Presentation 

In the previous sections, two different RCs (regular cavity 

and simple stirrer, non regular cavity and more sophisticated 

stirrer) were analyzed at a given stirrer position.  

In this section the effect of the stirrer rotation on the resonant 

frequencies is investigated, following the work of Wu and 

Chang [25] who modelled a 2-D RC by TLM. Employing this 

technique, the resonant frequencies are determined indirectly: 

they are the maxima of the frequency response obtained by 

Fourier transform of an impulse time response. The implicit 

time windowing makes it difficult to separate close modes, and 

the determination of the frequency sweeps is uneasy.  

With a modal approach, the eigenfrequency perturbations (or 

evolutions with the stirrer position) are determined directly 

and can be characterized more precisely. We will first check in 

this section that the modal density is not affected by the stirrer 

displacement. Then an illustration will be given of an 

important property: for a chaotic system, each eigenvalue 

curve proceeds without crossing any other. This general 

property does not come from RMT, and it can apply to a 

restricted number of modes. 

In order to minimize the numerical noise due to FEM, the 

RC is discretized by second order elements, yielding 2 10
5
 

DoF. It takes 1500 s to find the first 20 modes. This 

determination is iterated for K stirrer positions evenly spaced 

by a 2° angle. For Stirrer_1, K = 90 using symmetry, and K = 

180 for Stirrer_2. 

B. Avoided Crossings 

The values of the first 20 eigenfrequencies of RC_1 are 

plotted in Fig. 15. 
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Fig. 15.  First resonant frequencies of RC_1 versus the stirrer displacement. 

 

Figure 15 shows that the stirrer rotation does not increase the 

number of modes and produces frequency sweeps. Due to the 

special configuration of Stirrer_1, some modes are 
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unperturbed, such as the third one that is similar to TM110 of 

the cavity_1.  

As RC_1 does not present a chaotic behavior, crossings 

situations can be observed: a detail of Fig. 15 is given in Fig. 

16, concerning the modes of ranks 4~6 and 14~17 at the first 

stirrer position. 
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Fig. 16.  Details of Fig. 15 for the rank sorted eigenfrequencies (without 

tracking), and evolution of each of these modes after using the Mode 

Tracking Procedure [11]. 

 

The resonant frequencies being sorted by the solver, a given 

frequency rank is not related to a same mode when crossing 

situations occur: this is the case of the mode starting at 93.7 

MHz. To detect automatically the crossings and assign the 

correct rank to a given mode, a mode tracking procedure 

(MTP) has been designed [11]. For the sake of completeness, 

the method is briefly presented in the Appendix. Applying the 

MTP, each frequency rank is related to a single mode, as 

shows Fig. 16. 

In order to illustrate the level repulsion related to avoided 

crossings for RC_2, Fig. 17 plots the evolutions of the sorted 

eigenfrequencies. 
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Fig. 17.  First resonant frequencies of RC_2 versus the stirrer displacement 

 

For many modes (e.g. ranks 2, 3 and 7, 8, 9), the curves get 

close but no apparent crossing occurs. This fact has been 

confirmed by the MTP for the first 20 modes: the rank of each 

mode is the same during the stirrer rotation. 

Finally, we can retain that a chaotic system presents avoided 

crossings. Therefore, the eigenfrequency perturbation induced 

by the stirrer is bounded by the mean spacing between nearest 

neighbor eigenfrequencies. As this one is proportionnal to the 

inverse of the modal density (3) that increases with the 

frequency, the eigenvalues perturbation tends to vanish at high 

frequencies. Since the resulting field is expanded on the same 

set of modes, it is most likely that the eigenfield perturbation 

plays a key role in the stirring process at high frequency. This 

phenomenon has been discussed in [11] for low frequencies. 

VII. CONCLUSION 

This paper presents a study of the chaos in a Reverberation 

Chamber (RC) derived from the analyze of its modal 

distributions and making use of quantum chaos theory. This 

theory is often validated by electromagnetic experiments, 

usually with empty 3-D cavities. We have extended the 

application to RCs, cavities containing a stirrer.  

The Weyl formula is checked from the FEM determination 

of the first 200 modes of RCs with different shapes from 

integrable to chaotic. 

The distribution function of the eigenfrequency spacing is in 

agreement with Random Matrix Theory (RMT) and reveals the 

RC chaoticity. The eigenmode distributions are also analyzed 

and compared to the theoretical Gaussian distribution: close to 

the lower useable frequency, the modes of the studied chaotic 

RC fairly respect this asymptotic property. 

Although RMT assumes that a great number of modes (and 

consequently high frequency modes) must be analyzed, we 

have seen that our restricted number of modes allows an 

illustration of the universal properties of the RC, i.e. properties 

that are independent from the exact RC shape. However, some 

non universal behaviors have also been noticed. These 

deviations from the theoretical limit can be used as a metric to 

compare RC performances. 

Using a Mode Tracking Procedure, we have illustrated the 

following property of a chaotic RC: during a stirrer 

displacement, the curves of the resonant frequencies do not 

cross. This means that at high frequency the frequency sweeps 

tend to vanish.  

VIII. APPENDIX 

The key to the mode tracking procedure [13] is sketched here 

to make this paper self-explanatory. 

At stirrer position k (1 ≤ k ≤ K), the solver provides a set of 

N eigenvalues )(kf n and eigenvectors )(kEn

r
. The 

objective is to track the modes from the first stirrer position till 

the position k. For this, we first look for an index permutation 

vector that models correctly the transition between the stirrer 

positions k and k+1.  

As a general result, the electromagnetic cavity eigenmodes 
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are orthogonal: for the stirrer position k, two different 

eigenvectors )(kEm

r
 and )(kEn

r
 verify (15), where Ω is the 

cavity domain : 

 

 ( ) ∫∫∫ Ω
== dVkEkEkEkE nmnm )().(0)(),(

rrrr
 (11) 

The idea is that (15) is quite respected for a small rotation 

step, considering two eigenvectors corresponding to adjacent 

positions, say )(kEm

r
and )1( +kEn

r
. Discretizing the fields 

)(kEm

r
 on a uniform grid yields )(kU m

r
 vectors, (11) can be 

generalized as (12) 

 

 ( ) )1()(, += kUkUnmS n
T
mk

rr
, (12) 

where 
T
 designs the transpose. 

After normalizing )(kU m

r
, Sk matrix is numerically close 

to a permutation matrix, thus enabling a crossing detection. 

For example, a Sk view is given in Fig. 18 for the first 6 modes 

of RC_1. 

 

 

Fig. 18.  Abs(Sk) matrices for k = 1 and k = 10, first 6 modes of RC_1. 

 

Sk=1 can be assimilated to identity (no crossing) whereas Sk=10 

is a permutation matrix affecting the ranks 5 and 6 (mode 6 at 

position 10 will occupy the rank 5 at position 11). 

The permutation vectors are easy to identify in most of the 

cases, but not all, as indicates the S23 matrix (Fig. 19). 

 

Fig. 19.  Abs(S23) matrix, first 6 modes of RC_1. 

 

According to S23 values, the transition between k = 23 and k = 

24 is uncertain. As tracking the modes from the first position 

till the position k is an iterative procedure, it can be 

dramatically affected by error propagation. To get a robust 

technique, we consider multiple possibilities (e.g. 2 choices at 

position k = 23). Then a tree is constructed for the solutions 

ensemble. The selection of the best (or actual) solution is 

based on the regularity of the eigenvector projection on the 

initial eigenvector (more details in [11]).  
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