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Abstract -- A global approach for the study of forces 

developed by a tubular linear moving magnet actuator for a 

low speed and high force application is described. We used 

here an easy analytical approach made with the Ampere’s law 

to give the field distribution done by permanent magnets in 

the airgap. In order to calculate the effort developed by the 

moving part we used the Laplace force which takes into 

account the field distribution calculated previously and the 

current distribution on the stator. The results are validated 

extensively by comparison with finite element analysis. The 

analytical field solutions allow the prediction of the thrust 

force. This facilitates the characterization of tubular machine 

topologies and provides a basis for comparative studies, design 

optimization, and machine dynamic modeling. 

Index Terms-- Laplace Equations, Linear actuator, 

Optimization, Permanent Magnet Motor 

I.   INTRODUCTION 

LECTRICAL systems are more and more reliable and 
they are worthy of interest for some applications which 
try to reduce the embedded weight. If we compare with 

mechanical or hydraulic systems, maintenance and 
integration are easier thanks to the compactness of the 
electrical actuators. These advantages push for the 
development and the multiplication of electrical 
technologies in embedded systems. This paper deals with 
the presentation of a linear actuator for an embedded 
application. The actuator requirements have to provide a 
high force per unit of mass in a low speed range for a power 
consumption of 100 (W). 

The proposed structure for this application is a tubular 
linear moving magnet actuator (MMA) which presents all 
the characteristics of a synchronous permanent magnet 
machine as in [1]-[2]-[3]. The Fig. 1 shows the chosen 
structure. The moving part is composed of permanent 
magnet radially magnetized fixed to a tubular magnetic 
circuit. The stator is composed of ring shaped coils which 
are assembled on a smooth magnetic circuit without teeth 
and slots. Two MMA mounted in parallel are shown in 
Fig. 1. 

Among various linear machine configurations, tubular 
machines with permanent magnet excitation have a number 
of distinctive features such as a high force density and 
excellent control characteristics, which make them an 
attractive candidate for applications in which dynamic 
performance and reliability are crucial like in [4]. On the 
scientific literature as in [1]-[5]-[6]-[7], the analytical 
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models are based on the Poisson’s equation where the 
magnetic field distribution created by permanent magnets is 
developed in Fourier series. This kind of equations leads to 
solutions using the Bessel functions. In the aim of finding 
the linear force developed, we have to apply the Maxwell 
stress tensor which gives very precise results in spite of the 
hardness and the computation time of this model. In [8]-[9]-
[10], the magnetic computation is performed using a 
reluctance magnet network. We found it interesting to use a 
simplest model based on Gauss’s law and Laplace’s force 
that consumes little computation time. 

In the first section of this paper we will present this 
model based on the chosen structure of the machine which 
respect the set of specifications. In the second section, an 
optimization process is undertaken to determine the 
dimensional characteristics of the structure. In the third 
section, we will compare the theoretical results with the 
simulation results obtained by finite elements done with the 
Ansys software. Finally, the last section presents the 
conclusion and perspectives of the work. 

Fig. 1.  Tubular moving magnet actuator. 

II. PREDIMENSIONING: ANALYTICAL CALCULATION

A.   Set of specifications 

For this application we have to comply with a set of 
constraints such as dimensions, duplications, forces, stroke, 
speed, temperatures and force ripples constraints. The 
application requires that the system is redundant. Thus two 
actuators are implemented in parallel, each of them has to 
develop 55 (N) without ripples for an electric power 
consumption of 100 (W). These two actuators are 
embedded in a box of which dimensions are 165*304*304 
(mm). So, the volume and the mass of the armature have to 
be minimized. The stroke of the moving part must be of 
∓ 90 (mm) and the maximum speed has to 
reach 0.5 (m. s"#). As we said before, there are also 
temperature constraints for coils and magnets. Of course, it 
is important to not exceed the Curie temperature of the 
magnets which could be the cause of a premature 
demagnetization and could be highly harmful for the well-
functioning of the actuators. A precise study is necessary to 
dimension the variety of magnets we are going to use like 
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Samarium-Cobalt or Neodymium-Iron-Boron. In the same 
time, the winding temperature does not have to reach 180 
(°C). 

B.   Electromechanical characteristics and shape of the 

actuator  

According to these requirements, the chosen structure is 
a tubular linear moving magnet actuator. Because the 
magnets are radially magnetized and the coils are ring 
shaped without saliency, we can use the Ampere theorem 
around a contour applied to a half section of the 
axisymmetric actuator in the (O, ��, � ) plane and calculate 
the flux density in the airgap. Then, we are able to calculate 
the Laplace force on the elementary pattern presented in 
Fig. 2, whose dimensional characteristics are given in Table 
I. In order to simplify, we consider only one pole pair of 
magnets and two coils supplied by opposite continuous 
currents. The effort determined on the elementary pattern 
can be generalized over all the structure if we multiply by 
the number of pairs of poles !. In order to have a constant 
effort, each coil surface will be divided in three and will 
receive sinusoidal currents with 120° phase shift, see Fig. 4. 
We will see later in this paper how we get this effort and his 
value. 

Fig. 2.  Elementary pattern and Ampere contour. 

TABLE I 
DIMENSIONAL CHARACTERISTICS OF THE MACHINE 

Name Definition "# Magnet thickness $% Moving part external radius & Airgap thickness &' Coil thickness "( = & + &' Airgap and coil thickness $) Stator external radius *,- Average radius (half of the coil) . One pole length 

The pre-design of the actuator consists in the choice of a 
simple theoretical model based on the Ampere’s law. The 
linear force produced is given by the Laplace force defines 
by the following expression: 

/01 = 2. /4 × 5 (1) 

where 5 is the pseudo-vector of magnetic field, I the total 
current in the coil, /4 an infinitesimal part of the current 
trajectory and /01 the infinitesimal Laplace force. To reach
the total force applied over the contour we need to integrate 
around the windings (the angle θ is varying from 0 to 2π). 

We also integrate at the middle of the coils at the average 
radius *,-. Thus, we consider a current sheet equivalent to
the coil current density. It means that the Laplace force is: 

01 = 6 2. *,-. 78. �9 × 5:;
<

   (2) 

The waveform created by the radial magnetization 
pattern and the displacement of the moving part is 
considered as strictly sinusoidal as in [11]-[12]-[13]. We 
can traduce this mathematically by: 

>?(A%) = CD#. sin Eπ
τ (A%)H . ��    (3) 

It is easy to write the following relation between axes: 

A% = AI − A%I (4) 

where A)   is the fixed axis tied to the stator, A% is the
moving axis tied to the moving part and A%I shows the
position of the moving part (Fig. 3) in relation to the stator 
expressed by: 

A%I = L. M (5) 

where L is the linear speed and M the time.  CD# is the peak 
value of the residual flux density of the magnet. Finally, we 
can write: 

C#(A%) = C#(AI , A%I) = CD#. OPQ ER
. (AI − A%I)H (6) 

Fig. 3.  Representation of axes. 

The coils are molded and are tied to the stator at the ends. 
They have got ring shape around the AI axis. The stator has
no teeth in order to reduce the saliency effect. In the 
following of this paper we will employ the term slot area 
which represents the area cross section of the coil supplied 
by current namely: 

S)TUV = &' . . (7) 

Copper wire is crossed over a current 2 and we make a 
difference between the two currents densities C'UWT  and C)TUV
which respectively represent the current densities in a coil 
and in a slot expressed in (A. mmY:). The magneto-motive 
force Q2 with Q the number of turns per slot is equal to: 

Z[ . C'UWT . S)TUV = Q2  (8) 

where Z[ is the slot fill factor equal to the ratio 
I\]^_
I`_]a. 

C.   Magnetic flux densities 

The following assumptions are made. For a magnetic 
point of view, copper is similar as air. In order to simplify 



the calculation, we assume that the iron permittivity is 
infinite. Then, as the iron flux density has got a finite value, 
the magnetic excitation in the iron is equal to zero. 

Finally, the magnetic flux densities in the air region Be 

and in the magnet region Bm are defined as in [14] by: 

and, 

Our application needs to develop high forces then we are 
going to use rare earth magnets like Neodymium-Iron-
Boron, with �̂� = 1,4 (�) or Samarium-Cobalt, with

�̂� = 1,1 (�). Here, µ! = 4π. 10#$ (%. �#&) and µ'
depends on the magnets and is often between 1,03  and
1,15. From (10), we consider that we are on the linear part
of the hysteresis curve.  

Then in this linear problem we use the superposition 
theorem. We will not consider the coils and we can write 
the Ampere’s law: 

%* . +* + %/ . +/ = 0 (11) 

The Gauss’s law gives: 

2* . 6* = 2/. 6/ (12)

where 6* and 6/ are respectively the flux exchange areas in
the airgap and in the magnets. 

Finally, the magnetic field in the airgap is directly 
proportional to the residual flux density by a coefficient 
named 7* which only depends on the dimensions such as:

7*(8) = 1
96*(8)

6/ + µ'. +*(8)
+/ :   (13) 

and, 

;<(8, >?, >@?) = 7*(8). AB(>?, >@?)    (14) 

D.   Linear stress calculation 

To determine the linear stress, the Laplace force is 
applied at the middle of the coils, at CDE radius (the real
airgap F is small compared to the coil width FG). Finally, as
the coil is attached to the stator, this effort is the one which 
is applied to the moving part. By using (2), (8), and (14), 
the Laplace force depends on >? and >�6 and is given by:

HI(>?, >@?) = 2π. KL(>M). CNO. ;<(CNO, >P, >�6) (15) 
 

where, KL(>M) is given by (8) with:

�GQRS(>M) = T+�UVW+, >? ∈ [0, τ]
−�UVW+, >? ∈ [τ, 2τ]  (16) 

Finally, to reach the total force of the linear actuator, 
with opposite continuous current, in relation of the position 
of the moving part >@? it is necessary to multiply by the

number of half pairs of poles 2\ and integrate over a half
period of magnets i.e. a pattern of [0, τ]. Due to the 
symmetry with the supply of the coil by opposite 
continuous current, the total force of the moving part is: 

H^_`(>@?) = 2\. 1
τ a bc(>?, >@?).

d

!
e>?. <f  (17) 

After integration we can get the following result: 

H^_`(>@?) = 8. \. KL. CDE . 7* . �h/. cos jπ
τ . >@?k . <f  (18)

Then, with the coils supplied by a three phase sinusoidal 
current, as we said in II.B. the total force reached by the 
moving part is equal to: 

Hl_`(>@?) = 3\
τ . m a bc(>?, >@?)R

R.dn
(R#&).dn

p

Rq&
 e>?. <f (19)

Taking into account the symmetries, this gives: 

 Hl_`(>@?) = 6\
τ . m a bc(>?, >@?)R

R.dn
(R#&).dn

n

Rq&
 e>?. <f (20)

where: 

HI(>6, >�6)R = 2π. KLW. CNO. ;<(CNO,>P,>�6)  (21)

This force depends on KLR  which is explained in (22). The
�GQRSt  current densities vary with i from 1 to 6 in (19) or
from 1 to 3 in (20). In (16), we have defined on the two 
coils which total length is 2  (corresponding to one pole 
pair, see Fig. 2), two opposite current densities depending 
on the >? axis. With a three phase supply, each slot is
divided in three (see Fig. 4) and we define, for the total 
length 2  six different current densities as a function of 
the time and of the >? axis. These current densities �GQRSt ,
where W represents each of the six slots areas, are shown in
Fig. 4. 

Fig. 4.  Three phase supply of the coils. 

Each coil is supplied (like in [15] ) by: 

2* = µ!. %*  (9)       

2/ = µ'. µ!. %/ + �u�  (10)      



| !"| = #$ . %&'()3 . *+,("'-*  (22) 

and then, 

⎩⎪⎪
⎨
⎪⎪⎧ +,("'4(6) = 3.  !8#$ . %&'() . sin (:; . <>? + φ8)

+,("'B(6) = −3.  !D#$ . %&'() . sin (:; . <>? + φD)
+,("'E(6) = 3.  !F#$ . %&'() . sin (:; . <>? + φF)

 
(23) 

After calculation, and considering currents with 120° 
phase shift, we observe that the force with a three phase 
supply is constant and does not depend on <G%:

HDIJ = 6. L. #$ . +,("' . %&'() . MNO . PQ . +RS (24) 

Thus: 

HDIJ = 34 H8IJ  (25) 

In order to simplify and to save computation time, the 
simulations and the optimizations will be performed for a 
single phase and opposites continuous currents 
configuration. The specifications required for the linear 
actuator is to achieve HDIJ =55 (N) with a three phase
sinusoidal supply which eliminates force ripples. So, for a 
single phase configuration the dimensioning force to reach 
is: H8IJ = UD . 55 = 73 (N). 

III. OPTIMIZATION OF THE STRUCTURE

With the aim of getting the best compromise, we need to 
optimize the structure of the linear actuator by the method 
of multi-objective optimization. We realized all the 
optimization for samarium cobalt magnets (+̂Z = 1,1 (G)).
Our objectives are to maximize the force and to minimize 
the mass and the thermal parameter that we will define 
later. The constraints of our problem are dimensional 
constraints like the size of the box, magnetic constraints 
(the value of the magnetic flux density in the iron should 
not exceed the material saturation). In mathematical terms 
our optimization problem can be traduced as in [16] by the 
following expressions: 

] min^∈ℝa b(c)d"(c) ≤ 0 ∀h ∈ {1, … ,  j}ℎl(c) = 0 ∀o ∈ {1, … ,  J} (26) 

where b is the objective function we have to minimize, d 
and ℎ are respectively the functions which represent the 
inequality constraints and the equality constraints. The 
variable fixed is c,  j and  J represent respectively the
number of inequalities and equalities equations. Here c ∈ ℝp and represents all the variables of our optimization 
problem, that is to say for example ( +,("' , L, ;, qS… ).

In our problem, one of the three objectives is the mass of 
the linear actuator: 

r(c) = t ρv. π. (x"F − x"y8F ). z"  ~
"�8  (27) 

where z" and �" are respectively the length and the densities
of each layer (iron yokes, magnets, coils…). The number of 
layers is n and each layer is bounded by the radius ri-1 and ri 
(with r0 = 0). 

One objective is the thermal parameter mentioned above. 
This parameter is called Gℎ, such as: 

Gℎ(c) = �(c). +,("' (28) 

where �(c) is the current density per unit of length, see 
[17]. 

We can write the b function like in [16]: 

b(c) = − H8IJ(c)max�H8IJ� + r(c)min(r) + Gℎ(c)min(Gℎ) (29) 

There is a set of constraints ( j +  J) like: flux density
saturation constraints and dimensional constraints. But the 
three main constraints are force, mass and current density: 

� H8IJ ≥ 73 (N)+,("' ≤ 10 (A. mmyF)r ≤ 3.75 (kg)  (30) 

To realize this optimization we need to make as many 
calculations as we have objectives. The goal is to find an 
extremum for each following objective:  "max�H8IJ�","min(r) " and "min(Gℎ)". Finally, we make one more 
multi-objective calculation. In order to realize this 
optimization, we used the optimization toolbox of the 
Matlab software. We also used the bZh ��  function with 
the dq���q ���x�ℎ module. We will present our results in the 
next section.  

IV. SIMULATION AND RESULTS

We made the simulations with the Ansys software [18] in 
quasi-static. It is here a 2D axisymmetric simulation with a 
triangular meshing. In these simulations a single phase 
continuous current is set in order to calculate the maximum 
force reached by the linear actuator. It is also a way to 
check if the hypothesis of the sinusoidal waveform created 
by radial magnetization pattern is correct (3). 

In order to validate the theoretical model, we have 
simulated the MMA for further configurations like in [19]-
[20]. For each MMA geometry, we tried to choose different 
configurations by varying the length, the number of poles 
and the size of each layers. Table II shows the results and 
relatives errors of three different geometries. The first 
geometry, called GEOM1, has a short moving part with one 
pair of pole. In the second geometry, called GEOM2, we 
conserved the characteristics of the first geometry, the 
moving part is longer than in the first one. In the third 
geometry, called GEOM3, we changed the sizes of the 
moving part and of the external radius x&. There are also
two pairs of pole. Fsimu is the force calculated thanks to 



Ansys software [18]  and Fth is the peak value of the force 
calculated using (18) with the help of Matlab software. For 
these three configurations, the relative error between these 
efforts is less than 2%. Thereby, we are more confident on 
the analytical model. We can use it for the optimization 
process in order to find an optimized structure. 

TABLE II 
COMPARISON BETWEEN SIMULATIONS AND THEORETICAL 

MODEL FOR DIFFERENT GEOMETRIES 

� !"# (N) �$% (N) &% 

GEOM1 32.6 33.04 -1.33 

GEOM2 55.99 55 1.8 

GEOM3 73.10 72.04 1.47 

Table III compares the results of each optimization, that 
is to say that the second, third and fourth columns represent 
each mono-objective optimization and the fifth column 
gives the results of the multi-objective optimization. It 
should be noted that the fourth and fifth column are the 
same. It means that the thermal parameter is the most 
restrictive objective of the optimization.  

TABLE III 
 TABLE OF THE RESULTS OF EACH OPTIMIZATION 

CALCULATION 

�()% * +ℎ 
Multi-
objective 

-"(mm) 5.4 5 11.7 11.7 
0$ (mm) 24.4 24 30.7 30.7 
23 (mm) 2.58 2.2 2.13 2.13 
0  (mm) 32.5 31.7 38.3 38.3 
 τ (mm) 38.3 15.3 23.3 23.3 

435!6  (A. mm89) 10 10 8.37 8.37 
: 1 2 1 1 

�()% (N) 108 73 73 73 
* (kg) 3.75 3.17 3.75 3.75 

+ℎ (A9. m8;) 1.22(( 8.232(< 3.442(< 3.442(< 

 Now that we are sure that we have reached an extremum 
that meets all the constraints, we are able to make a finite 
element simulation of the optimal structure. To have an 
idea of the simulated structure in two dimensions, we show 
on Fig. 5 the 2D flux lines.  

Fig. 5.  2D Flux lines of the simulated MMA structure. 

  We putted here the Dirichlet conditions on the edges. 
That means that the vector potential on θ direction (Fig. 2) 
is equal to zero.  

Fig. 6 shows the result of flux density created by 
permanent magnets radially magnetized in the airgap, took 
on the half of the coils, with the Ansys software. This curve 
permits to verify the hypothesis given in (3). 

Fig. 6.  Flux density created by permanent magnets in function of the 
position relative to the Zs axis. 

Theoretically, when the armature is radially magnetized, 
the repartition of the flux density in the airgap should be 
like square or trapezoidal waveform; but when the length of 
the magnet is short the hypothesis of the sinusoidal 
waveform created by the PM can be done as we can see on 
Fig. 6. In order to improve the sinusoidal shape of the 
waveform we can use the work done in [12] with keeping 
the pole pitch (2τ) constant. We can now test our analytical 
model based on the calculation of the force created with 
single phase and opposite continuous currents. Fig. 7 shows 
the results of the simulations forces and calculated force.   

Fig. 7.  Force in single phase opposites continuous current in function of 
the stroke. 

The Ansys software [18] allows us to calculate force with 
two distinctive numerical methods such as “virtual work” 

and “Maxwell stress tensor”. If the results of these two 

methods are tied in, as in Fig. 7, it means that the mesh is 
quite good. Thus, we are able to compare the theoretical 
curve, with the two other ones which represent the 
numerical results. About the maximal force, our analytical 
model seems to give very precise results. We observe a 
small gap between theoretical force and numerical forces 
which means that the force felt in single phase, with 
opposite continuous current, is near from a cosinus function 
as the theoretical result deduced from (18). In order to 
validate (24), and including the fact that Ansys is a finite 
element calculation software which only permits to make 
quasi-static simulations, we decided to recreate a three 



phases sinusoidal current supply with continuous currents 
as in Fig. 8. 

Fig. 8.  Creation of a three phases sinusoidal current supply with 
continuous currents. 

On Fig. 8, we see in red the displacement of the moving 
part relative to the �� axis. We also see the repartition of 
continuous currents in each slot to recreate three phases 
sinusoidal supply. Fig. 9 shows the results of the 
simulations done with the current repartition given in 
Fig. 8, when the moving part moves a distance 2 . 

Fig. 9.  Forces in three phase continuous current in function of the stroke 

 The plot 1 in blue and the plot 2 in green of Fig. 9 
show the results of the Maxwell stress tensor and virtual 
work forces developed respectively with the first and 
second current distribution of Fig. 8. When the actuator will 
be supplied by a three phase sinusoidal current and field 
oriented control, the resultant force will be a constant effort 
(equal to the peak value of the sinusoidal function) 
represented by the pink curve on Fig. 9. One can observe a 
difference between the theoretical and simulated forces 
!"#$ which are equal respectively to 51.8 (N) and 55 (N). 
Thus, the relative difference is equal to 5.8 %. It can be 
explain by the fact that the Ansys software takes into 
account the iron magnetic flux density that we did not 
consider on our analytical model. There is also the fact that 
we only consider the fundamental waveforms of the current 
and the flux density in the airgap. 

 !3%ℎ−()*+ = 51.82 (N) 
and, 

 !3%ℎ−/ℎ04 = 55 (N) 

Thus, the relative error on the three phase force is : 

6% = −5.8 % 

V.   CONCLUSION 

In this paper, we have presented an analytical approach 
of the calculation of force which can be applied to slotless 
synchronous permanent magnet machines where the 
waveform created by PM is close to a sinusoidal function. 
We used it for the dimensioning of a tubular linear moving 
magnet actuator devoted to an embedded application. A set 
of constraints have to be met like: total force expected, no 
force ripples, bulk, mass and thermal limitations. In a first 
step, we have made a modeling based on an Amperian 
model of the structure. This model offers the advantages to 
be faster to solve than Poisson equation and to consume 
less computation time in a multi-criteria optimization 
calculation. In a second step, the analytical results and 
especially the linear effort developed were verified by a 2D 
finite element analysis. Then, a multi-criteria optimization 
of the actuator structure based on an objective function 
assuming a set of constraints has been carried out. This 
optimization allowed us to give the dimensions of the 
actuator that almost meets the specifications (5.8% 
difference between the expected effort and the calculated 
effort). In our future work, we intend to improve the 
analytical modeling considering the harmonic orders 
greater than one for the fields. Moreover, based on this 
study, a prototype has to be built and experimental tests 
have to be performed. 
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