M. Arumugam, Enterotypes of the human gut microbiome, Nature, vol.473, pp.174-180, 2011.
URL : https://hal.archives-ouvertes.fr/cea-00903625

F. Backhed, R. E. Ley, J. L. Sonnenburg, D. A. Peterson, and J. I. Gordon, Hostbacterial mutualism in the human intestine, Science, vol.307, pp.1915-1920, 2005.

E. C. Martens, H. C. Chiang, and J. I. Gordon, Mucosal glycan foraging enhances fitness and transmission of a saccharolytic human gut bacterial symbiont, Cell Host Microbe, vol.4, pp.447-457, 2008.

E. C. Martens, Recognition and degradation of plant cell wall polysaccharides by two human gut symbionts, PLoS Biol, vol.9, p.1001221, 2011.

H. J. Flint, K. P. Scott, S. H. Duncan, P. Louis, and E. Forano, Microbial degradation of complex carbohydrates in the gut, Gut Microbes, vol.3, pp.289-306, 2012.

D. Vuyst, L. Moens, F. Selak, M. Riviere, A. Leroy et al., Summer Meeting 2013: growth and physiology of bifidobacteria, J. Appl. Microbiol, vol.116, pp.477-491, 2014.

M. Roberfroid, Prebiotic effects: metabolic and health benefits, Br. J. Nutr, vol.104, pp.1-63, 2010.

C. M. Chapman, G. R. Gibson, and I. Rowland, Health benefits of probiotics: are mixtures more effective than single strains?, Eur. J. Nutr, vol.50, pp.1-17, 2011.

M. K. Gibson, M. W. Pesesky, and G. Dantas, The Yin and Yang of Bacterial Resilience in the Human Gut Microbiota, J. Mol. Biol, vol.426, pp.3866-3876, 2014.

E. C. Martens, A. G. Kelly, A. S. Tauzin, and H. Brumer, The devil lies in the details: how variations in polysaccharide fine-structure impact the physiology and evolution of gut microbes, J. Mol. Biol, vol.426, pp.3851-3865, 2014.

A. El-kaoutari, F. Armougom, J. I. Gordon, D. Raoult, and B. Henrissat, The abundance and variety of carbohydrate-active enzymes in the human gut microbiota, Nat. Rev. Microbiol, vol.11, pp.497-504, 2013.

H. J. Flint, E. A. Bayer, M. T. Rincon, R. Lamed, and B. A. White, Polysaccharide utilization by gut bacteria: potential for new insights from genomic analysis, Nat. Rev. Microbiol, vol.6, pp.121-131, 2008.

J. Agger, A. Vikso-nielsen, and A. S. Meyer, Enzymatic xylose release from pretreated corn bran arabinoxylan: differential effects of deacetylation and deferuloylation on insoluble and soluble substrate fractions, J. Agric. Food Chem, vol.58, pp.6141-6148, 2010.

E. Allerdings, J. Ralph, H. Steinhart, and M. Bunzel, Isolation and structural identification of complex feruloylated heteroxylan side-chains from maize bran, Phytochemistry, vol.67, pp.1276-1286, 2006.

C. T. Brett and K. Waldren, Physiology and Biochemistry of Plant Cell Walls. Topics in Plant Functional Biology, 1996.

V. Lombard, H. Golaconda-ramulu, E. Drula, P. M. Coutinho, and B. Henrissat, The carbohydrate-active enzymes database (CAZy) in 2013, Nucleic Acids Res, vol.42, pp.490-495, 2014.

J. Larsbrink, A discrete genetic locus confers xyloglucan metabolism in select human gut Bacteroidetes, Nature, vol.506, pp.498-502, 2014.

E. C. Martens, N. M. Koropatkin, T. J. Smith, and J. I. Gordon, Complex glycan catabolism by the human gut microbiota: The bacteroidetes Sus-like paradigm, J. Biol. Chem, vol.284, pp.24673-24677, 2009.

E. D. Sonnenburg, Specificity of polysaccharide use in intestinal bacteroides species determines diet-induced microbiota alterations, Cell, vol.141, pp.1241-1252, 2010.

D. Dodd, Y. H. Moon, K. Swaminathan, R. I. Mackie, and I. K. Cann, Transcriptomic analyses of xylan degradation by prevotella bryantii and insights into energy acquisition by xylanolytic bacteroidetes, J. Biol. Chem, vol.285, pp.30261-30273, 2010.

M. Zhang, Xylan utilization in human gut commensal bacteria is orchestrated by unique modular organization of polysaccharide-degrading enzymes, Proc. Natl Acad. Sci. USA, vol.111, pp.3708-3717, 2014.

H. J. Gilbert, The biochemistry and structural biology of plant cell wall deconstruction, Plant Physiol, vol.153, pp.444-455, 2010.

S. J. Charnock, Key residues in subsite F play a critical role in the activity of Pseudomonas fluorescens subspecies cellulosa xylanase A against xylooligosaccharides but not against highly polymeric substrates such as xylan, J. Biol. Chem, vol.272, pp.2942-2951, 1997.

G. Pell, The mechanisms by which family 10 glycoside hydrolases bind decorated substrates, J. Biol. Chem, vol.279, pp.9597-9605, 2004.

S. J. Charnock, The X6 "thermostabilizing" domains of xylanases are carbohydrate-binding modules: structure and biochemistry of the Clostridium thermocellum X6b domain, Biochemistry, vol.39, pp.5013-5021, 2000.

L. E. Tailford, Understanding how diverse beta-mannanases recognize heterogeneous substrates, Biochemistry, vol.48, pp.7009-7018, 2009.

F. Cuskin, Human gut Bacteroidetes can utilize yeast mannan through a selfish mechanism, Nature, vol.517, pp.165-169, 2015.

F. J. St-john, J. C. Hurlbert, J. D. Rice, J. F. Preston, and E. Pozharski, Ligand bound structures of a glycosyl hydrolase family 30 glucuronoxylan xylanohydrolase, J. Mol. Biol, vol.407, pp.92-109, 2011.

M. A. Higgins, Differential recognition and hydrolysis of host carbohydrate antigens by Streptococcus pneumoniae family 98 glycoside hydrolases, J. Biol. Chem, vol.284, pp.26161-26173, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00439983

N. M. Koropatkin, E. C. Martens, J. I. Gordon, and T. J. Smith, Starch catabolism by a prominent human gut symbiont is directed by the recognition of amylose helices, Structure, vol.16, pp.1105-1115, 2008.

E. A. Cameron, Multidomain carbohydrate-binding proteins involved in Bacteroides thetaiotaomicron starch metabolism, J. Biol. Chem, vol.287, pp.34614-34625, 2012.

G. Pell, Structural and biochemical analysis of Cellvibrio japonicus xylanase 10C: how variation in substrate-binding cleft influences the catalytic profile of family GH-10 xylanases, J. Biol. Chem, vol.279, pp.11777-11788, 2004.

D. N. Patil, Structural investigation of a novel N-acetyl glucosamine binding chi-lectin which reveals evolutionary relationship with class III chitinases, PLoS ONE, vol.8, p.63779, 2013.

M. H. Beylot, V. A. Mckie, A. G. Voragen, C. H. Doeswijk-voragen, and H. J. Gilbert, The Pseudomonas cellulosa glycoside hydrolase family 51 arabinofuranosidase exhibits wide substrate specificity, Biochem. J, vol.358, pp.607-614, 2001.

L. S. Mckee, Introducing endo-xylanase activity into an exo-acting arabinofuranosidase that targets side chains, Proc. Natl Acad. Sci. USA, vol.109, pp.6537-6542, 2012.

A. B. Boraston, D. N. Bolam, H. J. Gilbert, and G. J. Davies, Carbohydratebinding modules: fine-tuning polysaccharide recognition, Biochem. J, vol.382, pp.769-781, 2004.

A. Rogowski, Evidence that GH115 alpha-glucuronidase activity, which is required to degrade plant biomass, is dependent on conformational flexibility, J. Biol. Chem, vol.289, pp.53-64, 2014.

D. Nurizzo, T. Nagy, H. J. Gilbert, and G. J. Davies, The structural basis for catalysis and specificity of the Pseudomonas cellulosa alpha-glucuronidase, GlcA67A. Structure, vol.10, pp.547-556, 2002.

T. P. Frandsen and B. Svensson, Plant alpha-glucosidases of the glycoside hydrolase family 31. Molecular properties, substrate specificity, reaction mechanism, and comparison with family members of different origin, Plant Mol. Biol, vol.37, pp.1-13, 1998.

J. Larsbrink, Structural and enzymatic characterization of a glycoside hydrolase family 31 alpha-xylosidase from Cellvibrio japonicus involved in xyloglucan saccharification, Biochem. J, vol.436, pp.567-580, 2011.

T. Katayama, Molecular cloning and characterization of Bifidobacterium bifidum 1,2-alpha-L-fucosidase (AfcA), a novel inverting glycosidase (glycoside hydrolase family 95), J. Bacteriol, vol.186, pp.4885-4893, 2004.

M. Nagae, Structural basis of the catalytic reaction mechanism of novel 1,2-alpha-L-fucosidase from Bifidobacterium bifidum, J. Biol. Chem, vol.282, pp.18497-18509, 2007.

B. Pluvinage, J. H. Hehemann, and A. B. Boraston, Substrate recognition and hydrolysis by a family 50 exo-beta-agarase, Aga50D, from the marine bacterium Saccharophagus degradans, J. Biol. Chem, vol.288, pp.28078-28088, 2013.

G. Davies and B. Henrissat, Structures and mechanisms of glycosyl hydrolases, Structure, vol.3, pp.853-859, 1995.
URL : https://hal.archives-ouvertes.fr/hal-00310748

F. J. St-john, J. M. Gonzalez, and E. Pozharski, Consolidation of glycosyl hydrolase family 30: a dual domain 4/7 hydrolase family consisting of two structurally distinct groups, FEBS Lett, vol.584, pp.4435-4441, 2010.

H. Aspeborg, P. M. Coutinho, and Y. Wang, Brumer, 3rd H. & Henrissat, B. Evolution, substrate specificity and subfamily classification of glycoside hydrolase family 5 (GH5), BMC Evol. Biol, vol.12, p.186, 2012.

H. Pastell, P. Westermann, A. S. Meyer, P. Tuomainen, and M. Tenkanen, In vitro fermentation of arabinoxylan-derived carbohydrates by bifidobacteria and mixed fecal microbiota, J. Agric. Food Chem, vol.57, pp.8598-8606, 2009.

X. Ze, F. Le-mougen, S. H. Duncan, P. Louis, and H. J. Flint, Some are more equal than others: the role of "keystone" species in the degradation of recalcitrant substrates, Gut Microbes, vol.4, pp.236-240, 2013.

S. Rakoff-nahoum, M. J. Coyne, and L. E. Comstock, An ecological network of polysaccharide utilization among human intestinal symbionts, Curr. Biol, vol.24, pp.40-49, 2014.

T. E. Rogers, Dynamic responses of Bacteroides thetaiotaomicron during growth on glycan mixtures, Mol. Microbiol, vol.88, pp.876-890, 2013.

E. Hosseini, C. Grootaert, W. Verstraete, and T. Van-de-wiele, Propionate as a health-promoting microbial metabolite in the human gut, Nutr. Rev, vol.69, pp.245-258, 2011.

A. Wachtershauser and J. Stein, Rationale for the luminal provision of butyrate in intestinal diseases, Eur. J. Nutr, vol.39, pp.164-171, 2000.

M. P. Yadav, R. A. Moreau, A. T. Hotchkiss, and K. B. Hicks, A new corn fiber gum polysaccharide isolation process that preserves functional components, Carbohydr. Polym, vol.87, pp.1169-1175, 2012.

M. P. Yadav, D. B. Johnston, A. T. Hotchkiss, and K. B. Hicks, Corn fiber gum: A potential gum arabic replacer for beverage flavor emulsification, Food Hydrocolloid, vol.21, pp.1022-1030, 2007.

R. A. Moreau, M. J. Powell, and K. B. Hicks, Extraction and quantitative analysis of oil from commercial corn fiber, J. Agric. Food Chem, vol.44, pp.2149-2154, 1996.

M. P. Yadav, P. Cooke, D. B. Johnston, and K. B. Hicks, Importance of proteinrich components in emulsifying properties of corn fiber gum, Cereal Chem, vol.87, pp.89-94, 2010.

A. Eley, D. Greenwood, and F. O'grady, Comparative growth of Bacteroides species in various anaerobic culture media, J. Med. Microbiol, vol.19, pp.195-201, 1985.

R. Van-der-meulen, L. Makras, K. Verbrugghe, T. Adriany, and L. De-vuyst, In vitro kinetic analysis of oligofructose consumption by Bacteroides and Bifidobacterium spp. indicates different degradation mechanisms, Appl. Environ. Microbiol, vol.72, pp.1006-1012, 2006.

L. Szabo, Structure of a family 15 carbohydrate-binding module in complex with xylopentaose. Evidence that xylan binds in an approximate 3-fold helical conformation, J. Biol. Chem, vol.276, pp.49061-49065, 2001.

W. X. Kabsch, Acta. Crystallogr. D. Biol. Crystallogr, vol.66, pp.125-132, 2010.

P. R. Evans and G. N. Murshudov, How good are my data and what is the resolution?, Acta. Crystallogr. D. Biol. Crystallogr, vol.69, pp.1204-1214, 2013.

M. D. Winn, Overview of the CCP4 suite and current developments, Acta. Crystallogr. D. Biol. Crystallogr, vol.67, pp.235-242, 2011.

P. Emsley, B. Lohkamp, W. G. Scott, and K. Cowtan, Features and development of Coot, Acta. Crystallogr. D. Biol. Crystallogr, vol.66, pp.486-501, 2010.

A. A. Vagin, REFMAC5 dictionary: organization of prior chemical knowledge and guidelines for its use, Acta. Crystallogr. D. Biol. Crystallogr, vol.60, pp.2184-2195, 2004.

R. P. Joosten, K. Joosten, S. X. Cohen, G. Vriend, and A. Perrakis, Automatic rebuilding and optimization of crystallographic structures in the Protein Data Bank, Bioinformatics, vol.27, pp.3392-3398, 2011.

V. B. Chen, MolProbity: all-atom structure validation for macromolecular crystallography, Acta. Crystallogr. D. Biol. Crystallogr, vol.66, pp.12-21, 2010.

N. Terrapon, V. Lombard, H. J. Gilbert, and B. Henrissat, Automatic prediction of polysaccharide utilization loci in Bacteroidetes species, Bioinformatics, vol.31, pp.647-655, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01438994

N. Terrapon, J. Weiner, S. Grath, A. D. Moore, and E. Bornberg-bauer, Rapid similarity search of proteins using alignments of domain arrangements, Bioinformatics, vol.30, pp.274-281, 2014.

R. Raman, Advancing glycomics: implementation strategies at the consortium for functional glycomics, Glycobiology, vol.16, pp.82-90, 2006.

A. Rogowski, J. A. Briggs, J. C. Mortimer, T. Tryfona, N. Terrapon et al.,