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Swiss-Cheese operad and Drinfeld center
Najib Idrissi∗

January 10, 2017

We build a model in groupoids for the Swiss-Cheese operad, based on
parenthesized permutations and braids. We relate algebras over this model
to the classical description of algebras over the homology of the Swiss-Cheese
operad. We extend our model to a rational model for the Swiss-Cheese operad,
and we compare it to the model that we would get if the operad Swiss-Cheese
were formal.
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1 Introduction
The little disks operads Dn of Boardman–Vogt and May [BV73, May72] govern algebras
which are associative and (for n ≥ 2) commutative up to homotopy. For n = 2, one can
see that the fundamental groupoid of D2 forms an operad πD2 equivalent to an operad in
groupoids PaB, called the operad of parenthesized braids, which governs braided monoidal
categories [Fre16, §I.6]. Since the homotopy of D2 is concentrated in degrees ≤ 1, this
is enough to recover D2 up to homotopy. For n = 1, one can also easily see that πD1 is
equivalent to an operad PaP, called the operad of parenthesized permutations, which
governs monoidal categories.

The Swiss-Cheese operad SC = SC2 of Voronov [Vor99] governs the action of a D2-algebra
on a D1-algebra by a central morphism. As explained in [Hoe09], the Swiss-Cheese operad
is intimately related to the “Open-Closed Homotopy Algebras” (OCHAs) of Kajiura
and Stasheff [KS06], which are of great interest in string field theory and deformation
quantization.
We aim to study the fundamental groupoid of SC, which is still an operad. This

fundamental groupoid is again enough to recover SC up to homotopy. In a first step, we
established the following theorem:

Theorem A (See Theorem 3.10 and Corollary 4.3). The fundamental groupoid operad
πSC is equivalent to an operad PaPB whose algebras are triples (M,N, F ), where N is a
monoidal category, M is a braided monoidal category, and F : M → Z(N) is a strong
braided monoidal functor from M to the Drinfeld center Z(N) of N.

In this theorem, the monoidal categories have no unit. We also consider the unitary
version SC+ of the Swiss-Cheese operad, and we obtain (Proposition 4.8) an extension
PaPB+ of the model where the monoidal categories have a strict unit and the functor
strictly preserves the unit.
The result of Theorem A is a counterpart for operads in groupoids of statements

of [Gin15, Proposition 31] and [AFT16, Example 2.13] about the ∞-category of factor-
ization algebras on the upper half plane.

In a second step, we rely on the result of Theorem A to construct an operad rationally
equivalent (in the sense of rational homotopy theory) to the completion of the Swiss-
Cheese operad. To this end, we use Drinfeld associators, which we see as morphisms
PaB+ → ĈD+, where ĈD+ is the completed operad of chord diagrams. The existence of
such a rational Drinfeld associator is equivalent to the rational formality of D2, but the
inclusion D1 → D2 is not formal; equivalently, the constant morphism PaP+ → ĈD+ does
not factor through a Drinfeld associator. We prove the following theorem:

Theorem B (See Theorem 5.19). Given a choice of Drinfeld associator φ ∈ Ass1(Q),
there is an operad in groupoids PaPĈDφ+ built using chord diagrams, parenthesized permu-
tations, and parenthesized shuffles, which is rationally equivalent to πSC+.

The Swiss-Cheese operad is not formal [Liv15], thus it cannot be recovered from its
homology H∗(SC). We use the splitting of H∗(SC) as a product [Vor99] to build an operad
in groupoids ĈD×+ PaP, and we compare it to our rational model of SC.
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Independently of the author, Willwacher [Wil15] found a different model for the
Swiss-Cheese operad in any dimension n ≥ 2 that uses graph complexes. His model
extends Kontsevich’s [Kon99] quasi-isomorphism Graphsn

∼−→ Ω∗(Dn) from the proof of
the formality of En, whereas our model extends (after passing to classifying spaces)
Tamarkin’s [Tam03] model B Ûp̂ = B ĈD of E2. Thus, in contrast to Willwacher’s model,
our own model is related to Drinfeld’s original approach to quantization. It would be
interesting to compare the two, e.g. as was done by Ševera–Willwacher [ŠW11] for the
little 2-disks operad.
This paper is organized as follows: in Section 2, we recall some background on the

Swiss-Cheese operad and relative operads; in Section 3, we construct two algebraic models
for the Swiss-Cheese operad; in Section 4, we describe what the algebras over these
models are, using Drinfeld centers; and in Section 5, we construct a rational model in
groupoids for the Swiss-Cheese operad using chords diagrams and Drinfeld associators.

Acknowledgments I would like to thank Benoit Fresse for multiple helpful discussions
about the content of this paper.

2 Background
The little n-disks operad Dn is built out of configurations of embeddings of little n-disks
(whose images have disjoint interiors) in the unit n-disk, and operadic composition is
given by composition of such embeddings – see [BV73, May72] for precise definitions.

The Swiss-Cheese operad SC is an operad with two colors, c and o (standing for “closed”
and “open”). The space of operations SC(x1, . . . , xn; c) with a closed output is equal to
D2(n) if x1 = . . . = xn = c, and it is empty otherwise. The space SC(x1, . . . , xn; o) is the
space of configurations of embeddings of full disks (corresponding to the color c) and
half disks (corresponding to the color o), with disjoint interiors, inside the unit upper
half disk (see Figure 2.1 for an example). Composition is again given by composition of
embeddings.

1 2 3

1

2

Figure 2.1: Example of an element in SC(3, 2)

The Swiss-Cheese operad is an example of a relative operad [Vor99]: it can be seen as
an operad in the category of right modules (in the sense of [Fre09]) over another operad.
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Definition 2.1. Let P be a (symmetric, one-colored) operad. A relative operad over
P is an operad Q in the category of right modules over P. Equivalently, it is a two-colored
operad Q (where the two colors are called c and o) such that:

Q(x1, . . . , xn; c) =
{
P(n), if x1 = . . . = xn = c;
∅, otherwise.

Q(n,m) := Q(o, . . . , o︸ ︷︷ ︸
n

, c, . . . , c︸ ︷︷ ︸
m

; o) =
(
Q(n)

)
(m).

If Q is such a relative operad, we will write Qc(m) := P(m).

The Swiss-Cheese operad SC is a relative operad over the little disks operad D2. We also
consider the unitary version of the Swiss-Cheese operad SC+, which is a relative operad
over the unitary version of the little disks operad D+

2 , and which satisfies SC+(0, 0) = ∗.
Composition with the nullary elements simply forgets half disks or full disks of the
configuration.
Remark 2.2. We consider a variation of the Swiss-Cheese operad, where we allow opera-
tions with only closed inputs and an open output, whereas in Voronov’s definition these
configurations are forbidden. We write SCvor for Voronov’s version, so that SCvor(0,m) = ∅
while SC(0,m) ' D2(m) 6= ∅.

3 Permutations and braids
3.1 Colored version
We first define an operad in groupoids CoPB, the operad of colored permutations
and braids. It is an operad relative over CoB, the operad of colored braids [Fre16, §I.5].
Let D+ = {z ∈ C | =z ≥ 0, |z| ≤ 1} be the upper half disk, and let

Conf(n,m) = {(z1, . . . , zn, u1, . . . , um) ∈ D+ | =zi = 0,=uj > 0, zi 6= zj , ui 6= uj}

be the set of configurations of n points on the real interval [−1, 1] and m points in the
upper half disk.
The disk-center mapping ω : SC(n,m) ∼−→ Conf(n,m), sending each disk to its center,

is a weak equivalence [Vor99]. Let Σk be the kth symmetric group, and let Shn,m be the
set of (n,m)-shuffles:

Shn,m = {µ ∈ Σn+m | µ(1) < . . . < µ(n), µ(n+ 1) < . . . < µ(n+m)}.

For every µ ∈ Shn,m, we choose a configuration c0
µ ∈ Conf(n,m) with n “terrestrial”

points (on the real axis) and m “aerial” points (with positive imaginary part), in the
left-to-right order given by the (n,m)-shuffle µ. For example we can choose:

µ = (14|235) ∈ Sh2,3  c0
µ =

1

1 2

2

3 ∈ Conf(2, 3), (3.1)
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We consider the set:

C0(n,m) = {σ · c0
µ}σ∈Σn×Σm, µ∈Shn,m ⊂ Conf(n,m),

where Σn × Σm acts by permuting labels.
Example 3.1. For example, C0(2, 1) can be chosen to be:

C0(2, 1) =



1

1 2

1

2 1 1

1

2

2

1

1 1 2

1

2 1

1


The precise position of the points does not matter for our purposes, only their left-to-right
order.

Definition 3.2. The groupoid CoPB(n,m) is the restriction of the fundamental groupoid
of Conf(n,m) to the set C0(n,m) ⊂ Conf(n,m) (i.e. it is its full subcategory with these
objects):

CoPB(n,m) := πConf(n,m)|C0(n,m).

The set ob CoPB(n,m) = C0(n,m) is isomorphic to Shn,m × Σn × Σm. We represent
these objects by sequences of n “terrestrial” points (drawn in white and labeled by
{1, . . . , n}) and m “aerial” points (drawn in black and labeled by {1, . . . ,m}) on the
interval I = [−1, 1]; the order in which terrestrial and aerial points appear is given by
the shuffle. For example, the element in Equation (3.1) is represented by:

1 1 2 2 3
.

Morphisms between two such configurations are given by isotopy classes of bicolored
braids, where strands between terrestrial points never go behind any other strand,
including other terrestrial strands (indeed, they represent paths in the interval [−1, 1],
and points cannot move over one another in Confn([−1, 1]), nor can they go behind
the paths in the open upper half disk). See Figure 3.1 for an example of an element in
CoPB(2, 3), and Figure 3.2 for the corresponding path in Conf(2, 3).

To not confuse objects of CoPB and objects of CoB, and to be coherent with the graphical
representation of ΩΩ in Section 3.2, we draw the objects of CoB with ends in the shape of
chevrons:

1 2 ∈ ob CoB(2).
The symmetric sequence CoPB(n) = {CoPB(n,m)}m≥0 is a right module over CoB by

inserting a colored braid in a tubular neighborhood of an aerial strand. (Figure 3.3).
Similarly, the operad structure inserts a colored braid in a tubular neighborhood of a
terrestrial strand (Figure 3.4). One can easily check that this gives a relative operad over
CoB (in the same manner that one checks that CoB itself is an operad, cf. [Fre16, §I.5]).
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1 23 1 2

Figure 3.1: Element in CoPB(2, 3) Figure 3.2: Corresponding path in
Conf(2, 3)

1 23 1 2

CoPB(2, 3)

◦c1

1 2

CoB(2)

=

1 21 2 34

CoPB(2, 4)

Figure 3.3: Definition of the right CoB-module structure

1 23 1 2

CoPB(2, 3)

◦o1

1 1

CoPB(1, 1)

=

1 23 1 24

CoPB(2, 4)

Figure 3.4: Definition of the operad structure
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3.2 Magmas
Definition 3.3. Let Ω be the magma operad (as in [Fre16]), defined as the free
symmetric operad O(µc) on a single generator µc = µc(x1, x2) of arity 2 (where Σ2
acts freely on µc). Its algebras are sets endowed with a product satisfying no further
conditions.
Elements of Ω(n) are parenthesizations of a permutation of n elements, for example

(((x1x3)(x2x4))x5) ∈ Ω(5). The index c of µc is there to be coherent with the following
definition:
Definition 3.4. Let ΩΩ = O(µc, f, µo) be the free colored operad on the three generators
µc ∈ ΩΩ(c, c; c), f ∈ ΩΩ(c; o) et µo ∈ ΩΩ(o, o; o). It is a relative operad over Ω.

An algebra over ΩΩ is the data of two magmasM , N , and of a mere function f : M → N
(not necessarily preserving the product).
Lemma 3.5. The suboperad of SC generated by the following three elements is free on
those generators:

µc = 1 2 , µo = 1 2 , f = 1 .

Proof. We would like to show that the induced morphism i : ΩΩ → SC, sending the
three generators of ΩΩ to the elements depicted in the lemma, is an embedding, i.e. an
isomorphism onto its image. The image of this induced morphism is by definition the
suboperad generated by the three elements, hence the lemma.

The fact that the suboperad of D2 generated by µc is free is given by [Fre16, Proposition
I.6.2.2(a)]. Let α ∈ SC(n,m) be a configuration, as in Figure 3.5. We will build an
element of ΩΩ which is sent to α under i. This set-level retraction is not necessarily a
morphism of operads but still shows that i is injective, which will prove the lemma.

We first regroup the m full disks into connected components C1, . . . , Cr. For each Ci,
we consider the center of the middle horizontal interval (in blue on the figure), which we
project onto the real line (in red). These points, together with the centers of the n half
disks, make up a dyadic configuration on the horizontal diameter of the ambient half
disk. By [Fre16, Proposition I.6.2.2(a)], such a dyadic configuration is equivalent to an
element u ∈ Ω(n+ r) (which we see as an iterate of µc).
For each Ci (corresponding to an input of u), we apply the same proposition [Fre16,

Proposition I.6.2.2(a)] to get an element vi ∈ Ω(ki) (which we see as a iterate of µo),
and

∑
ki = m. If we plug f(vi) in the corresponding inputs of u, we get an element of

ΩΩ(n,m), and by construction this elements gets sent to α by i.

We consider the following graphical representation for elements of ΩΩ with open output,
where the generators are represented as follows:

µc  
1 2

, µo  
1 2

, f  
1

.
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1 2

3

1

Figure 3.5: Example element of ΩΩ(1, 3)

For example, this is the representation of the element of Figure 3.5:

µo(f(µc(x1, x2)), µo(f(x3), y1)) 1 2 3 1 ∈ ΩΩ(1, 3)

Each µo is represented by cutting in half the interval; f is represented by parentheses,
and µc is again represented by cutting the interval inside the parentheses in half. Closed
inputs are represented by black points, while open inputs are represented by white points.
Remark 3.6. The parentheses separating the aerial points are really necessary in the
representation. For example these are two different objects:

f(µc(x1, x2)) = 1 2 = 1 2

µo(f(x1), f(x2)) = 1 2 =
1 2

3.3 Parenthesized version
We will now define PaPB, the operad of parenthesized permutations and braids, a
relative operad over PaB. The definition of PaPB is given as a pullback of CoPB, similarly
to how PaB is a pullback of CoB.

Definition 3.7. We consider the morphism ω : ΩΩ→ ob CoPB, given on generators by:

µc 7→
1 2

, f 7→ 1
, µo 7→

1 2
,
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and we define PaPB := ω∗CoPB, the pullback of CoPB along ω. It is an operad in groupoids
such that ob PaPB = ΩΩ and

HomPaPB(n,m)(u, v) := HomCoPB(n,m)(ω(u), ω(v))

for u, v ∈ ΩΩ(n,m).

Definition 3.8. A categorical equivalence is a morphism of operads in groupoids
which is an equivalence of categories in each arity. Two operads P and Q are said to be
categorically equivalent (and we write P ' Q) if they can be connected by a zigzag of
categorical equivalences:

P ∼←− · ∼−→ . . .
∼←− · ∼−→ Q.

Recall that the fundamental groupoid functor π : (Top,×) → (Gpd,×) is monoidal,
thus the fundamental groupoid of a topological operad is an operad in groupoids.
Remark 3.9. Since each arity of the operad SC has homotopy concentrated in degrees
≤ 1, it follows that its fundamental groupoid is enough to recover the homotopy type of
the operad through the classifying space construction: SC ∼−→ BπSC.

Theorem 3.10. The operad PaPB is isomorphic to the fundamental groupoid of SC
restricted to the image of ΩΩ ↪→ SC, and we get a zigzag of categorical equivalences:

πSC ∼←− πSC|ΩΩ ∼= PaPB ∼−→ CoPB.

Proof. The proof of the first part of the proposition is a direct adaptation of the proof of
[Fre16, Proposition I.6.2.2(b)]. We note that ΩΩ ⊂ obπSC is a suboperad, thus πSC|ΩΩ
is also a suboperad of πSC. For the second part, we note that ΩΩ(n,m) meets all the
connected components of SC(n,m) ∼ Σn × D2(m), so the first inclusion is a categorical
equivalence. Since ω : ΩΩ → ob CoPB is surjective, the second morphism is also a
categorical equivalence.

4 Drinfeld center
4.1 Algebras over PaPB

Definition 4.1. Let C be a (non-unitary) monoidal category. Its suspension ΣC is a
bicategory with a single object. The Drinfeld center [Maj91, JS91] of C is the braided
monoidal category Z(C) = End(idΣC). Explicitly, it is given as follows:

• Objects are pairs (X,Ψ), where X is an object of C and Ψ : (X ⊗−)→ (−⊗X) is
a half-braiding, i.e. a natural isomorphism such that for all Y, Z ∈ C the following
diagram commutes:

X ⊗ (Y ⊗ Z) (Y ⊗ Z)⊗X

(X ⊗ Y )⊗ Z Y ⊗ (Z ⊗X)

(Y ⊗X)⊗ Z Y ⊗ (X ⊗ Z)

ΨY⊗Z

αα

ΨY ⊗1
α

1⊗ΨZ
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• Morphisms between (X,Ψ) and (Y,Ψ′) are morphisms f : X → Y of C such that,
for all Z ∈ C, the following diagram commutes

X ⊗ Z Y ⊗ Z

Z ⊗X Z ⊗ Y

f⊗1

ΨZ Ψ′Z

1⊗f

• The tensor product of two objects (X,Ψ)⊗ (X ′,Ψ′) is given by (X⊗X ′,Ψ′′), where
Ψ′′Z is defined by the following diagram (that can be rearranged as an hexagon by
inverting both vertical α’s, see Figure 4.6):

(X ⊗X ′)⊗ Y Y ⊗ (X ⊗X ′)

X ⊗ (X ′ ⊗ Y ) X ⊗ (Y ⊗X ′) (X ⊗ Y )⊗X ′ (Y ⊗X)⊗X ′

Ψ′′Y

α

1⊗Ψ′Y α−1 ΨY ⊗1

α

• The braiding (X,Ψ) ⊗ (X ′,Ψ′) → (X ′,Ψ′) ⊗ (X,Ψ) is given by ΨX′ and the
associator is given by the associator of C.

We consider the following elements of PaPB:

µc ∈ ob PaB(2) µo ∈ ob PaPB(2, 0) f ∈ ob PaPB(0, 1) τ ∈ PaB(2)

1 2 1 2 1

1 2

p ∈ PaPB(0, 2) ψ ∈ PaPB(1, 1) αc ∈ PaB(3) αo ∈ PaPB(3, 0)
1 2 1 2 1 2 3 1 2 3

Theorem 4.2. Let P be a {c, o}-colored operad1 in the category of categories, let mc ∈
ob Pc(2), mo ∈ ob P(2, 0), F ∈ ob P(0, 1) be objects, and let

ac : mc(mc(x1, x2), x3)→ mc(x1,mc(x2, x3)), π : mo(f(x1), f(x2))→ f(mc(x1, x2)),
t : mc(x1, x2)→ mc(x2, x1), Ψ : mo(f(x1), y1)→ mo(y1, f(x1)),
ao : mo(mo(y1, y2), y3)→ mo(y1,mo(y2, y3)),

1The operad will not necessarily be a relative operad, but we will still use the notation P(n, m) =
P(cm, on; o) and Pc(m) = P(cm; c).
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be isomorphisms. Then there exists a morphism θ : PaPB→ P such that

θ(µc) = mc, θ(µo) = mo, θ(f) = F, θ(αc) = ac,

θ(αo) = ao, θ(τ) = t, θ(p) = π, θ(ψ) = Ψ,

(in which case this morphism is unique) if, and only if, the coherence diagrams of
Figures 4.1 to 4.6 commute.

m(m(m(x1, x2), x3), x4)

m(m(x1,m(x2, x3)), x4)

m(m(x1, x2),m(x3, x4))

m(x1,m(m(x2, x3), x4))

m(x1,m(x2,m(x3, x4)))

m(a,id)
a

a

a

m(id,a)

Figure 4.1: Pentagon for (m, a) = (mc, ac) and (mo, ao)

mc(mc(x1, x2), x3)

mc(mc(x2, x1), x3) mc(x1,mc(x2, x3))

mc(x2,mc(x1, x3)) mc(mc(x2, x3), x1)

mc(x2,mc(x3, x1))

mc(t,id) ac

ac t

mc(id,t)
ac

mc(x1,mc(x2, x3))

mc(x1,mc(x3, x2)) mc(mc(x1, x2), x3)

mc(mc(x1, x3), x2) mc(x3,mc(x1, x2))

mc(mc(x3, x1), x2)

mc(id,t)
a−1
c

a−1
c t

mc(t,id) a−1
c

Figure 4.2: Hexagons

Recall that an algebra over a colored operad Q is a morphism Q→ End(A,B), where

Endc(A,B)(n,m) = hom(B⊗n ⊗A⊗m, A), Endo(A,B)(n,m) = hom(B⊗n ⊗A⊗m, B).

Given a morphism PaPB→ End(M,N) with the names as in Theorem 4.2 for the images
of the generators, the previous coherence diagrams are exactly the diagrams encoding
the fact that (mc, ac, tc) is a braided monoidal structure on M, (mo, ao) is a monoidal
structure on N, and F is a braided monoidal functor to the Drinfeld center. We thus get:

Corollary 4.3. An algebra over PaPB is the data of:

11



mo(mo(f(x1), f(x2)), f(x3))

mo(f(mc(x1, x2)), f(x3)) mo(f(x1),mo(f(x2), f(x3)))

f(mc(mc(x1, x2), x3)) mo(f(x1), f(mc(x2, x3)))

f(mc(x1,mc(x2, x3)))

mo(π,id) ac

π mo(id,π)

f(ac) π

Figure 4.3: F is monoidal

mo(mo(f(x1), x2), x3)

mo(mo(x2, f(x1)), x3) mo(f(x1),mo(x2, x3))

mo(x2,mo(f(x1), x3)) mo(mo(x2, x3), f(x1))

mo(x2,mo(x3, f(x1)))

mo(Ψ,id) ao

ao Ψ

mo(id,Ψ) ao

Figure 4.4: Ψ is a half-braiding

mo(f(x1), f(x2)) mo(f(x2), f(x1))

f(mc(x1, x2)) f(mc(x2, x1))

Ψ

π π

f(t)

Figure 4.5: F is braided

mo(f(x1),mo(f(x2), x3))

mo(f(x1),mo(x3, f(x2))) mo(mo(f(x1), f(x2)), x3)

mo(f(mc(x1, x2)), x3)

mo(x3, f(mc(x1, x2)))

mo(mo(f(x1), x3), f(x2)) mo(x3,mo(f(x1), f(x2)))

mo(mo(x3, f(x1)), f(x2))

m(id,Ψ) a−1
o

a−1
o

mo(π,id)

Ψ

mo(id,π−1)

mo(Ψ,id) a−1
o

Figure 4.6: F is monoidal w.r.t. half-braidings
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• A (non-unitary) monoidal category (N,⊗);

• A (non-unitary) braided monoidal category (M,⊗, τ);

• A strong braided monoidal functor F : M→ Z(N).

Definition 4.4. Between two objects x, y ∈ PaPB(n,m) such that the terrestrial (resp.
aerial) points of x are numbered in the same order as the terrestrial (resp. aerial) points
y, there is a unique morphism µ ∈ homPaPB(n,m)(x, y), called a shuffle-type morphism,
such that the aerial strands do not cross each other (see Figure 4.7).

Figure 4.7: Example of shuffle-type morphism

Proof of Theorem 4.2. It is clear (a simple exercise in drawing braid diagrams) that the
morphisms of PaPB satisfy the corresponding relations, thus we get the “only if” part of
the theorem.

Let Y ∈ homPaPB(n,m)(x1, x2) be a morphism. We want to decompose it as in Figure 4.8:

• We first arbitrarily choose two objects x′1, x′2 which are in the image of PaP(n)×
PaB(m) by µo(−, f(−)). In other words, x′i = µo(xoi , f(xci)) is the concatenation of
an object xoi ∈ PaP(n) = PaPB(n, 0) and of the image by f of an object xci ∈ PaB(m).
We also require that the aerial points (resp. the terrestrial points) of x′i are numbered
in the same order as those of xi.

• We take the unique shuffle-type morphism µ : x1 → x′1.

• We build a morphism X = µo(Xo, f(Xc)) : x′1 → x′2. It is the concatenation of
Xo ∈ PaP(n), and Xc ∈ PaB(m). Explicitly, Xo is the colored permutation where
all the aerial strands of ω∗(Y ) have been forgotten, and Xc is the colored braid
where all the terrestrial strands of ω∗(Y ) have been forgotten.

• Finally, we take the unique shuffle-type morphism µ′ : x′2 → x2.

By construction, Y = µ′◦X◦µ. Besides, this decomposition is unique given the specified
intermediary objects x′1, x′2, so it suffices to show that θ can be defined unequivocally on
each part, that it doesn’t depend on the choice of x′1 and x′2, and that it is compatible
with operadic composition.
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=

x1

x′1

x′2

x2

µ

µ′

µo(X′,f(X′′))

Figure 4.8: Decomposition in PaPB(2, 3)

The shuffle-type morphisms are all in the suboperad of PaPB generated by α±1
o , p±1,

ψ±1: first one can cut the objects of PaB in the smallest possible pieces with p−1, the
α±1
o and ψ±1 can be used to bring all the aerial points at their positions, and finally p

is used to glue back all the aerial pieces. By the theorems I.6.1.7 and I.6.2.4 of [Fre16],
the two morphisms Xo ∈ PaP(n) and Xc ∈ PaB(m) are respectively in the suboperads
generated by µ±1

o , α±1
o and by µ±1

c , α±1
c , τ±1. It follows that every morphism Y of PaPB

is in the suboperad generated by all these elements, thus the morphism θ : PaPB→ P, if
it exists, is unique.
By the same theorems of [Fre16], the pentagons (Figure 4.1) and the hexagons (Fig-

ure 4.2) show that the morphism θ can be defined with no ambiguity on the two pieces
Xc and Xo. The possible choices for x′1 and x′2 are all related by associators, so the
pentagons (Figure 4.1) and MacLane’s coherence theorem [ML98] for monoidal categories
show that the image does not depend on the choice of x′1 and x′2.
Let µ ∈ PaPB(n,m) be a shuffle-type morphism; we saw that it could be decomposed

in terms of p±1, ψ±1 and α±1. The coherence theorem of MacLane [ML98] and the
coherence theorem of Epstein [Eps66] on monoidal functors (non-symmetric version) show
that, thanks to the pentagons (Figure 4.1) and the fact that F is monoidal (Figure 4.3),
the image θ(µ) neither depends on the choice of associator decomposition, nor on the
choice of decomposition of p±1, nor on the way the ψ±1 are gathered in the parenthesizing.
It thus suffices to define θ on the underlying morphism of CoPB.
This last morphism is actually an element of the braid group Bn+m (of course not

all the elements of the braid group can given a morphism: terrestrial strands cannot
cross any other strand). By seeing ψ as a braiding, and by interpreting the relations of
Figures 4.4 and 4.6 as two hexagon relations, we can adapt the proof of the step 2 of
[Fre16, Theorem 6.2.4] to see that the image by θ of this braid does not depend on its
representation. Finally, θ is well-defined on every morphism. It remains to show that it
respects operad composition.

By adapting the fourth step of the proof of the same theorem of [Fre16] and by using
the relation of Figure 4.5, we can see that θ respects operadic composition. Indeed,
shuffle-type morphism are sent by construction on elements decomposed in terms of
associators, their inverses, p±1 and ψ±1, while for example ψ ◦o1 idf = f(τ); but thanks
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to the relation of Figure 4.5, both elements are equal in the image.

By dropping all mentions of parenthesizing, we get:

Proposition 4.5. An algebra over CoPB consists of a strict (non-unitary) monoidal
category N, a strict braided (non-unitary) monoidal category M, and of a strict braided
monoidal functor F : M→ Z(N).

4.2 Unitary versions
We are going to define unitary versions CoPB+ and PaPB+ of the operads we are studying,
satisfying CoPB+(0, 0) = PaPB+(0, 0) = {∗o}. For consistency we will denote ∗c the
element of the one-colored unitary operads we will consider (CoB+, PaB+, etc.).

Definition 4.6. Let CoPB+ be the relative operad over CoB+, defined as a unitary exten-
sion of CoPB+. Composition with ∗c ∈ CoB+(0) forgets aerial strands, while composition
with ∗o forgets terrestrial strands.

Definition 4.7. Let ΩΩ+ be the relative operad over Ω+, a unitary extension of ΩΩ.
Composition with nullary elements is given on generators by (it is not necessary to specify
f(∗o) as ΩΩ+(0, 0) is a singleton anyway):

µc(∗c, idc) = µc(idc, ∗c) = idc, µo(∗o, ido) = µo(ido, ∗o) = ido .

Let also PaPB+ = ω∗+CoPB+ be the pullback of CoPB+ along ω+, where ω+ is defined
as the ω of Definition 3.7 (it is compatible with the unitary extensions).

Proposition 4.8. There is a zigzag of categorical equivalences, where ΩΩ′+ ⊂ SC+ is the
sub–operad generated by mc, mo, f and the nullary elements:

πSC+
∼←− (πSC+)|ΩΩ′+

∼−→ PaPB+ := ω∗+CoPB+
∼−→ CoPB+,

Remark 4.9. In ΩΩ′+, we have for example:

µo(ido, ∗o) = 1 6= 1 = ido,

but µo(∗o, ∗o) = ∗o. In other words, ∗o (and similarly ∗c for µc) is not a strict unit for ∗o,
but is still idempotent.

Proof. There is an evident morphism ω′+ : ΩΩ′+ → ΩΩ+ sending generators on generators,
and we check directly that (πSC+)|ΩΩ′+ is identified with the pullback ω′+PaPB′. Since ω+

and ω′+ are both surjective, we obtain the two categorical equivalences (πSC+)|ΩΩ′+
∼−→

PaPB+
∼−→ CoPB+. And since ΩΩ′+ meets all connected components of SC+ we also have

that the inclusion (πSC+)|ΩΩ′+ ↪→ πSC+ is a categorical equivalence.
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The proof of the following proposition is a direct unitary extension of the proof of
Corollary 4.3 (one also needs to extend the definition of the Drinfeld center to unitary
monoidal categories, cf. the given references):

Proposition 4.10. An algebra over PaPB+ is given by:

• a monoidal category (N,⊗,1N) with a strict unit;

• a braided monoidal category (M,⊗,1M, τ) with a strict unit;

• a monoidal functor F : M→ Z(N) satisfying F (1M) = 1N.

An algebra over CoPB+ is given by the same data, but where the two tensors products
are strictly associative, strictly braided for the second, and the functor is strict braided
monoidal.

5 Chord diagrams
Let P an operad in groupoids. Its completion P̂ is defined by the Malcev completion arity
by arity:

P̂(r) = GQ̂[P(r)],

and it is an operad in complete groupoids [Fre16, §I.9]. Here, Q[G] is the Hopf groupoid
of the groupoid G; it has the same objects as G, and homQ[G](x, y) = Q[homG(x, y)]
is the free Q-module on the hom-set, equipped with a coalgebra structure where every
generator is grouplike. It is completed at the augmentation ideal, and then the functor
G extracts the grouplike elements to define an operad in complete groupoids. This
completion is equipped with a canonical completion morphism P→ P̂.

Definition 5.1. A morphism of operads in groupoids P → Q is called a rational
categorical equivalence (denoted P

∼Q−−→ Q) if the induced morphism P̂ → Q̂ is a
categorical equivalence. We write P ∼Q Q if P and Q can be connected by a zigzag of
rational categorical equivalences.

This definition is motivated by the following remark: if A is an abelian group, then
Â = A⊗ZQ. Examples of rational categorical equivalences include categorical equivalences
and the canonical completion morphisms P→ P̂. We refer to [Fre16, §I.9] for more details.

5.1 Drinfeld associators and chord diagrams
Definition 5.2. The Drinfeld–Kohno operad p is an operad in Lie algebras,2 where in
each arity we have the presentation by generators and relations:

p(r) = Lie(tij)1≤i 6=j≤r
/ (

[tij , tkl], [tik, tij + tjk]
)
,

and operadic composition is given by explicit formulas [Fre16, §I.10.2].
2The monoidal product in the category of Lie algebras is the direct sum.
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The universal enveloping algebra functor U being monoidal, Up is an operad in
associative algebras. The algebra Up(r) is generated by chord diagrams with r strands,
and composition is given by insertion of a diagram (cf. ibid. for precise definitions). We
can complete p with respect to the weight grading (the weight of tij is defined to be 1)
to get an operad p̂ in complete Lie algebras, and we can consider its completed universal
enveloping algebra:

Definition 5.3. The operad of completed chord diagrams ĈD is an operad in
groupoids given by ob ĈD(r) = ∗ and HomĈD(r)(∗, ∗) = GÛp̂(r). Operadic composition is
induced by the one of p.

These operads have unitary extensions: restriction operations forget strands of the
chord diagrams, and if a chord was attached to the strand, the diagram is sent to 0. We
thus get unitary operads p+, p̂+, and ĈD+.

Definition 5.4. A Drinfeld associator (with parameter µ ∈ Q×) is a morphism
φ : PaB+ → ĈD+ of operads that sends the braiding τ ∈ PaB+(2) to eµt12/2 ∈ ĈD+(2). We
let Assµ(Q) be the set of such associators.

If φ ∈ Assµ(Q), then the formal series in two variables

Φ(t12, t13) := φ(αc) ∈ ĈD+(3) ∼= QJt12, t13K

is a Drinfeld associator in the usual sense, satisfying the usual equations (pentagon,
hexagon), and vice versa. A Drinfeld associator φ extends to a categorical equivalence
φ : P̂aB+

∼−→ ĈD+, i.e. φ is a rational equivalence. The set Assµ(Q) is a torsor under the
action of the Grothendieck–Teichmüller group GT 1(Q), the group of automorphisms of
P̂aB+ fixing µc and τ . A theorem of Drinfeld [Dri90] states that the set of associators
Ass1(Q) is nonempty.
We can also consider the operad P̂aCD+, which is the pullback of ĈD+ along the

terminal morphism Ω→ ob ĈD+ = ∗. It is used to define the pro-unipotent version of the
Grothendieck–Teichmüller group GRT 1(Q), under which Assµ(Q) is a pro-torsor. We
recall the following statement [Fre16], which is actually a general fact about pullback
along morphisms from a free operad: each morphism φ : P̂aB+ → ĈD+ admits a unique
lifting

P̂aCD+

P̂aB+ ĈD+

φ̃+

φ

which is given by the identity on the level of objects. If the morphism φ came from a
Drinfeld associator, then this defines an isomorphism of operads in groupoids:

φ̃+ : P̂aB+
∼=−→ P̂aCD+.
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5.2 Shuffle of operads
By analogy with the decomposition of Figure 4.8, we define a new rational model in
groupoids for πSC+ that involves the operad of chord diagrams.

5.2.1 Other description of CoPB+

Definition 5.5. Let Π be the permutation operad: Π(n) = Σn, and operadic composition
is given by bloc composition of permutations. We also denote Π the same operad seen as
an operad in discrete groupoids. We also let Π+ be its obvious unitary extension.

The following operad is meant to represent the shuffle-type morphisms of Definition 4.4:

Definition 5.6. We define the relative (unitary) operad in groupoid Sh+ over Π+. The
set of objects of Sh+(n,m) is Shn,m × Σn × Σm, the same as CoPB+ (with the same
graphical representation). Operadic composition on the object level is the same as that
of CoPB+. On the level of morphisms:

HomSh+(n,m)((µ, σ, σ′), (ν, τ, τ ′)) =
{
∗ σ = τ, σ′ = τ ′,

∅ otherwise,

and we check that this gives a well-defined relative operad over Π+ (i.e. there are no
maps ∗ → ∅ to define, and all the maps · → ∗ are terminal maps).

Graphically, we simply represent morphisms of Sh+ by an arrow between two bicolored
configurations on the interval. Such an arrow exists iff the terrestrial (resp. aerial) points
of the first configuration are in the same order as the terrestrial (resp. aerial) points of
the second configuration, so we do not write the labels for the second configuration:

2 1 1 3 2

Remark 5.7. The symmetric groups Σn and Σm act on the left and on the right on
Sh+(n,m) (by multiplication on respective factors).

Lemma 5.8. The groupoid CoPB+(n,m) is isomorphic to (CoP+(n)×CoB+(m))×Σn×Σm

Sh+(n,m).

Proof. We define:

ζ : (CoP+(n)× CoB+(m))×Σn×Σm Sh+(n,m)→ CoPB+(n,m)

by a graphical calculus:
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× ×

2 1 31 2 1 2 3 1 2

2 2 3 1 1

Concretely, on objects, we define:

ζ : ob
(
CoP+(n)× CoB+(m)×Σn×Σm Sh+(n,m)

)
=−→ (Σn × Σm)×Σn×Σm ob CoPB(n,m)
∼=−→ ob CoPB(n,m).

On morphisms, ζ[u, x, µ] (for u ∈ CoP+(n), x ∈ CoB+(m), µ ∈ Sh+(n,m)) is the
composition of the unique shuffle type morphism that brings all terrestrial points to
the left, then the concatenation of u and x, then the unique shuffle-type morphism that
brings ground point to their places. We thus get a well-defined (up to isotopy) braid,
and it is easy to see that this gives a bijection on morphisms.

On can thus transport the operadic composition, which will serve as inspiration for
Equation (5.1) to come.

5.2.2 A variation on PaPB+

We first define a new operad PaPB′+, a minor variation on PaPB+.

Definition 5.9. Let ω+ : ΩΩ+ → ob CoPB+ ∼= ob Sh+ be the morphism of Definition 3.7.
We define PaSh+ to be the pullback of Sh+ along ω.

Remark 5.10. There is a function of sets U : ob PaPB+(0,m)→ ob PaB+(m) that forgets
the second level of parenthesizing.

Definition 5.11. Let

PaPB′+(n,m) ⊂ (PaP+(n)× PaB+(m))×Σn×Σm PaSh+(n,m),

be the full subgroupoid whose objects [u, x, µ] such that there exists a permutation
τ ∈ Σm satisfying U(µ(∗o, . . . , ∗o)) = x · τ (this does not depend on the choice of a
representative for the coinvariants).
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Example 5.12. For example,

[ 1 × 2 1 3 × 1 1 2 3 ]
∈ ob PaPB′(1, 3), but[

∗o ×
2 1 3 × 1 2 3 ] 6∈ ob PaPB′(0, 3).

Lemma 5.13. The symmetric sequence PaPB′+(n) is a right module over PaB+, given by:

◦ci : PaPB′+(n,m)× PaB+(k)→ PaPB′+(n,m+ k − 1)
[u, x, µ]× y 7→ [u, x ◦i y, µ ◦ci 1Σk

],

where 1Σk
is seen as a morphism in ω∗Π+(k) between the source of y and the target of y.

Proof. The operad PaB+ is a right module over itself, and PaSh+(n) is a right module
over Ω+. One can then directly check that the above formula defines a right module
structure over PaB+.

Definition 5.14. Let P be an operad in some symmetric monoidal category. The shifted
operad P[·] [Fre09, §10.1] is an operad in right modules over P (i.e. an operad relative
over P), given by P[n](m) = P(n+m), and the structure maps are induced by the operad
structure of P (cf. ibid. for explicit formulas).

To define the operad structure of PaPB′+, we first define a morphism of colored collections
ρ : PaPB′+ → PaB[·], that will be similar to the definition of ζ 5.8. It is again defined
in a graphical way, see Figure 5.1 (the starred numbers correspond to shifted entries).
The precise definition involves the inclusion ι : PaP+ ↪→ PaB+, concatenation, the
functor PaSh+ → PaB+ (picking the unique shuffle-type morphism when it exists),
η : PaP+ → PaP+[·] (where η : PaP+(n) ∼= PaP+[n](0)), as well as U on objects – see
Equation (5.2).

× ×

1 2 1 2 3 1 2 3 1 2

1 2 3 1∗ 2∗

Figure 5.1: Definition of ρ : PaPB′+(2, 3)→ PaB+[2](3)

The operad structure is then defined by (where σ ∈ Σm is such that U(µ(∗o, . . . , ∗o)) =

20



x · σ, and where yi is seen as an element of PaPB′+[0](li)):

γ : PaPB′+(r, s)× PaPB′+(k1, l1)× . . .× PaPB′+(kr, lr)→ PaPB′+(
∑

ki, s+
∑

li)

[u, x, µ]× [v1, y1, σ1]× . . .× [vr, yr, σr]
7→
[
u(v1, . . . , vr), σ−1 · ρ[u, x, µ]︸ ︷︷ ︸

PaPB′+[r](s)

(y1, . . . , yr), µ(σ1, . . . , σr)
]

(5.1)

and where the identity of the operad is id =
[ 1 × ∗c ×

1 ]
∈ PaPB′+(1, 0).

Proposition 5.15. Given this operadic composition, this identity and this right PaB+-
module structure, PaPB′+ is an operad relative over PaB+.

Proof. The σ−1 in the formula ensures that this γ is well-defined (it does not depend
on the representative in the coinvariants). The fact that γ is equivariant is a direct
consequence of the fact that the operad structures of PaP+, PaSh+ and PaB+[·] are
equivariant.
Let [u, x, µ] ∈ PaPB′+(n,m). The identity id([u, x, µ]) = [u, x, µ] is immediate by

definition, and from the condition on the objects of PaPB′+, one can also show the identity
[u, x, µ](id, . . . , id) = [u, x, µ].
To see that γ is a morphism of right PaB+-modules, it is enough to have the identity

ρ[u, x, µ](y1, . . . , yj ◦i z, . . . , yr) = ρ[u, x, µ](y1, . . . , yr) ◦l1+...+lj−1+i z for z ∈ PaB+(m);
but since PaB+[·] is an operad, this identity is satisfied.
Finally, associativity of γ follows from the condition on objects (to show that ob γ

is associative), and from the fact that PaB+[·] is an operad (to show associativity on
morphisms).

Proposition 5.16. There exists a categorical equivalence PaPB′+
∼−→ CoPB+.

Proof. This equivalence is given in arity (n,m) by the restriction to PaPB′+(n,m) of the
composite:

(PaP+(n)× PaB+(m))×Σn×Σm PaSh+(n,m)
→ (CoP+(n)× CoB+(m))×Σn×Σm Sh+(n,m)
∼=−→
ζ

CoPB+(n,m)

By construction (the operad structure of PaPB′+ is directly mimicked from the operad
structure of CoPB+), this yields a morphism of operads PaPB′+ → CoPB+. Since PaP+ →
CoP+, PaB+ → CoB+ and PaSh+ → Sh+ are categorical, their product is too, thus the
above morphism yields a categorical equivalence.

5.2.3 An operad defined from chord diagrams

We choose a Drinfeld associator φ : PaB+ → ĈD+; let φ̃+ : PaB+ → P̂aCD+ be its unique
lifting. Similarly to the definition of PaPB′+, we will define a relative operad PaPĈD

φ
+
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over P̂aCD+, that will combine parenthesized shuffles, parenthesized permutations and
parenthesized chords diagrams.

Definition 5.17. Let

PaPĈD
φ
+(n,m) ⊂ (PaP+(n)× P̂aCD+(m))×Σn×Σm PaSh+(n,m)

be the full subgroupoid whose objects are classes [u, α, µ] such that there exists σ ∈ Σm

satisfying U(µ(∗o, . . . , ∗o)) = α · σ.

Remark 5.18. The objects of PaPĈDφ+ are the same as the objects of PaPB′+.

We also define a morphism ρφ : PaPĈDφ+ → P̂aCD+[·]. Its definition is similar to that
of Figure 5.1, but one cannot directly use graphical calculus anymore. In the picture,
concatenation in PaB+ and PaB+[·] corresponded to mc. Pre- and post-composition by
shuffles in PaPB′+ came from a morphism of operads σ : PaSh+ → PaB+[·]. We have
obσ = id, and σ(µ → µ′), denoted σµµ′ to simplify, is the unique morphism PaB[·] of
shuffle-type between the corresponding objects.

We also recall the canonical morphism η : P→ P[·], given in arity m by P(m) ∼= P[m](0).
Finally, we could define ρ by the following formula (where x ∈ PaB+(m) is identified with
x ∈ PaB+[0](m)):

ρ[u, x, µ] = σ
mc(ι(η(tgt(u))),tgt(x))
tgt(µ) ◦mc(ι(η(u)), x) ◦ σsrc(µ)

mc(ι(η(src(u))),src(x)). (5.2)

By analogy, we define:

ρφ : PaPĈDφ+(n,m)→ P̂aCD+[n](m)

To simplify, we let φ̃+(mc) = m̃c, φ̃+ ◦ σ = σ̃, φ̃+ιη = ι̃, and we again identify
α ∈ P̂aCD+(m) with α ∈ P̂aCD+[0](m). Then ρφ is given by:

[u, α, µ] 7→ σ̃
m̃c(ι̃(tgt(u)),tgt(α))
tgt(µ) ◦ m̃c(ι̃(u), α) ◦ φ̃+

(
σ̃

src(µ)
m̃c(ι̃(src(u)),src(α))

)
.

Graphically, ρφ looks like Figure 5.2, where the gray boxes represent applications of the
associator. We then define an operadic composition in a similar manner to Equation (5.1),
replacing ρ by ρφ. We also define a right P̂aCD+-module similar to that of PaPB′+.

Theorem 5.19. The data PaPĈD
φ
+, equipped with these structures, is a relative operad

over P̂aCD+, and the morphism PaPB′+ → PaPĈD
φ
+ induced by φ̃+ is a rational categorical

equivalence of operads. There is thus a zigzag:

πSC+
∼←− (πSC+)ΩΩ′+

∼−→ PaPB+
∼−→ CoPB+

∼←− PaPB′+
∼Q−−→ PaPĈD

φ
+.

Proof. The proof that PaPĈD
φ
+ is a relative operad is identical to the proof of Propo-

sition 5.15, and the fact that the morphism induced by φ̃+ is a morphism of operads
follows by a direct inspection of the definitions.
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φ

φ

2 1 3 1∗ 2∗

φ

Figure 5.2: Graphical representation of ρφ

The morphism φ̃+ : PaB+ → P̂aCD+ is not a categorical equivalence, but it factors as:

PaB+ P̂aCD+

P̂aB+

φ̃+

∼Q ∼=

where the dashed morphism P̂aB+ → P̂aCD+ is an isomorphism of operads in groupoids. It
follows that φ̃+ is a rational equivalence of operads in groupoids, thus PaPB′+ → PaPĈD

φ
+

is also a rational categorical equivalence. By combining this fact with Propositions 4.8
and 5.16, we finally get the zigzag of the theorem.

5.3 Non-formality
A theorem of Livernet [Liv15, Theorem 3.1] states that the Swiss-Cheese operad is not
formal: its homology H∗(SC) is not equivalent to its operad of chains C∗(SC). We give
an interpretation of this fact here.
We consider a stronger version of formality, which involves the models of rational

homotopy theory of Sullivan (see [Fre16, §II] for the applications to operads). Let

〈−〉L : CDGAop
+ → sSet

be the derived Sullivan realization functor,3 that uses commutative dg-algebras as rational
models for spaces.

3The underived realization functor maps a commutative, unitary differential graded algebra A to the
simplicial set 〈A〉 = homCDGA+ (A, Ω∗P L(∆•)). The derived version takes a cofibrant replacement first.
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We rely on cohomological models to study rational homotopy theory, so we consider
dual structures of our objects and we use cooperads rather than operads. For example, the
cooperad Com∗ governing cocommutative coalgebras is dual to the operad Com governing
commutative algebras.

To encode the rational homotopy-theoretic information, we add commutative structures
to our objects, and we consider Hopf cooperads, i.e. cooperads in the category of
commutative algebras. The Sullivan realization of a Hopf cooperad is a simplicial operad.

5.3.1 Splitting of H∗(SC) as a Voronov product

A theorem of Cohen [Coh76] describes the homology of the little disks operads en :=
H∗(Dn). In low dimensions, e1 ∼= Ass is the operad governing associative algebras, while
e2 ∼= Ger is the operad governing Gerstenhaber algebras. These are Hopf operads (i.e.
operads in the category of cocommutative coalgebras): the coproduct of the product
of either Ass or Ger is ∆(µ) = µ ⊗ µ, while the coproduct of the bracket of Ger is
∆(λ) = µ⊗ λ+ λ⊗ µ. Their duals Ass∗ and Ger∗ are Hopf cooperads.

The homology of the Swiss-Cheese operad sc := H∗(SC) governs the action of a
Gerstenhaber algebra on an associative algebra. A theorem of Voronov [Vor99, Theorem
3.3] (see also [HL12, Theorem 6.1.1] for this particular variant) states that an algebra over
H∗(SC) is a triple (B,A, f) where B is a Gerstenhaber algebra, A is an associative algebra,
and f : B → A is a central morphism of associative algebras, which thus makes A into
an associative algebra over the commutative algebra B. Let us note that Corollary 4.3 is
a categorical analogue of Voronov’s theorem, the Drinfeld center of a monoidal category
replacing the center of an associative algebra.
This theorem can be interpreted in the following way.

Definition 5.20. Given two operads P and Q and a morphism Com → P, one can
define the Voronov product P ⊗ Q [Vor99]. It is a relative operad over P, defined by
(P⊗ Q)(n,m) = P(m)⊗ Q(n). Insertion of a closed-output operation:

◦ci :
(
P(m)⊗ Q(n)

)
⊗ P(m′)→ P(m+m′ − 1)⊗ Q(n)

uses the operad structure of P, while insertion of an open-output operation:

◦oj :
(
P(m)⊗ Q(n)

)
⊗
(
P(m′)⊗ Q(n′)

)
→ P(m+m′)⊗ Q(n+ n′ − 1)

uses the operad structure of Q and the commutative product Com→ P.

Algebras over P⊗ Q are triplets (B,A, ν) where B is a P-algebra, A is a Q-algebra, and
ν : B ⊗A→ A is an action that makes A into a Q-algebra over the commutative algebra
B (cf. ibid. for the definition).
Remark 5.21. An Eckmann–Hilton-type argument shows that the algebra structure of P
defined by the morphism Com→ P has to be commutative for the composition product to
even be associative.
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Voronov’s version of the Swiss-Cheese SCvor operad then satisfies:

scvor := H∗(SCvor) ∼= Ger⊗ Ass.

This isomorphism is moreover an isomorphism of Hopf operads.
In the case of sc = H∗(SC), one has to use the unital structures of Ass and Ger. We

have (and this is still an isomorphism of Hopf operads):

sc+ := H∗(SC+) ∼= Ger+ ⊗ Ass+.

If we remove the components with zero closed inputs and zero open inputs, we
then get sc = H∗(SC), a relative operad over Ger whose algebras are described above
Definition 5.20. But one should not forget that:

sc(0,m) = Ger+(m)⊗ Ass+(0) = Ger(m)
6= scvor(0,m) = Ger(m)⊗ Ass(0) = 0.

Indeed, we still keep the components that have a nonzero number of total inputs. We
have in particular that sc(0, 1) ∼= Ger(1) = Q is spanned by the morphism between the
Gerstenhaber algebra to the associative algebra. We use the notation:

sc = Ger+ ⊗0 Ass+

to express the fact that sc is obtained as the Voronov product Ger+ ⊗ Ass+ from which
we remove the components with zero closed inputs and zero open inputs.

5.3.2 Comparison

By theorems of Kontsevich [Kon99] (k = R, n ≥ 2) and Tamarkin [Tam03] (k = Q, n = 2),
the little disks operads are formal: C∗(D+

n ) ' H∗(D+
n ). Fresse and Willwacher [FW15]

give another proof of this result (k = Q, n ≥ 3), and show that it can be enhanced
in the rational homotopy context: there is a rational equivalence of simplicial operads
Dn 'Q 〈H∗(Dn)〉L, which implies the rational formality of Dn. In low dimensions, we thus
have D1 'Q 〈Ass∗〉L (easy computation). Tamarkin proves that, from the existence of
rational Drinfeld associators, it follows that D2 'Q 〈Ger∗〉L. These rational equivalences
are also compatible with the unital structures.
Given two (Hopf) cooperads Pc, Qc, and a morphism Pc → Com∗, one can define the

Voronov product Pc ⊗ Qc, similarly to Definition 5.20. This is a relative (Hopf) cooperad
under Pc. It is defined by formulas that are formally dual to the ones defining P⊗ Q. If
these cooperads admit counital extensions, we can similarly define P+

c ⊗0 Q+
c .

The inclusion D+
1 ↪→ D+

2 induces in cohomology a morphism of Hopf cooperads Ger∗+ →
Ass∗+. This morphism factors through a morphism Ger∗+ → Com∗+ (the coproduct of a
Gerstenhaber coalgebra is cocommutative). We then get an isomorphism:

sc∗ = H∗(SC) ∼= (Ger+ ⊗0 Ass+)∗ ∼= Ger∗+ ⊗0 Ass∗+.
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The morphism Ger∗+ → Com∗+ induces a morphism of simplicial operads Com+ ∼=
〈Com∗+〉L → 〈Ger∗+〉L. Since the realization functor is monoidal, we get:4

〈H∗(SC)〉L ' 〈Ger∗+〉L ×0 〈Ass∗+〉L.

It is known that PaP ' πD1 and ĈD 'Q πD2 [Fre16, §5,§10]. There is an obvious
morphism Com → ĈD sending the generator to the empty chord diagram (see [FW15]),
which we can use to build the Voronov product of the operads in groupoids ĈD and PaP.
Since the fundamental groupoid functor is monoidal too, we finally have:

π〈sc∗〉L ' π〈Ger∗+〉L × π〈Ass∗+〉L 'Q ĈD+ ×0 PaP+.

The operad SC is not formal [Liv15], therefore πSC is not equivalent to π〈sc∗〉L 'Q

PaP+ ×̄ ĈD+. Thus, our construction PaPĈD
φ
+ rectifies the model arising from the homology

of SC to retrieve, from PaP and ĈD, an operad in groupoids which is actually rationally
equivalent to πSC.
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