Y. O. Alexandre, S. Ghilas, C. Sanchez, A. Le-bon, K. Crozat et al., XCR1+ dendritic cells promote memory CD8+ T cell recall upon secondary infections with Listeria monocytogenes or certain viruses, J. Exp. Med, vol.213, pp.75-92, 2016.
DOI : 10.1084/jem.20142350

URL : https://hal.archives-ouvertes.fr/hal-01440247

M. N. Artyomov, A. Munk, L. Gorvel, D. Korenfeld, M. Cella et al., Modular expression analysis reveals functional conservation between human Langerhans cells and mouse cross-priming dendritic cells, J. Exp. Med, vol.212, pp.743-757, 2015.
DOI : 10.1084/jem.20131675

URL : http://jem.rupress.org/content/212/5/743.full.pdf

S. Balan, V. Ollion, N. Colletti, R. Chelbi, F. Montanana-sanchis et al., Human XCR1+ dendritic cells derived in vitro from CD34+ progenitors closely resemble blood dendritic cells, including their adjuvant responsiveness, contrary to monocyte-derived dendritic cells, J. Immunol, vol.193, pp.1622-1635, 2014.

J. Banchereau, L. Thompson-snipes, S. Zurawski, J. P. Blanck, Y. Cao et al., The differential production of cytokines by human Langerhans cells and dermal CD14(+) DCs controls CTL priming, Blood, vol.119, pp.5742-5749, 2012.

B. Becher, A. Schlitzer, J. Chen, F. Mair, H. R. Sumatoh et al., High-dimensional analysis of the murine myeloid cell system, Nat. Immunol, vol.15, pp.1181-1189, 2014.

B. M. Bolstad, F. Collin, K. M. Simpson, R. A. Irizarry, and T. P. Speed, Experimental design and low-level analysis of microarray data, Int. Rev. Neurobiol, vol.60, pp.25-58, 2004.

D. W. Cain, E. G. O'koren, M. J. Kan, M. Womble, G. D. Sempowski et al., Identification of a tissue-specific, C/EBPbeta-dependent pathway of differentiation for murine peritoneal macrophages, J. Immunol, vol.191, pp.4665-4675, 2013.

T. Capucha, G. Mizraji, H. Segev, R. Blecher-gonen, D. Winter et al., Distinct murine mucosal Langerhans cell subsets develop from pre-dendritic cells and monocytes, Immunity, vol.43, pp.369-381, 2015.

M. Chopin, C. Seillet, S. Chevrier, L. Wu, H. Wang et al., Langerhans cells are generated by two distinct PU.1-dependent transcriptional networks, J. Exp. Med, vol.210, pp.2967-2980, 2013.
DOI : 10.1084/jem.20130930

URL : http://jem.rupress.org/content/210/13/2967.full.pdf

C. C. Chu, N. Ali, P. Karagiannis, P. Di-meglio, A. Skowera et al., Resident CD141 (BDCA3) + dendritic cells in human skin produce IL-10 and induce regulatory T cells that suppress skin inflammation, J. Exp. Med, vol.209, pp.935-945, 2012.

V. Contreras, C. Urien, R. Guiton, Y. Alexandre, T. P. Vu-manh et al., Existence of CD8alpha-like dendritic cells with a conserved functional specialization and a common molecular signature in distant mammalian species, J. Immunol, vol.185, pp.3313-3325, 2010.

J. Cros, N. Cagnard, K. Woollard, N. Patey, S. Y. Zhang et al., Human CD14dim monocytes patrol and sense nucleic acids and viruses via TLR7 and TLR8 receptors, Immunity, vol.33, pp.375-386, 2010.
DOI : 10.1016/j.immuni.2010.08.012

URL : https://doi.org/10.1016/j.immuni.2010.08.012

K. Crozat, R. Guiton, V. Contreras, V. Feuillet, C. A. Dutertre et al., The XC chemokine receptor 1 is a conserved selective marker of mammalian cells homologous to mouse CD8alpha + dendritic cells, J. Exp. Med, vol.207, pp.1283-1292, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00493468

K. Crozat, R. Guiton, M. Guilliams, S. Henri, T. Baranek et al., Comparative genomics as a tool to reveal functional equivalences between human and mouse dendritic cell subsets, Immunol. Rev, vol.234, pp.177-198, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00502980

K. Crozat, S. Tamoutounour, T. P. Vu-manh, E. Fossum, H. Luche et al., Cutting edge: expression of XCR1 defines mouse lymphoid-tissue resident and migratory dendritic cells of the CD8alpha + type, J. Immunol, vol.187, pp.4411-4415, 2011.

M. Dalod, R. Chelbi, B. Malissen, and T. Lawrence, Dendritic cell maturation: functional specialization through signaling specificity and transcriptional programming, EMBO J, vol.33, pp.1104-1116, 2014.
DOI : 10.1002/embj.201488027

URL : http://emboj.embopress.org/content/33/10/1104.full.pdf

M. Durand and E. Segura, The known unknowns of the human dendritic cell network, Front. Immunol, vol.6, p.129, 2015.

C. A. Dutertre, J. P. Jourdain, M. Rancez, S. Amraoui, E. Fossum et al., TLR3-responsive, XCR1 +, CD141(BDCA-3)+/CD8alpha +-equivalent dendritic cells uncovered in healthy and simian immunodeficiency virus-infected rhesus macaques, J. Immunol, vol.192, pp.4697-4708, 2014.

C. A. Dutertre, L. F. Wang, and F. Ginhoux, Aligning bona fide dendritic cell populations across species, Cell. Immunol, vol.291, pp.3-10, 2014.

M. Elnekave, K. Furmanov, Y. Shaul, T. Capucha, L. Eli-berchoer et al., Second-generation Langerhans cells originating from epidermal precursors are essential for CD8 + T cell priming, J. Immunol, vol.192, pp.1395-1403, 2014.

K. G. Elpek, A. Bellemare-pelletier, D. Malhotra, E. D. Reynoso, V. Lukacs-kornek et al., Lymphoid organ-resident dendritic cells exhibit unique transcriptional fingerprints based on subset and site, PLoS One, vol.6, 2011.

V. Flacher, C. H. Tripp, D. G. Mairhofer, R. M. Steinman, P. Stoitzner et al., Murine Langerin + dermal dendritic cells prime CD8 + T cells while Langerhans cells induce cross-tolerance, EMBO Mol. Med, vol.6, pp.1191-1204, 2014.
URL : https://hal.archives-ouvertes.fr/hal-02381968

L. Galibert, G. S. Diemer, Z. Liu, R. S. Johnson, J. L. Smith et al., Nectin-like protein 2 defines a subset of T-cell zone dendritic cells and is a ligand for class-I-restricted T-cell-associated molecule, J. Biol. Chem, vol.280, pp.21955-21964, 2005.

E. L. Gautier, T. Shay, J. Miller, M. Greter, C. Jakubzick et al., Gene-expression profiles and transcriptional regulatory pathways that underlie the identity and diversity of mouse tissue macrophages, Nat. Immunol, vol.13, pp.1118-1128, 2012.

F. Ginhoux, K. Liu, J. Helft, M. Bogunovic, M. Greter et al., The origin and development of nonlymphoid tissue CD103+ DCs, J. Exp. Med, vol.206, pp.3115-3130, 2009.

M. Gomez-de-aguero, M. Vocanson, F. Hacini-rachinel, M. Taillardet, T. Sparwasser et al., Langerhans cells protect from allergic contact dermatitis in mice by tolerizing CD8(+) T cells and activating Foxp3(+) regulatory T cells, J. Clin. Invest, vol.122, pp.1700-1711, 2012.

D. Gosselin, V. M. Link, C. E. Romanoski, G. J. Fonseca, D. Z. Eichenfield et al., Environment drives selection and function of enhancers controlling tissue-specific macrophage identities, Cell, vol.159, pp.1327-1340, 2014.

G. E. Grajales-reyes, A. Iwata, J. Albring, X. Wu, R. Tussiwand et al., Batf3 maintains autoactivation of Irf8 for commitment of a CD8alpha(+) conventional DC clonogenic progenitor, Nat. Immunol, vol.16, pp.708-717, 2015.

M. Guilliams, F. Ginhoux, C. Jakubzick, S. H. Naik, N. Onai et al., Dendritic cells, monocytes and macrophages: a unified nomenclature based on ontogeny, Nat. Rev. Immunol, vol.14, pp.571-578, 2014.

C. Hacker, R. D. Kirsch, X. S. Ju, T. Hieronymus, T. C. Gust et al., Transcriptional profiling identifies Id2 function in dendritic cell development, Nat. Immunol, vol.4, pp.380-386, 2003.

M. Haniffa, A. Shin, V. Bigley, N. Mcgovern, P. Teo et al., Human tissues contain CD141hi crosspresenting dendritic cells with functional homology to mouse CD103+ nonlymphoid dendritic cells, Immunity, vol.37, pp.60-73, 2012.

T. S. Heng, M. W. Painter, and C. Project, The Immunological Genome Project: networks of gene expression in immune cells, Nat. Immunol, vol.9, pp.1091-1094, 2008.

K. Hildner, B. T. Edelson, W. E. Purtha, M. Diamond, H. Matsushita et al., Batf3 deficiency reveals a critical role for CD8alpha + dendritic cells in cytotoxic, T cell immunity. Science, vol.322, pp.1097-1100, 2008.

G. Hoeffel, Y. Wang, M. Greter, P. See, P. Teo et al., Adult Langerhans cells derive predominantly from embryonic fetal liver monocytes with a minor contribution of yolk sac-derived macrophages, J. Exp. Med, vol.209, pp.1167-1181, 2012.

G. Hoeffel, J. Chen, Y. Lavin, D. Low, F. F. Almeida et al., C-Myb(+) erythro-myeloid progenitor-derived fetal monocytes give rise to adult tissue-resident macrophages, Immunity, vol.42, pp.665-678, 2015.

B. Z. Igyarto and D. H. Kaplan, Antigen presentation by Langerhans cells, Curr. Opin. Immunol, vol.25, pp.115-119, 2013.

M. A. Ingersoll, R. Spanbroek, C. Lottaz, E. L. Gautier, M. Frankenberger et al., Comparison of gene expression profiles between human and mouse monocyte subsets, Blood, vol.115, pp.10-19, 2010.
URL : https://hal.archives-ouvertes.fr/pasteur-01662522

R. A. Irizarry, B. Hobbs, F. Collin, Y. D. Beazer-barclay, K. J. Antonellis et al., Exploration, normalization, and summaries of high density oligonucleotide array probe level data, Biostatistics, vol.4, pp.249-264, 2003.

J. T. Jackson, Y. Hu, R. Liu, F. Masson, A. D'amico et al., Id2 expression delineates differential checkpoints in the genetic program of CD8alpha+ and CD103+ dendritic cell lineages, EMBO J, vol.30, pp.2690-2704, 2011.

H. Jaiswal, M. Kaushik, R. Sougrat, M. Gupta, A. Dey et al., Batf3 and Id2 have a synergistic effect on Irf8-directed classical CD8alpha+ dendritic cell development, J. Immunol, vol.191, pp.5993-6001, 2013.

K. Kautz-neu, M. Noordegraaf, S. Dinges, C. L. Bennett, D. John et al., Langerhans cells are negative regulators of the anti-Leishmania response, J. Exp. Med, vol.208, pp.885-891, 2011.

L. M. Kelly, U. Englmeier, I. Lafon, M. H. Sieweke, and T. Graf, MafB is an inducer of monocytic differentiation, EMBO J, vol.19, 1987.

E. Klechevsky, R. Morita, M. Liu, Y. Cao, S. Coquery et al., Functional specializations of human epidermal Langerhans cells and CD14 + dermal dendritic cells, Immunity, vol.29, pp.497-510, 2008.

Y. Lavin, D. Winter, R. Blecher-gonen, E. David, H. Keren-shaul et al., Tissue-resident macrophage enhancer landscapes are shaped by the local microenvironment, Cell, vol.159, pp.1312-1326, 2014.

J. Lee, G. Breton, T. Y. Oliveira, Y. J. Zhou, A. Aljoufi et al., Restricted dendritic cell and monocyte progenitors in human cord blood and bone marrow, J. Exp. Med, vol.212, pp.385-399, 2015.

A. Liberzon, A description of the Molecular Signatures Database (MSigDB) Web site, Methods Mol. Biol, vol.1150, pp.153-160, 2014.

B. Malissen, S. Tamoutounour, and S. Henri, The origins and functions of dendritic cells and macrophages in the skin, Nat. Rev. Immunol, vol.14, pp.417-428, 2014.

F. Marquet, T. P. Vu-manh, P. Maisonnasse, J. Elhmouzi-younes, C. Urien et al., Pig skin includes dendritic cell subsets transcriptomically related to human CD1a and CD14 dendritic cells presenting different migrating behaviors and T cell activation capacities, J. Immunol, vol.193, pp.5883-5893, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01194094

N. Mcgovern, A. Schlitzer, M. Gunawan, L. Jardine, A. Shin et al., Human dermal CD14(+) cells are a transient population of monocyte-derived macrophages, Immunity, vol.41, pp.465-477, 2014.

S. Meixlsperger, C. S. Leung, P. C. Ramer, M. Pack, L. D. Vanoaica et al., CD141+ dendritic cells produce prominent amounts of IFN-alpha after dsRNA recognition and can be targeted via DEC-205 in humanized mice, Blood, vol.121, pp.5034-5044, 2013.

J. C. Miller, B. D. Brown, T. Shay, E. L. Gautier, V. Jojic et al., Deciphering the transcriptional network of the dendritic cell lineage, Nat. Immunol, vol.13, pp.888-899, 2012.

K. Nagao, T. Kobayashi, K. Moro, M. Ohyama, T. Adachi et al., Stress-induced production of chemokines by hair follicles regulates the trafficking of dendritic cells in skin, Nat. Immunol, vol.13, pp.744-752, 2012.

M. E. Polak, S. M. Thirdborough, C. Y. Ung, T. Elliott, E. Healy et al., Distinct molecular signature of human skin Langerhans cells denotes critical differences in cutaneous dendritic cell immune regulation, J. Investig. Dermatol, vol.134, pp.695-703, 2014.

L. F. Poulin, M. Salio, E. Griessinger, F. Anjos-afonso, L. Craciun et al., Characterization of human DNGR-1+ BDCA3+ leukocytes as putative equivalents of mouse CD8alpha+ dendritic cells, J. Exp. Med, vol.207, pp.1261-1271, 2010.

J. G. Price, J. Idoyaga, H. Salmon, B. Hogstad, C. L. Bigarella et al., CDKN1A regulates Langerhans cell survival and promotes Treg cell generation upon exposure to ionizing irradiation, Nat. Immunol, vol.16, pp.1060-1068, 2015.

G. Reynolds and M. Haniffa, Human and mouse mononuclear phagocyte networks: a tale of two species?, Front. Immunol, vol.6, p.330, 2015.

S. H. Robbins, T. Walzer, D. Dembele, C. Thibault, A. Defays et al., Novel insights into the relationships between dendritic cell subsets in human and mouse revealed by genome-wide expression profiling, Genome Biol, vol.9, p.17, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00282558

E. Romano, J. W. Cotari, R. Barreira-da-silva, B. C. Betts, D. J. Chung et al., Human Langerhans cells use an IL15R-alpha/IL-15/pSTAT5-dependent mechanism to break T-cell tolerance against the self-differentiation tumor antigen WT1, Blood, vol.119, pp.5182-5190, 2012.

A. Schlitzer, N. Mcgovern, P. Teo, T. Zelante, K. Atarashi et al., IRF4 transcription factor-dependent CD11b+ dendritic cells in human and mouse control mucosal IL-17 cytokine responses, Immunity, vol.38, pp.970-983, 2013.

A. Schlitzer, N. Mcgovern, and F. Ginhoux, Dendritic cells and monocyte-derived cells: two complementary and integrated functional systems, Semin. Cell Dev. Biol, vol.41, pp.9-22, 2015.
DOI : 10.1016/j.semcdb.2015.03.011

E. Segura, M. Touzot, A. Bohineust, A. Cappuccio, G. Chiocchia et al., Human inflammatory dendritic cells induce Th17 cell differentiation, Immunity, vol.38, pp.336-348, 2013.
DOI : 10.1016/j.immuni.2012.10.018

URL : https://doi.org/10.1016/j.immuni.2012.10.018

J. Seneschal, R. A. Clark, A. Gehad, C. M. Baecher-allan, and T. S. Kupper, Human epidermal Langerhans cells maintain immune homeostasis in skin by activating skin resident regulatory T cells, Immunity, vol.36, pp.873-884, 2012.
DOI : 10.1016/j.immuni.2012.03.018

URL : https://doi.org/10.1016/j.immuni.2012.03.018

K. Sere, J. H. Baek, J. Ober-blobaum, G. Muller-newen, F. Tacke et al., Two distinct types of Langerhans cells populate the skin during steady state and inflammation, Immunity, vol.37, pp.905-916, 2012.

E. Shklovskaya, B. J. O'sullivan, L. G. Ng, B. Roediger, R. Thomas et al., Langerhans cells are precommitted to immune tolerance induction, Proc. Natl. Acad. Sci. U. S. A, vol.108, pp.18049-18054, 2011.
DOI : 10.1073/pnas.1110076108

URL : http://www.pnas.org/content/108/44/18049.full.pdf

K. Shortman and W. R. Heath, The CD8 + dendritic cell subset, Immunol. Rev, vol.234, pp.18-31, 2010.
DOI : 10.1111/j.0105-2896.2009.00870.x

L. Spinelli, S. Carpentier, F. Montanana-sanchis, M. Dalod, and T. P. Vu-manh, BubbleGUM: automatic extraction of phenotype molecular signatures and comprehensive visualization of multiple Gene Set Enrichment Analyses, BMC Genomics, vol.16, p.814, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01236135

A. Subramanian, P. Tamayo, V. K. Mootha, S. Mukherjee, B. L. Ebert et al., Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles, Proc. Natl. Acad. Sci. U. S. A, vol.102, pp.15545-15550, 2005.

A. Subramanian, H. Kuehn, J. Gould, P. Tamayo, and J. P. Mesirov, GSEA-P: a desktop application for Gene Set Enrichment Analysis, Bioinformatics, vol.23, pp.3251-3253, 2007.

S. Tamoutounour, M. Guilliams, F. Montanana-sanchis, H. Liu, D. Terhorst et al., Origins and functional specialization of macrophages and of conventional and monocyte-derived dendritic cells in mouse skin, Immunity, vol.39, pp.925-938, 2013.

D. Terhorst, R. Chelbi, C. Wohn, C. Malosse, S. Tamoutounour et al., Dynamics and transcriptomics of skin dendritic cells and macrophages in an imiquimod-induced, biphasic mouse model of psoriasis, J. Immunol, vol.112, pp.2353-2359, 2008.

A. M. Van-der-aar, D. I. Picavet, F. J. Muller, L. De-boer, T. M. Van-capel et al., Langerhans cells favor skin flora tolerance through limited presentation of bacterial antigens and induction of regulatory T cells, J. Investig. Dermatol, vol.133, pp.1240-1249, 2013.

T. P. Vu-manh, Y. Alexandre, T. Baranek, K. Crozat, and M. Dalod, Plasmacytoid, conventional, and monocyte-derived dendritic cells undergo a profound and convergent genetic reprogramming during their maturation, Eur. J. Immunol, vol.43, pp.1706-1715, 2013.

T. P. Vu-manh, H. Marty, P. Sibille, Y. Le-vern, B. Kaspers et al., Existence of conventional dendritic cells in Gallus gallus revealed by comparative gene expression profiling, J. Immunol, vol.192, pp.4510-4517, 2014.

T. P. Vu-manh, N. Bertho, A. Hosmalin, I. Schwartz-cornil, and M. Dalod, Investigating evolutionary conservation of dendritic cell subset identity and functions, Front. Immunol, vol.6, p.260, 2015.
URL : https://hal.archives-ouvertes.fr/inserm-01170364

T. P. Vu-manh, J. Elhmouzi-younes, C. Urien, S. Ruscanu, L. Jouneau et al., Defining mononuclear phagocyte subset homology across several distant warm-blooded vertebrates through comparative transcriptomics, Front. Immunol, vol.6, p.299, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01179563

S. Wyllie, P. Seu, and J. A. Goss, The natural resistance-associated macrophage protein 1 Slc11a1 (formerly Nramp1) and iron metabolism in macrophages, Microbes Infect, vol.4, pp.351-359, 2002.

N. Yasmin, T. Bauer, M. Modak, K. Wagner, C. Schuster et al., Identification of bone morphogenetic protein 7 (BMP7) as an instructive factor for human epidermal Langerhans cell differentiation, J. Exp. Med, vol.210, pp.2597-2610, 2013.