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LACUNARY MUNTZ SPACES:
ISOMORPHISMS AND CARLESON EMBEDDINGS

LOIC GAILLARD AND PASCAL LEFEVRE

ABSTRACT. In this paper we prove that M}z is almost isometric to ¢P in the canonical
way when A is lacunary with a large ratio. On the other hand, our approach can be used
to study also the Carleson measures for Miintz spaces M K when A is lacunary. We give
some necessary and some sufficient conditions to ensure that a Carleson embedding is
bounded or compact. In the hilbertian case, the membership to Schatten classes is also
studied. When A behaves like a geometric sequence the results are sharp, and we get
some characterizations.

1. INTRODUCTION

Let m be the Lebesgue measure on [0, 1]. For p € [1,4+00), LP(m) = LP([0,1],m) (some-
times denoted simply LP when there is no ambiguity) denotes the space of complex-valued
measurable functions on [0, 1], equipped with the norm || f]|, = (fol \f(t)|pdt)%. In the same
way, C = C([0,1]) is the space of continuous functions on [0, 1] equipped with the usual sup-
norm. We shall also consider some positive and finite measures p on [0,1) (see the remark
at the beginning of section 2), and the associated LP(u) space. For a sequence w = (wy,)n
of positive weights, we denote ¢?(w) the Banach space of complex sequences (by,),, equipped
with the norm ||b][sr () = (32, |bn|pwn)% and the vector space cgp consisting on complex
sequences with a finite number of non-zero terms. All along the paper, when p € (1, 4+00),
we denote as usual p’ = p%l its conjugate exponent.

The famous Miintz theorem ([BE, p.172],[GL, p.77]) states that if A = (Ap)nen is an
increasing sequence of non-negative real numbers, then the linear span of the monomials ¢*»
is dense in LP (resp. in C) if and only if ) - /\% = 400 (resp. and A9 = 0). We shall assume
that the Miintz condition ), -, i < +o0 is fulfilled and we define the Miintz space MY

as the closed linear space spanned by the monomials *», where n € N. We shall moreover
assume that A satisfies the gap condition: inf ()\n+1 - )\n) > 0. Under this later assumption
n

the Clarkson-Erdés theorem holds [GL, Th.6.2.3]: the functions in M} are the functions f
in L? such that f(x) = a,z** (pointwise on [0, 1)). This gives us a class of Banach spaces
MY C LP of analytic functions on (0, 1).

In full generality, the Miintz spaces are difficult to study, but for some particular se-
quences A, we can find some interesting properties of the spaces MY. Let us mention that
lately these spaces received an increasing attention from the point of view of their geometry
and operators: the monograph of Gurariy-Lusky [GL], and various more or less recent papers
(see for instance [AHLM],[AL],[CFT],[LL],[NT]).

We shall focus on two different questions on the Miintz spaces. The first one is linked
to an old result: Gurariy and Macaev proved in [GM] that, in L?, the normalized sequence
((pAn + 1)%t>‘")n is equivalent to the canonical basis of ¢P if and only if A is lacunary (see
Th.2.3 below). More recently, the monograph [GL] introduces the notion of quasi-lacunary
sequence (see definition 2.1 below), and states that M} is still isomorphic to /7 when A is
quasi-lacunary. On the other hand, some recent papers discuss about the Carleson measures
for the Miintz spaces. In [CFT], the authors introduced the class of sublinear measures
on [0,1), and proved that when A is quasi-lacunary, the sublinear measures are Carleson

2010 Mathematics Subject Classification. 30B10, 47B10, 47B38.
Key words and phrases. Miuntz spaces, Carleson embeddings, lacunary sequences, Schatten classes.

1



2 LOIC GAILLARD AND PASCAL LEFEVRE

embeddings for M}. In [NT], the authors extended this result to the case p = 2 but only
when the sequence A is lacunary.

In this paper, we introduce another method to study the lacunary Mintz spaces: for a
weight w and a measure y on [0,1), we define T}, : (P(w) — LP(u) by T,(b) = Y, butr»
for b = (b,) € ¢P(w). The operator T, depends on w, u,p and A, and when it is bounded
we shall denote by ||T},||, its norm. We shall see that an estimation of ||T,||, can be used
to improve the theorem of Gurariy-Macaev, and to generalize former Carleson embedding
results to lacunary Miintz spaces M} for any p > 1.

The paper is organized as follows: in part 2, we specify the missing notations and some
usefull lemmas. The main result gives an upper bound for the approximation numbers of
T, (see Prop.2.9). In section 3, we focus on the classical case: we fix w, = (p\, +1)7!
and we define Jy : £P(w) — MX by Jp(b) =3, b,t . It is the isomorphism underlying in
the theorem of Gurariy-Macaev. For p > 1, we prove that Jy is bounded exactly when A is
quasi-lacunary. On the other hand, when A is lacunary with a large ratio, we also get a sharp
bound for ||J; ||, (see Th.3.6 below). Our approach leads to an asymptotically orthogonal
version of Gurariy-Macaev theorem exactly for the super-lacunary sequences. In section 4,
we apply the results of section 2 for a positive and finite measure p on [0, 1) with the weights
w, = A, To treat the Carleson embedding problem, we shall give an estimation of the
approximation numbers of the embedding operator f, : M, » — LP(p). In section 5, we focus
on the compactness of if, using the same tools as in section 4. In the case p = 2, this leads to
some control of the Schatten norm of the Carleson embedding and some characterizations
when A behaves like a geometric sequence.

As usual the notation, A < B means that there exists a constant ¢ > 0 such that
A < ¢B. This constant ¢ may depend along the paper on A (or sometimes only on its ratio
of lacunarity), on p.... We shall specify this dependence to avoid any ambiguous statement.
In the same way, we shall use the notations A~ B or A 2 B.

2. PRELIMINARY RESULTS

Before giving preliminary results, let us give a few words of explanation about our choice
of measures on [0,1). This comes from the fact that the measures involved (if considered on
[0, 1]) must satisfy u({1}) = 0. Indeed, we focus either on the Lebesgue measure m (satisfying
of course m({1}) = 0) or on measures such that the Carleson embedding f € MY — f €
LP(u) is (defined and) bounded, so that testing a sequence of monomials g, (t) = t*» we
must have

p({1}) = lim ||gnll7, () S T flgnll}, ) = O-

Therefore practically, we shall consider in the whole paper measures on [0,1). Moreover,
thanks to the result of Clarkson-Erdés, the value at any point of [0,1) of any function of a
Miintz space can be defined without ambiguity.

We shall need several notions of growth for increasing sequences.

Definition 2.1. e A sequence u = (uy), of positive numbers is said to be lacunary
if there exists r > 1 such that u,4+1 > ru,, for every n € N. We shall say that such
a sequence is r-lacunary and that r is a ratio of lacunarity of this sequence.
e The sequence u is called quasi-lacunary if there is an extraction (ny)r such that
sup(ng+1 — ng) < 400, and (uy, ), is lacunary.
kEN

e The sequence u is called quasi-geometric if there are two constants r and R such that

U .
we have 1 < r < —ntl < R < 40, for every n € N. In particular, these sequences

Un,
are lacunary.
Un+1

e The sequence u is called super-lacunary if — +o0.

n

Remark 2.2. It is proved in [GL, Prop.7.1.3 p.94] that a sequence is quasi-lacunary if and
only if it is a finite union of lacunary sequences.



The following result is due to Gurariy and Macaev.

Theorem 2.3. [GL, Corollary 9.3.4, p.132]
For p € [1,40), the following are equivalent:

(i) The sequence A is lacunary.

thn
(i) The sequence (/\7
[[#3 11

In particular, since ||t |, = (pAn + 1)~ ¥, we have for any b € coo

IRy
[Zme], > (i)

when A is lacunary, and where the underlying constants depend on p and A only.

) i LP is equivalent to the canonical basis of €P.

We shall recover and generalize partially this result: for a given sequence of weights
(wp)r and a positive finite measure p on [0, 1), we study the boundedness of the operator

) w) — LP(p)
T,u~{ b —_ anl:An

Example 2.4. In the case of the Lebesgue measure ;4 = m and when the weights are
n = (pAn + 1)~ or in a simpler way (when we do not care on the value of the constants)
wy, = A\, !, Th.2.3 states in particular that 7T}, is bounded when A is lacunary.

Remark 2.5. In the case p > 1, a (rough) sufficient condition to ensure the boundedness

of T is
/ (Zw_ptp)‘”)pldu<oo.
[0,1)

Indeed, this is just the consequence of the majorization

sup sup ‘/ bnwn pt/\ g(t) dﬂ‘ < sup / lg(®)] sup
- § : beB
bEC(fé) geBLPI(N) 0,1) n gEBLp,(N) [0,1) bEC(fé)

Zb W, "t)‘

Point out that in the case of standard weights w, ~ A, ! and for a quasi-geometric
sequence A, this condition can be reformulated with the help of Lemma 2.10 below as

1 1
—du%/ —du < oo
/[0,1) 1—t oy 1=

but we shall come back to that kind of condition later (see Prop.5.5 below for instance).

To get a sharper estimation, we introduce the sequence (D,,(p)), defined for n € N and
p > 1, with a priori value in Ry U {400} by

p—1 H
_1 _1
Dn(]?) = </ Wn P $An (Zwk Pt/\k) dﬂ) )
[0.1) =

Proposition 2.6. Let p € [1,400). Assume that (Dy(p))n is a bounded sequence of real
numbers. Then we have for every b € £P(w),
1

H Z o) (Z\an’wnDn(p)p); .
>0

Proof. If p =1 the result is obvious. Assume now that p > 1. For any ¢ € [0,1) and n € N,
we have:

Lo, —L
bt = bpwd” t7 X w, Pt
we apply Holder’s inequality and get:

’ant’\n < (Z\bn|?’w§t%)%(zw Ptkk)

1
Y
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‘We obtain:

An
/[0’1) ‘ ant

1 1 p—1
pd,u§ / Z\bn\pwn.wn”ﬂ"(Zwk pt’\’“)p du
[0,1) k
= Z b [Pwn D ()P

O

If (Dn(p))n is a bounded sequence of real numbers, we define the bounded diagonal
operator

D:P(w) = P(w)
acting on the canonical basis of ¢’(w) whose diagonal entries are the numbers D, (p). In
other words, in that case, T;, and D are bounded, and we have

Vo € P (w), |Tu(®d)|lLey < IDO)|ler(w) -

This gives informations about the approximation numbers of 7,. Let us specify this notion.
We shall be interested in how far from compact (the essential norm) or, on the contrary, how
strongly compact (possibly Schatten in the Hilbert framework) are the Carleson embeddings.
A way to measure this is to estimate the approximation numbers:

Definition 2.7. For a bounded operator S : X — Y between two separable Banach spaces
X,Y, the approzimation numbers (a,(S)), of S are defined for n > 1 by

an(S) = inf{||S — R||,rank(R) < n} .
The essential norm of S is defined by
[IS]le = inf{]|S — K|, K compact} .
It is the distance from S to the compact operators.
‘We shall use in the sequel the following notions of operator ideal.

Definition 2.8.

e An operator S : X — Y is nuclear if there is a sequence of rank-one operators (R,,)
satisfying S(z) = > R, (z) for every x € X with Y ||Ry| < +0o. The nuclear norm
n

of S is defined as !
ISl = inf { 37 | Rul, rank(Ra) = 1,3 R = S} -

e An operator S : X — LP(u) is order bounded if there exists a positive function
h € LP(u) such that for every x € Bx and for p—almost every ¢ € 2 we have
[S(@) ()] < h(t).

e For r > 0 and when X,Y are Hilbert spaces, we say that a (compact) operator
S : X — Y belongs to the Schatten class S” if

Zan(T)T < +o0.

=

In this case, we define its Schatten norm by ||S||s- = (Z an(S)T>

Recall that nuclear and Schatten class operators are always compact.
Of course, the Schatten norm is really a norm when r > 1. The S? class is also called
the class of Hilbert-Schmidt operators.

For technical reasons, we introduce the following notation: for a bounded sequence (),
in Ry, we define (u}y)n the decreasing rearrangement of (uy)n by
uy = inf s A}
v=lof  supfun,n & A}
|A|=N



We have lim wu} = limsup uy,.
N—+oo n—+o00
Now, we can state,

Proposition 2.9. If (D, (p)). is a bounded sequence of real numbers, then we have

(i) an+1(T,) < Dn(p)*.
(i) [|Tpllp < sup Dy, (p).

(111) || Tyulle < limsup Dy (p).
n—-+oo

_1
(i) ¥p 2 1, | Tl < D wa [ Lo,
n>0

(v) If p =2, then for anyr >0, [|T,|lsr < ( Z D, (2)" )

1
r

Proof. We first prove (7). For n € N, we denote ¢} : ¢P(w) — C the functional on ¢7(w)
defined by ¢ (u) = uy for a sequence u = (uyn), € P(w). We define also g, € LP(u) by
gn(t) = t*. For any integer N and A C N with |A| = N, we have:

an+1(7, HT - ¢ @0
neA

We fix b € ¢P(w) and apply Prop.2.6:
|7.0) = 3" ¢i)g
neA

and so (¢) holds.
The points (44) and (i) are direct consequences of (7).
The assertion (iv) follows easily from the natural decomposition T,(b) = 3 o7 (b)t*

< sup Dy (p)||b]] r (w)
1) ngA

- H 3 bt
ng¢A

1
and the fact that ||| = wy, ”
For (v): if (D,,(2)), & £" then the result is obvious. Else, we have in particular D,,(2) — 0
when n — 4o00. Since for all € > 0, the set {n, D,,(2) > €} is finite, there exists a bijection
¢ : N — N such that for any n € N, D, (2)* = Dw(n)(Q). We have:

ZCLN-H "< Z (Dn(2 ZDso(n 2)" = ZD"(Q)
]

Lemma 2.10. Let a € RY . Assume that A is a quasi-geometric sequence. Then there are
two constants C1,Cy € R such that for any t € [0,1) we have:

Cl(ll ) <ZA%A"<G"( t)a'

Proof. Since A is quasi-geometric, it is r-lacunary for some r > 1, so there exists a constant
C=(r- 1)_1 such that for any n € N, A,, < C(An41 — An). Moreover, there is a constant
R > 1 such that A\, 1 < R\, and hence we have:

An A (Ant1 — An)® &~ AN

where the underlying constants do not depend on n. We obtain:

Z)\gt)‘" ~ Z()\’I’LJrl - )‘n)at)\n ~ Z Z ()‘n+1 - )\n)a_lt)\n

n Ap<m<Api41

~ Z Z ma—ltkn

n A <m<Apii1

For m such that A, <m < A\,41, we have ™ < t* < t% and so we obtain:

m 1 o 1 o
E A¥ A < E a—lyg < ( ) < (7) .
n ! - m>0m - 1- t% Tt
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On the other hand we have

I

meN
0

Remark 2.11. If A is only lacunary, the majorization part of the result above still holds.
Indeed, the proof above can be easily adapted, but anyway, we can also notice that there
exists a quasi-geometric sequence A’ = (\,),, which contains A, and we have

(0% (03 4 1
2 A < D NI < o

neN neN

We can give a new proof of the majorization part of the theorem of Gurariy-Macaev
(Th.2.3). It follows from the next proposition:

Proposition 2.12. Let p € [1,+00). Assume that the weights are given by w, = \;! or
(pAn + 1)L If A is lacunary and p is the Lebesgue measure, then (D, (p))n is a bounded
sequence.

Proof. From Lemma 2.10 and Remark 2.11 we get:

D, (p)P = v / thn ( > Aft*k)p_ldt

keN

1ol 1\ 1ol 1\
:,\;;/ t*n(—)p dt+)\,‘;/ thn (—)” dt
0 1—t 1_% 1_t

1 L ! 1ol 1
<A / tA"dzH—/\{Z/ (1—t)" 7 dt
0 1—-

b
An 1
< I
A +1 AE
We obtain that D, (p) is a bounded sequence of real numbers. O

From Prop.2.6, we obtain as claimed:

i
neN

for any b € ¢gp, when A is lacunary.
Let us mention that from Lemma 2.10 and the Gurariy-Macaev’s Theorem, one can
easily get an estimation of the point evaluation on M?X:

(250

neN

p

Proposition 2.13. Let A be a quasi-geometric sequence and p > 1. For any t € [0,1), the
point evaluation f € MY — 6,(f) = f(t) satisfies

1

10t | agzy» & ot

=

1

A fortiori, when A is lacunary, we have HétH(Mp)* < ﬁ
A 1—-1¢t)»

Proof. We fix p > 1. Since A is in particular lacunary, the Gurariy-Macaev theorem gives:
1 2N
HétH(MP)* = sup |[f(t)|~ sup Z)\fiant’\” = (Z)wf t? ’\”)p
A feByz >0 n>0

a€Byp "
where the underlying constants depend on p and A. We conclude with Lemma 2.10.
In the case p = 1, we can easily adapt the argument, without using Lemma 2.10. g




3. REVISITING THE CLASSICAL CASE

In this section, we focus mainly on the case p > 1 and we shall consider the Lebesgue
measure = m on [0, 1]. We define the operator

P(w) — My
A b — ant’\"

where the weights w = (w,) are given by w, = (p\, + 1)1 = ||t [P In particular, if we
denote by (eg)r the canonical basis of ¢P(w), we have

Vk e N, [[Jaler)llp = llexller(w) -

The theorem of Gurariy-Macaev says that Jy is an isomorphism if and only if A is
lacunary. Our Proposition 2.12 proves as well that Jy is bounded when A is lacunary.

We are going to recover the boundedness of Jj refining the method used for Prop.2.12, in
order to get a sharper estimate of the norm. Actually, we prove that J, is bounded if and only
if A is quasi-lacunary or p = 1. Our approach is different from the one of Gurariy-Macaev
(which was based on some slicing of the interval (0,1)), that is why we are able to control
the constants of the norms with explicit quantities depending on the ratio of lacunarity (and
p) only. As a consequence, we shall get that for p € (1, +00), Jy is an asymptotical isometry
if and only if A is super-lacunary.

Lemma 3.1. Let a € (0,+00), p € (1,400) and (¢n)n be an r-lacunary sequence. We have

. @
an gy, P p”
SupZ<Qn %) St E

neN - P roe
kEN
Kgn D P
11
P P i, n—k
Proof. Let n € N. For k < n, we have % < p(q—k) " < pr~» . We obtain:
oo IR qn
p 7
-1 = —1
s ( G i )a<p°‘n <
T T ) = G—pa = 5
im0 —+— k=01 7 ret =1
p p

1
PP 1 k—n
When k£ > n, we have n Gk < p'(q—") " <p'r~ % and, summing over the k’s, we obtain

the majorization. O

For p € [1,400) we consider the sequence D, (p) defined in section 2:

Da(p) = </01(mn 1 (A + 1)117t’\’“>p_1dt> "

k

Proposition 3.2. Let p > 2 and A be a (lacunary) sequence such that (pAn, + 1), is r-

lacunary. Then we have:
1

1 a
2pP-T P
[ Tallp < <1+1 ) :
rplr-1) — 1

i

1 t
Proof. For j € N, we denote ¢; = (pA; + 1) and f;(t) = q; th = m We have:
J
P
1 p—1 p—1
W= f Ekjfk Ekjfk s
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Since p — 1 > 1, the triangle inequality gives:

1

’ 1 L, 1 -
Do) < 3 il = 3 (akaf’ [ 00 0ear)
k 0

k

For n, k € N, we have :

11 1 1
11 1 p P » v
= =7 _ ) qn qy, dn 9y,
qpqp / t)\n‘i‘(P I)Akdt — — .
"R At (p=DAe+1 Iy 0
p

We apply Lemma 3.1 and we obtain for any n € N:

1 _1
= Ipp—1
D p<2(q"q’€ )T ——
keN 7_1'_ rele-1 — ]
p o

since p > p’ and using that the term for n = k is 1. Thanks to Prop.2.6, we have
1 allp = 1T llp < sup D (p)-
n

Remark 3.3. For p € (1,2), we can apply the same method and it would lead to:

1
2p P
HJAHPS <1+ N ) :
re —1

But this bound is not sharp when p is close to 1. For instance, it tends to 400 when
p — 1 and r is fixed. But ||Ja||1 is always 1, without any assumption on A.

Point out that the operators Jx : ¢P(w) — M} C LP(m) are not defined on the same
scale of LP-spaces, since the weight w actually depends on p. We cannot apply directly
Riesz-Thorin theorem for this problem, even not the weighted versions of the literature.
Nevertheless, we shall adapt the proof in the next result and it gives the expected bound.

Proposition 3.4. Let p € [1,2] and let A be a (lacunary) sequence such that (pA, + 1), is

r-lacunary. Then we have:
1

4 F
||JA||p < <1+ I ) ’
rz —1

Proof. Our proof is adapted from the classical proof of Riesz-Thorin theorem, with an ad-
ditional trick.

2 1 0
Let 6 = v € (0,1). We have P 1-— 3 As usual, for z € C such that 0 < Re(z) < 1,

1 z 1 z
we define — =1 — = and —— = —- We have p(f) = p and p'(0) = p’. We fix a = (an)n
eI ARTC ) . (o)

a sequence in Ry with a finite number of non-zero terms and g € ) positive, such that
laller () = llgllr = 1. Finally we define

Za“”/ M g(6) P dt |

neN

Point out that we actually have a finite sum, and F' is an holomorphic function on the band
{z € C| Re(z) € (0,1)}. For x € R, we have

zx|<Zap/ tPAndt = )\ +1
p

neN



On the other hand, for every real number z:

_1 1 4
|F(1 +iz)| SZaﬁ(l 2)/ PA=2)2n g(1) 7 dt
neN 0

1 ,
= g®)= > butVmdt
JRCED>

neN

2 An . .
where b,, = a:?; and ¥ = (¢p,), = (pT) . Since (24, + 1),, is also r-lacunary we can apply

A%
i)

n

Prop.3.2. in the hilbertian case:

1
4 2
> but | = e @®lle < (14—
neN 2 rz—1
and |b,|? = |a,|P, we have

|bn|2 - |an|p -
) DE s e Db v Sk

n n

Since

1
20, +1  pA, +1

We apply the Cauchy-Schwarz inequality and get:

1
§<1+ 14: )2.
2 rz2 —1

Now, the proof finishes in a standard way and the three lines theorem gives

2]

|F(0)] < <1+ 4_1>

From this, we conclude easily that for arbitrary a € ¢P(w), we have

F(L+i2) < g% 12 x | 3 but?

1
7

4
D)7 llello

1
rs —

lIa (@)l < (1+

Now we can give a characterization of the boundedness of Jy.

Theorem 3.5. Let p € (1,+00). The following are equivalent:

(i) The sequence A is quasi-lacunary ;
(i1) The operator Jy is bounded on P (w).

Proof. Assume that A is a quasi-lacunary sequence. Using Remark 2.2, there exist K > 1
and lacunary sets A; C A (with j € {1,--- , K}) such that A = A; U---UAg. We define the
operators

b byt Iy, (M)

n

P P
J0) :{ Plw) — My

where Iy, is the indicator function of the set A;.

K .
We have Jy = > JU). Moreover, for any j, the norm [|JW||, = [|Ja, ||, < +oo thanks
j=1
to Prop.3.4 and Prop.3.2. Therefore, Jy is bounded.
For the converse, we assume that A is not quasi-lacunary. We denote g = (pA\x +1). For
an arbitrarily large N € N we consider the extraction (Nk)gen. It has bounded gaps, so the

sequence gy is not lacunary. This implies lim inf d0+)N

=1, so there exists kg such that
k—+oo  gkN

it is less than 2. For ng = ko/N we have

dno+N S 2qn0~
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Let A = {ng,...,no + N — 1}. Thanks to the inequality of arithmetic and geometric
means, we have:

1
p
ol = [ |
0 jea

1 ,
_/ NP [t at.
0 jEA

‘We obtain
NP NP

||p - E 4 q7l0+N 2Qn0
JEA

[ Ja(Ta)

1 N

On the other hand, |[T4]|7, ) = Z — < —- Since N is arbitrarily large and p > 1, J, is
jEA J 0

not bounded. U

The following is a refinement of the Gurariy-Macaev theorem for the lacunary sequences
with a large ratio.

Theorem 3.6. Letp > 1. For any e € (0,1), there exists r. > 1 with the following property:
For any A such that (pA, + 1), is re-lacunary, we have:

VaelP(w),  (1=e)llallerw) < [ITa(a)llp < (1 +)llaller(w) -

1
4qa-T1
€

q(q—1)
Remark 3.7. If we denote ¢ = max{p, p'}, the parameter r. = (1—|— ) is suitable

for Th.3.6.

4qq%1 q(g—1)

Proof. Let ¢ = max{p,p'} > 2 and r. = (1 +
€
We fix a sequence a € £P(w) with [|a||¢»(,) = 1. Thanks to the choice of 7., when p > 2

1
we apply Prop.3.2 and we get that [|Ja||, < (1 + %) P14+ % When p < 2, Prop.3.4 gives
also [|J;ll, < (1 + g)ﬁ <1+ g In the two cases, the majorization part holds.

For the minoration part, we consider a sequence b € 7' (w) such that [0l ¢p (1) = 1. We

define ¥ = (¢, ), by ¢y, = PAn (p — 1)An. We have:
P’

dt

1
1Ja(a)-Tu (B) 1 :/ ‘Zanbktwmm
0

Ianllbkl
_’Zp)\ +1‘ Z At (P—DAp+1

We introduce the sequence (¢, )n = (pAn +1)n = (w;, })n. Since [|al/sr () = 1 and by duality
we have

. ann —_—
am{ A Pl =1 =

We now majorize the second term. For any n, k, Young’s inequality gives:

1 1 1 1
|anbk| = lanws bewi | % gf qf

1 1 / 1L
S (7|an|pwn + 7/|bk|p Wk) X qTIZQIS
p p
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We sum over n and k we obtain:

1
|an|.|br]| q ay
Z an Tk —’”a” w) SUP Z qn ‘

nkeN — + — n  LeEN 7_|_7
k#n  p P kZn p P
1
q q
7||b|| sup Z q E k
gk p p’
2 €
Applying Lemma 3.1, this quantity is less than —; d < — thanks to the choice of r. again.

rd —1
On the other hand, Holder’s inequality gives :

17a(@) e @)1 < 174 (@) - T Bl < (1+5) 1Ta(@)l,

because (p't, + 1) is also r.-lacunary, so we can apply the majorization part for ||Jy||, .

Considering the upper bound over the sequences b, we finally obtain, for any A at least
re—lacunary, and for any a in the unit sphere of ¢#(w),

1-1¢

(1-g)<—3

1+ 3

<|Jala)llp < (1 +e) -

O

Before stating the next corollary, let us recall that a (normalized) sequence (z,) in a
Banach space X is asymptotically isometric to the canonical basis of ¢? if for every ¢ € (0,1),
there exists an integer N such that

(1- 5)( |an| ) < H Z nTn (1 —|—8)( Z |an|p)

n>N n>N

=

for any a = (an)n € coo-
Equivalently there exists a null sequence (g, ) of positive numbers such that for every N,
we have for any a = (a,), € coo:

(1 —EN)( |an|p) < H Z An Ty,

When p = 2, we can also say that such a sequence (x,,) is asymptotically orthonormal.

+en) (X |an|P)%

n7

We can now prove
Corollary 3.8. Let p € (1,+00). The following are equivalent:
(i) A is super-lacunary.

hn
(it) The sequence (

W> i LP is asymptotically isometric to the canonical basis of
|y /n
Iz

>\n+1

Proof. Assume that A is super-lacunary: lim = +00. As usual, we denote ¢, =

n—-+oo n

(pAn + 1), and fo(t) = ght* =
N € N such that

M a —s)( |an\p) <| > ik,

———. We need to prove that for any € > 0, there exists
P

<+e)( > |an|p)%
n>N

for any a = (an)n € coo. For a given ¢ € (O, 1) we consider the number r. given by Th.3.6.

Since (g )n is also super-lacunary, there is an integer N large enough to insure that gg41 >

reqr when k > N and so the sequence (pA,+n +1), is 7 —lacunary. We apply the estimation
1

of ||Ja(@)||, given by Th.3.6 with the sequence a = (anqyg) . and we get the result.
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For the converse, let € € (0,1). From the right hand inequality of (1), we get the existence
of an integer N € N such that for any integer n > N, for any u € (0,1),

1fn + ufnsally < (L+)(1+uP)7 < (1+ e)(l + %)

On the other hand, Holder’s inequality and || f2~!||,, = 1 give
1
ot ubiall = [ ot whus) g7
0

1
—teu [ faafy
0

We apply this for u = 6%, we finally get:

1

1
[ sz <t
0

1
and since p > 1, we obtain / frs1fPrdt — 0 when n — 4-o00.
0

But
! Ly 1 ¢
/ fn+1f5‘1dt:/ g7 qi PO A gy zqn/ gy — A
0 0 0 dn+1
An + 1
Thus, inf_:l — 0 when n — +00, and A is super-lacunary. ]
PAn+1

4. CARLESON MEASURES

In this section, p denotes a positive and finite measure on [0, 1) and A is a fixed lacunary
sequence. We shall generalize some results of [CFT] and [NT] with the estimations introduced
in section 2. In particular, we give a positive answer to a question asked in [NT]: if p is a
sublinear measure on [0, 1) and A is lacunary, then the embedding operator %, : M} — L (1)
is bounded.

Definition 4.1. Let p € [1, +00). We say that:

(i) p is sublinear if there exists a constant C' > 0 such that
vee (0,1), p([l-e1])<Ce;

The smallest admissible constant C' above is denoted ||x|s.
(ii) p satisfies (Bp) when there exists a constant C' (depending only on A and p) such that:
C
(B,) Vn € N, / tPAndpy < —.
0.1 A

n
(iii) pis a Carleson measure for MY when there exists a constant C' (depending only on A
and p) such that, for any Miintz polynomial f(t) = 3" a,t*",
n
[ fllze gy < Clfllp -

In this case we can define the following bounded embedding:

Zp{ M} — LP(n)
L= f

Remark 4.2. The notions defined above are connected to each other:

(i) If p is a Carleson measure for MY, then yu satisfies (B,).
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(ii) For p,q € [1,+00) such that p < ¢, we have:
 is sublinear = (B)) = (By).

Indeed, since t € [0,1) ~ tP*» is an increasing function, [CFT, Lemma 2.2] gives

1 -1
/ tpA"d,u < ||N||S’/ PR It < %
1 0 A

s n

(i) Moreover, if A is a quasi-geometric sequence, and p satisfies (B),) for some p € [1, +00)
then p is sublinear. It is essentially done in [CFT] in the case p = 1. More precisely,
we have:

ulls < 3pR(Sup )‘n/ tm"du) ;
neN [0,1)
where R is a constant such that A\,11 < RA,.

The previous remarks suggest the natural question: does (B,) imply that p is a Carleson
measure for M% ?

The answer is not clear in general. In [CFT, Ex.6.2], they build a sublinear measure (so
it satisfies (B;)) and a sequence A such that y is not a Carleson measure for M} . But when
A is lacunary we shall see that the condition (B,) is almost sufficient for 4 to be a Carleson
measure for M¥, and even sufficient when p = 1 or when A is a quasi-geometric sequence.

The cornerstone of our approach is the following remark.

Remark 4.3. For a lacunary sequence A, we can factorize if, through ¢°(w) as follows:

g

M} - ()
s

where w = (wy,), is a weight satisfying w,, ~ ;1. With this kind of weight, the operator Jx
realizes an isomorphism between ¢P(w) and MY: this is a rewording of the Gurariy-Macaev
Theorem (Th.2.3). T}, is defined in section 2. The most natural weight is w,, = (pA,, +1)~!
but in this section, we are interested in estimations up to constants (possibly depending on
p and A). Of course, the results are the same with equivalent weights. So, we choose (in
order to simplify) to fix the weight w,, = 1.

In particular we obtain:

]l S I Tullp < sup Du(p)
n

and for n € N we have
a"+1(iﬁ) 5 an-f—l(T,u) < D: (p)

where the sequence (D,,(p))., is defined as in section 2 by the formula (here with our specified

weight):
= ([ e (St )
’ keN

We first treat the case p = 1.

Proposition 4.4. Let A = (\,), be a lacunary sequence. The following are equivalent:

(i) w satisfies (B1) ;
(ii) p is a Carleson measure for M}.

In this case there exists a constant C' depending only on A such that

Il < C(Sup /\n/ tkndu)
[0,1)

neN
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Proof. (ii) = (i) is obvious. For the converse, we apply the factorization described in Re-
mark 4.3 : this gives [|i}|| < T ll1-][J5  ]li- On the other hand, Prop.2.9 gives |T,[:1 <
sup D, (1) and we get the result. O

As a corollary, we recover quickly [CFT, Th.5.5] in the lacunary case: the sublinear
measures satisfy (B1), and so any sublinear measure is a Carleson measure for M}. For the
general lacunary case, we have the following theorem.

Theorem 4.5. Let A = (\,), be an r-lacunary sequence. Let p be a positive measure on
[0,1) and p € [1,400). We assume that p satisfies (Bp).
Then p is a Carleson measure for M} for any q¢ > p. Moreover, we have

litl < (suph, [ tvdp)”
neN [0,1)

where C' depends only on p,q and A.
Before the proof, we prove the following lemma.

Lemma 4.6. Under the same assumptions of Th.4.5, we have

Dn(q)? < O(sup /\k/ t’“’“du) v (sup /\k/ t”hdu) "
k>n o Jjo,1) keN  Jpo,1)

where C' is constant depending only on p,q and r.
Proof. Since (Ay)y is r-lacunary, for any 3 € R% we have:

ZAk_l Anand >N < 1/\5

k<n k>n

For any j € N, we denote M; = A, tPYdp and M = sup M; < 400. Since g > 1, we
[0,1) J
have for any A, B € Ry, (A+ B)47t < 2971(A971 + B9=1). This gives:

—1

Dn(‘])q_/on/\ th (ZA t“) dp

keN

5/01))\ o (Z)\t)\k) d,u—i—/()l))\t)‘ (Z)\ t/\k) 1’”

k>n

We first majorize the first term above. If p > 1, Holder’s inequality gives:

1 1 _ 1 3
/ At (ST A 1du§A,§(/twdu) (/ ZA )7 Yay)
[0,1) =
1 1_1 —1
MENT (NI o)

k<n

4
Y

where we used the triangle inequality since p’(¢ — 1) > p > 1. For any k& < n we have
/ tp,(q_l))‘kd,u < / P R dp < Mk)\,zl. This gives:
[0,1)

[071)
/ A (S A ) u<supM”M’l’ E*%(Z N ”)_
[0,1) k<n k<n

4 11 1 L_L
Ssup M” M AG "G 7
k<n
L 1
=sup M My .
k<n
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If p = 1, the inequality t* < 1 gives directly :

1 1 ot
/ )\TthA,H(ZAétAk Ydp < MoA; 1>\4<ZA ) S M.
[0,1) k<n k<n

For the second term we treat two cases. First if ¢ — 1 > p, the triangle inequality gives:

Al tA (ZA m) du < /\é(gllAémHqu(mu))q1

AN an) T i
o [0,1)
< supMkAé(Z)\giﬁyil

k>n k>n

[0,1)

—1

L. T
< sup MipAd (M@ V)? - sup M.

k>n k>n
Ifg—1<p,leta= ﬁ Tt satisfies @ > ¢ and (¢ — 1)/ = p. We apply Holder’s
p—\q-
inequality:
-1
Ad A (Z A tA’“) du
[0,1) k>n

< A;{(/[O,l) t‘””du);(/[m Z/\ 1) du)%

D

i 1 2\ of
<ubATH (DA (f, mean))
[0,1)
where we applied again the triangle 1nequahty. We obtain:

1 111 1_1yg¢-1
A t>‘ AZ tA’“ duSMﬁ* sup M2 A% @ g o®
ksn " k

(0,1) k>n k>n

1 a
< My sup M.
k>n
We finally get:
1 =
D, (q)? < M} sup M7 + sup My
k<n k>n
Now we can prove Th.4.5.
Proof. Since A is lacunary, we can factorize if, through ¢?(w) as in Remark 4.3. We obtain
il S 1 Tullg < sup Dn(q)
n
and Lemma 4.6 gives the result. (|

Corollary 4.7. If pu is sublinear and A is lacunary, then p is a Carleson measure for M},
for any q € [1,+00).

Proof. Remark 4.2 implies that the sublinear measures satisfy (Bj), and we obtain:

1
[l < Nealls-
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The previous fact was proved for p = 2 in [NT, Th.4.3], and the authors announced the
result for p € (1,2) (see [NT, Cor.5.2]). Unfortunately there is a gap in the proof of their
interpolation result [NT, Th.5.1] : the interpolation is not easy to handle in Miintz spaces
because f € M} does not imply that |f| € M} in general.

Th.4.5 has the following interesting consequence.

Corollary 4.8. Let A be a lacunary sequence and p,q € [1,+00) such that p < q.

(i) If it, is bounded, then if, is bounded.

m
(#9) The converse is false in general.

Proof. 1t i} is bounded, then y satisfies (Bp). Th.4.5 imply that if, is bounded. The point
(1) is a consequence of the examples Ex.5.14 and Ex.5.15 below. O

Corollary 4.9. Let g € [1,+00) and let A be a quasi-geometric sequence. Then we have:
1 1
. q a
Jiglh~sup ([ i)~

1
A sup ( At du) * ~sup Dy(q)
n

n [0,1)
where the underlying constants depend only on q and A.
In particular, p is a Carleson measure if and only if it is sublinear.

Proof. Since A is lacunary, Remark 4.2 and Lemma 4.6 give easily:
1 1
0 S s Du) S (b [ )" 5 el
n n 0,1

On the other hand, since A quasi-geometric, Remark 4.2 (iii) gives:

Il Ssup [ At < g
n

)

5. COMPACTNESS AND SCHATTEN CLASSES

In this part we are interested in the compactness of the embedding

ip.{ My — LP(p)
S U s A |

where y is a Carleson measure for MY.

We turn to the investigation of its membership to various classes of operator ideals. We
are mainly interested in compactness and Schatten classes (when p = 2).

As in section 4, we denote w, = A, '; we consider the operators J, and T, and the

sequence D, (p) associated to this weight.

Definition 5.1. Let p € [1,+00). We say that:

1—¢,1
(i) w is vanishing sublinear when liII(l) M =0;
e— £
(ii) p satisfies (b,) when we have:
b lim X, tPArdy = 0.
(bp) Jm A )

Remark 5.2. Let u be a Carleson measure for M%. We have:
(i) if 4 is compact and p > 1, then p satisfies (b;).
To prove this, we remark that for any k € N we have

1

1 1 )\;

/ t’\")\ﬁtkdt =—"" _ _+0 when n — +oo-
0 A +Ek+1
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1 1
Thus, for any polynomial g we have / tA A2 g(t)dt — 0. Since p > 1 the polynomials
0

, 1
are dense in LP and so (A\;¢*"), converges weakly to 0 in M}. The embedding %, is

1
compact and so ||\t || 1o () — 0 when n — +oo.
(ii) For p,q € [1,400) such that p < ¢, we have:

f is vanishing sublinear = (b,) = (bg).

Indeed, assume that p is vanishing sublinear. For any £ > 0, there exists 7 > 0 such
that ||pj—n1)lls <. We have :

An tPrArdp < AP u([0,1)) + A tPAn dp.
[0,1) [1—n,1)
The first term tends to 0 when n — +o00 and the second is less than p~* ||| —1)[|s <
thanks to Remark 4.2(i7).
(iii) These assumptions are all equivalent to each other when A is a quasi-geometric se-
quence. More precisely, for ¢ > 0 close to 0, we have:

1—-¢,1
/‘L([ & )) SSPR/ tpA"d,LL
€ [0,1)
1 1

p>\n+1 ’ DAn
Aet1 < RAg for any k& € N. We obtain that p is vanishing sublinear in this case.

£
P

where n is the index such that ¢ € ( }, and R is a constant such that

5.1. The case p = 1.

For p = 1, when '4;1; compact, p still satisfies (b;) but the method to prove it is not the
same as for p > 1.

Proposition 5.3. Let A be a lacunary sequence. The following are equivalent:
(i) w satisfies (by) ;

(ii) i}, is compact ;

(iii) i), is weakly compact.

Remark. Actually the implications (ii) = (i) = (i) are valid for any L!-Miintz space,
without any assumption of lacunarity for A.

On another hand we can point out that, without any special assumption of lacunarity on
A, the embedding Z}L is a Dunford-Pettis operator (i.e. maps a weakly convergent sequence
into a norm-convergent sequence) if and only if Z}L is compact. This is due to the fact that
M} has the Schur property since it is isomorphic to a subspace of ¢! (see [We], see also [G]
for some extensions of this result).

Proof. Let us prove that (i) = (i4). Since A is lacunary, we can factorize i), through ¢ (w)
as in the proof of Th.4.5: we have zlll =T,o0 ng. On the other hand, p satisfies (b1), so we

have D, (1) = A\, t*»du — 0 when n — +o0. Prop.2.9 implies that a,,(7},) — 0 and we
[0,1)
get an(z’t) — 0 when n — +o00.

(1) = (4i1) is obvious.

(iii) = (i). Assume now that i}, is weakly compact. We denote H = {A,t*} C L'(p)
and we fix ¢ € (0,1). Since H is bounded in L!(x) and weakly relatively compact, H is
uniformly integrable (see [Wo, Th.III.C.12 p.137]). This means that for any ¢ > 0, there
exists § > 0 such that for any n € N and any measurable set A C [0,1) with p(A) < 4, we
have

/ )\nt’\"du <e.
A
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Since pu({1}) = 0, there exists s € (0,1) such that u([s, 1)) < 7. We have

Mt dy = At dp + At dp
[0,1) [0,5) [5.1]

< As™u([0,1)) + .

and since A, s — 0 when n — 400 we obtain that u satisfies (by). O
5.2. The case p > 1.

Let us mention without proof the next remark (the argument is the same as in Lemma
5.10 below, but we shall not use this result in the general case).

Remark 5.4. Let A be a quasi-geometric sequence. There exist an integer K > 1 and C
depending only on A such that for any n € N we have:

Chik / AR dy <\, / tPrndp < D, (p)P.
[0,1) [0,1)
We first give a first easy sufficient condition to ensure compactness. This is closely linked
to the rough sufficient condition to ensure the boundedness of if, stated in Remark 2.5

Proposition 5.5. Let A be a quasi-geometric sequence.

d
The Carleson embedding i, is order bounded if and only if —'ut dt < oo.
[0,1) + —
Point out that the previous integral condition is then sufficient to ensure that if, is a
p-summing operator, hence compact from M f{ to LP(w).

Proof. Since the space My is separable, %, is order bounded if and only if ¢t +— sup |[f(t)|
fEBI\/IX

belongs to LP(u). Now, the estimation on the point evaluation (see Prop.2.13) gives the

conclusion. |

In the same spirit than the boundedness problem, we can “almost” characterize the
compactness of if, for ¢ > 1, by testing the monomials.

Theorem 5.6. Let A be a lacunary sequence. Assume that p satisfies (b,) for some p €
[1,400). Then if, is compact for any q > p.

Proof. Since A is lacunary, we can factorize if, through ¢?(w) as in Remark 4.3: if, = T}, oJX1
(recall that Jp is an isomorphism). Prop.2.9 gives:

l#2lle S I T,lle < limsup Dn(q) -
n—+o00

Since p satisfies (b,), Lemma 4.6 implies that D, (¢) — 0 when n — 400 and so if, is

compact. O

Corollary 5.7. Let A be a lacunary sequence and p,q € [1,+00) such that p < q.

(i) If if, is compact, then if, is compact.
(i) The converse is false in general.

(ii1) If p is vanishing sublinear, i, is compact.

Proof. 1f i}, is compact, then u satisfies (b,) and since A is lacunary, Th.5.6 gives that i, is
compact. The point (i7) is a consequence of Example 5.14 or Example 5.15 below. At last
(#i7) holds since any vanishing sublinear measure satisfies (by). O

Corollary 5.8. Let g € [1,400) and let A be a quasi-geometric sequence. Assume that p is
a Carleson measure of M. Then we have:

HzZHe ~ lim sup (/
n [0

1

N : p(l—e, )y
Ant ”du) ~ (hmsup f) ~ limsup D, (q) ,
1)

R e—0 n—-+oo
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where the underlying constants depend only on q and A.

In particular, if, is compact if and only if yu is vanishing sublinear.

Proof. We already saw in Lemma 4.6 that:

)

An“"du) i (hm sup M) v

7]l < limsup Dy (q) < limsup (
e—0 9

n—-+oo n [0’1)

this part only requires the lacunarity assumption on A.
To get the minoration of [|if || we use [CFT, Th.3.5] : they proved that

.1 T .1
||Z[LH5 - ngl}—loo HZ;,L,’,L

where !, is the restriction flji— 1 1y- The proof can be easily adapted for ¢ > 1 as it was
noticed in [NT, Prop.2.6] and we have

T, q
ligle = tim_ i, |
Since A is quasi-geometric, Cor.4.9 gives that there is a constant C' > 0 such that for any
1
measure v on [0, 1) we have: ||if|| > C||v||§. We have:

” . q . i . u(l—e, 1)\ 3
liglle = Jim_lif, 11> € lim s 15 = (lmsup FE—220)

|

The following result is an improvement of [CFT, Prop.3.2]. The result requires no as-
sumption on the lacunarity of A but a strong assumption on pu.

Proposition 5.9. If Supp(p) is included in a compact set of [0,1), then if, is a nuclear
operator.

Proof. Assume that Supp(p) C [0,0] with § < 1. We fix ¢ > 0 such that (14 ¢)d < 1. Since
A satisfies the gap condition, we have the following classical estimation essentially done in
[GL, Prop.6.2.2): there exists K. such that for any Miintz polynomial f(t) = 3" ait™*, we
k
have
lan| < Ko(1+¢)*

fllp -

My, — C
This implies that the functionals e, : SaptM —s a, are well defined, bounded, and
k

we have |lef| < K.(1+¢e)* .
We define g, : [0,1) = C by g,(t) = t*». The functions (g,), belong to LP?(u) and we
have |\gn L) < 1([0,1))6**. On the other hand, for any Miintz polynomial f, we have

i f= > er(f)yx. So i, and > €} ® yi coincide on a dense set of M¥. Moreover, we have
k kEN

S ek @ el < Kepr0,1) Y (501 +9)) ™ < oo

k

so ¢4, is a nuclear operator. (|

5.3. The case p = 2.

Now on we focus on the hilbertian framework.

Lemma 5.10. Let A be a quasi-geometric sequence and p such that zi 18 bounded.

(i) There exist an integer K > 1 and C > 0 depending only on A such that for anyn € N
we have:

Chnyx / AR dp < Ay / t*ndp < D, (2)%.
[0,1) [0,1)
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(it) For any q € (0,400), we have:

[Oa@)allr = | (3 [

[071)

1 1
) =l ], ).
n llea [0,1) n

in the sense that these quantities are equivalent, up to constants depending only on A
and q.

¢a

Proof. For n € N we have

DA2P = Y- () [

t>\n+/\kd'u > )\n/ t”‘"du
keN [0.1)

(0,1)

since this last term is the term n = k in the sum. On the other hand, we assume that A
is r-lacunary. There exists K € N such that r® > 2 and since A is quasi-geometric, there
exists R € R such that Agy1 < RAg for any k. We obtain:

Ant K / AR dy < REA, 7 M dp S Ay t*Andy
[0,1) [0,1) [0,1)
and we obtain (7).

For k € N we shall denote My, = )\k/ tE dp. Assume that the sequence (Mé)k € /.
[0,1)

1
We compare ||D,(2)]¢s and ||M;2]| and shall, in some sense, improve the estimation of
Lemma 4.6. For n € N, we have:

Dn(2)2 — Z()\n)\k)%/ tkn—‘r}\kdﬂ"— Z(An)\k)%/ t>\"+)\kdﬂ

k<n [0,1) kon [0,1)

Ak
k<n k>n

1 1
<M+ ) Mi——
NG k>n r
The number D,,(2)? is less than the n-th entry of the vector A[(My)x], where A = (A k)n.k
is the matrix defined by

0 ifk<n
App={ A=r=3)71 ifk=n
\/F%* if £ > n.
Assume first that ¢ > 2. Since A satisfies
2 2
S%pZAn,k < and Sl;pZAn,k ST
k NG n NG

we can apply the Schur lemma: A defines a bounded operator A : ¢ — ¢% and we have

2 q .
[Alls < e In particular, for (My)x € €2 we obtain
Jr

[(Dn@)ler < T (M) e
\/F

Now we treat the case ¢ < 2. Since % < 1, we have
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And we get:
q k—1 g(k—n)
1\4 1 2 1\4 1N =7
o=y (M) (=) + X () 2 (5)
neN n VT keN n=0
1
S M2 |5,
where the underlying constants depend on r and ¢ only. O

Theorem 5.11. Let A be a lacunary sequence and g > 0. We have
(i) If (D, (2)), € €9 then we have:

5 llss S 1Dn(2)]les ;
(i) If moreover we assume that A is quasi-geometric, and q > 2, then we have:
55 llss & [ Dn(2)]les
where the underlying constants depend only on q and A.

Proof. As in Remark 4.3, since A is lacunary we can factorize zi through ¢2(w), and we get
an(i2) S an(T,) and Prop.2.9 gives

D (@)1 S Du(2)?.

n

Assume now that ¢ > 2. As a direct consequence of [DJT, Th.4.7 p.82], we obtain that
for any Riesz basis (fn), of M3, there exists a constant C' > 0 such that

1
2llse = C (DM falllagy )" -

1
The theorem of Gurariy-Macaev says exactly that the sequence (f,), = (A3t**), is a
Riesz basis of M3, and we obtain:

‘ 4
150 2 3 ([ o)

and Lemma 5.10 gives the result. |

We also have an integral expression for [|i2 || sa.

Proposition 5.12. Assume that A is quasi-geometric and q > 2. We have:

1 g 1
s~ ([ (f, uf’:ff))g“)zds)q .

Proof. We denote M,, = A\, / t>*ndy. The previous estimation gives:
[071)

o

2 3 a 1
l2llse ~ (D2 M) " = ()l

On the other hand we can apply the theorem of Gurariy-Macaev to estimate an equivalent
of [|(My)||,4- We obtain, using Lemma 2.10,

1
2

L3(s) (/01 (;)\n /[0,1) t%ndu(t))éy\n)%ds)%
_ (/01 (/[O ; Z)\éﬂ(stZ)A"du(t))%ds)%

1 q 1
([ () )

We get the result since (1 — st) < (1 —st?) < (1+st)(1—st) < 2(1—st) for s,¢ € [0,1]. O

2
2llso ~ || - MaALs
n
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Note that the previous criterion is the same for any sequence A which is quasi-geometric.
In particular, we have a characterization of the Hilbert-Schmidt embeddings.

Theorem 5.13. Let A be a quasi-geometric sequence. The following are equivalent:
(i) 2, is an Hibert-Schmidt operator ;

1
(ii) ——dp < 400 ;
[0,1) ]. - t

1 1
In this case we have HziHSz R~ (/ —du) °
[0,1

Proof. Proof 1. We apply Prop.5.12 in the case ¢ = 2. The Fubini theorem gives:

1
. du(t) 1

(Al %// 7ds=/ ——dpu .
ulls: 0 Jiep,1y (1 —st)? o1 1—1

Proof 2. It suffices to invoke the fact that order bounded and Hilbert-Schmidt operators
are the same in an L2?-framework, and Prop.5.5 gives the result. |

5.4. Examples.

Now we give two examples, showing that in a strong manner, the boundedness and the
compactness of Carleson embeddings on Miintz spaces M} depend in general on p and not
only on A.

Example 5.14. Let p € [1,+00). We are going to construct a lacunary sequence A and a
measure p on [0,1) such that
(A) i is not bounded when ¢ € [1, p] ;

(B) 44, is compact when ¢ € (p, +00).

Proof. Note that A cannot be a quasi-geometric sequence. We shall take a measure p with

the form p = Y ¢id,, where 2 € (0,1) and ¢ > 0.
k>2
We define Ay = 1, (A\,,)n>2 such that for any n > 3, we have A, > nPT\,_;. For n > 2
Pl 1

let ¢, = m and z, =1 — og(n)

An A

1 >\’VL

such that n > k we have 2" < (E) ™ We check that w does not satisfy (B,):

1 .
- We have xf‘;‘ ~ — when n — +o00, and in for n, k
n

Pl 1
n”log(n) 1 = log(n) — +oc.

An np

An tPAndy = Z )\nckari’\" > ApcnazPn ~ N,
[071) k

Hence iﬁ is not bounded.
On the other hand, for ¢ > p, we have

)\n/ tndy, = Z AanxZ)‘" + )\ncnx‘}f‘" + Z Anckxg)‘".
[0,1) k<n k>n
We control these three terms. For the first:

St s St (£) 7 2 22 ()7

k<n k<n k
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Since k£ > 2 and

— 400, this term tends to 0 when n — +oco. For the term n = k we
nPlog(n) 1  log(n)

n—1

have : )\ncnx‘j;\" ~ Ap

— 0. For the last sum, z; <1 gives:

A, nd  pa-P
=X ko (k) _ =X log(k) A
qAn g g n
Z}\ .’I; Ck < Z )\ T =~ Z 2 X )\k_l
k>n k=n+1 k=n+1
log

——>0

M

Thus, p satisfies (by), and using Th.5.6 4}, is compact for any r > g. We obtain that for any
r > p, i, is compact. ([l

Example 5.15. Let p € (1,400). We shall construct a lacunary sequence A and a measure
p on [0,1) such that

(A) i, is not bounded when g € [1,p) ;
(B) 4% is compact when g € [p, +-00).
Proof. We take again a measure p with the form p = > ¢xds,. Let A = (A)p>2 with
E>2
X2 =1, and for all n > 3, \,, > npmax{pp’} )
n? B log(n) W

Let anmand In—l— )\n e have =

1y n
n, k such that n > k we have xz” < (7) M
Let ¢ € [1,p). We check that p does not satisfy (B,):

1 .
M~ — when n — +oc, and in for
n

P 1 p—q
An tndpy > /\ncnxff‘" ~ /\nni— - — +o0.
0,1) Anlog(n) ne  log(n)

Hence 7}, is not bounded. On the other hand, we show that the sequence D, (p) tends to 0

when n — +o0:

_ P p)\
)P %Ac] (ZA k)

<)\”cx (Z/\p A’“) - +Z)\”c] "( _aj)F
J

using Lemma 2.10 and Remark 2.11 for the second term. We first control the second term.
If j > n, x m <1 gives:

1

R = D C U

j>n ] log ) ji>n J ji>n

\\H

b An
Z)\ncjmj (1—%)

ji>n
since \; > jp2 Aj—1. Hence this term tends to 0.
An

1\ 55
For j < n we have .Z‘])-\" < (7) % and we obtain:
J

and since j > 2 and — 400, this term tends to 0 when n — +oo.

n—1
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To majorize the part ”j = n” we split the sum in three terms:

A o\t A 2! A
A ey ( E AL acn’“) S Mepan ( E AL x,ﬁ) + ApaPire,
k k<n

1 1 p—1
+ A Cnx,’; ( Z AL xf{’“)
k>n
For k < n, we have z,, < 1 and it gives:
1
1 1 p—1 AEnP 1 1\p-1 A1\ 1
P x)\n( )\pxkk) < n 7( )\p) <n;0*1( n )P <
e Z ko ~ log(n)A, n Z k ~ An “n
k<n k<n—1

. ’
since A\, > \,_1nPP .
ApnP

For the term n = k, we have )\nsz‘"cn ~ P log (1) = Tog(n)

— 0. For k > n, we

Ly *
have z)* < (7) " and we obtain:
n
1 1 p—1  pp-l 1 1,1y 2y p-1
p An P A p’ P n
AR Cny (Z)\k x"k) S log(n) An (Z)\k (ﬁ) )
k>n k>n
Ae Y31y xe -1y Pl
< Zk il
(GG
k>

A
and this term tends to 0 since Antl +o00.

n
Thus, Dy (p) — 0 when n — +o0. Since A is lacunary we can factorize if, as in Remark

4.3. We have if, =T, 0 ng (recall that Jp is an isomorphism) and 7}, is compact thanks to
Prop.2.9. Hence Cor.5.7 implies that i}, is compact for any ¢ > p. O
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