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ABSTRACT

In this paper, we propose a computational model of visual
attention for stereoscopic video. Low-level visual features in-
cluding color, luminance, texture and depth are used to calcu-
late feature contrast for spatial saliency of stereoscopic video
frames. Besides, the proposed model adopts motion features
to compute the temporal saliency. Here, we extract the rel-
ative planar and depth motion for temporal saliency calcu-
lation. The final saliency map is computed by fusing the
spatial and temporal saliency together. Experimental results
show the promising performance of the proposed method in
saliency prediction for stereoscopic video.

Index Terms— Visual attention, saliency detection,
stereoscopic video, depth feature, planar motion, depth mo-
tion.

1. INTRODUCTION

Visual attention is a significant mechanism in visual per-
ception to rapidly detect the salient information of natural
scenes. When observing natural scenes, selective attention
would focus on some specific salient information and ignore
other unimportant information due to the limited processing
resources. Basically, there are two approaches in visual at-
tention: bottom-up and top-down. The bottom-up process is
data-driven and task-independent for automatic salient region
detection, while the top-down approach is a task-dependent
cognitive process related to certain specific task, observers’
experiences, etc. [1, 2].

Generally, the salient regions extracted by visual attention
models can be widely used in many 2D multimedia applica-
tions such as visual quality assessment [11], coding [3, 12],
segmentation [13, 14], etc. Previously, there have been var-
ious computational visual attention models proposed for 2D
images/video [4]-[8]. Itti et al. proposed an early visual at-
tention model for images by feature contrast from luminance,
color, and orientation [4]. Following this work, Harel et al.
used graph theory to better measure the saliency of image
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pixels in [5]. Le Meur et al. proposed a saliency detec-
tion model by the characteristics of the human visual system
including contrast sensitivity function, visual masking, and
center-surround interactions [9]. Some studies try to extract
the saliency information of images from transform domain
[6, 7, 8]. Recently, machine learning techniques are widely
used for visual attention modeling [25, 26]. More related
works can be referred to the study [3].

In the past decade, there have been various emerging
stereoscopic multimedia applications with the rapid devel-
opment of stereoscopic display technologies, including 3D
visual quality assessment [15, 16, 17], 3D video coding
[18, 19], 3D content generation [20], etc. For these 3D mul-
timedia applications, the integration of visual 3D perception
models can be used to improve the performance of these re-
lated 3D multimedia processing algorithms. Stereoscopic vi-
sual attention, an important stereoscopic visual perception
process, can be used to extract the salient regions in stereo-
scopic visual content for various stereoscopic multimedia ap-
plications.

Currently, there are some studies focusing on investigat-
ing stereoscopic visual attention modeling. Chamaret et al.
proposed a saliency detection algorithm for 3D rendering
[21]. In that study, the disparity map is used to weight the
2D saliency map to calculate the final saliency map for 3D im-
ages [21]. Lang et al. constructed an eye tracking database for
stereoscopic images and investigated the influence of depth in
stereoscopic visual attention modeling [22]. In the study [23],
Wang et al. designed stereoscopic saliency detection models
by combing depth saliency and 2D saliency with the fusion
methods of summation and multiplication. An eye tracking
database was also built to demonstrate the performance of the
stereoscopic saliency detection models [23]. Recently, Fang
et al. proposed a stereoscopic visual attention model by com-
bining 2D saliency map, depth saliency map and center bias
map [24].

Most of the existing stereoscopic visual attention models
introduced above are proposed for stereoscopic images. The
research on visual attention modeling for stereoscopic video
is still limited in the research community. Compared with the
visual attention modeling for stereoscopic images, the influ-
ence of motion has to be considered in visual attention mod-
eling for stereoscopic video. Basically, there are two types



of motion in stereoscopic video: the planar motion and depth
motion. In this paper, we propose a novel computational vi-
sual attention model for stereoscopic video. Low-level fea-
tures including color, luminance, texture and depth are ex-
tracted to compute the feature contrast for spatial saliency
prediction. In addition, planar motion and depth motion are
computed for temporal saliency estimation. The final saliency
map of stereoscopic video is computed by combining the spa-
tial and temporal saliency maps.

The remaining of this paper is organized as follows. Sec-
tion 2 introduces the proposed model in detail. In Section
3, we conduct the comparison experiment to demonstrate the
performance of the proposed model. The final section con-
cludes the study.

2. PROPOSED METHOD

As described in the previous section, we propose a visual at-
tention model for stereoscopic video by combining the spatial
and temporal saliency maps. The proposed model firstly ex-
tracts the features of luminance, color, texture and depth from
stereoscopic video. Then it computes the feature contrast for
these features for spatial saliency calculation. Additionally,
the planar and depth motion is extracted from the stereoscopic
video for temporal saliency computation. We will introduce
the details step by step in the following subsections.

2.1. Feature Extraction

In the proposed method, we extract three types of features: 2D
feature, depth feature and motion features. The 2D and depth
features are used to calculate the feature contrast, which has
been widely used for visual attention modeling in the litera-
ture. For the motion feature, we extract the planar and depth
motion for temporal saliency calculation.

In the proposed model, we extract the feature contrast
from low-level features of color, luminance, texture and depth
for the proposed model. It is well known that DCT (Dis-
crete Cosine Transform) is a superior representation of energy
compactness and most energy is concentrated on a few low-
frequency coefficients. Because of this, DCT has been widely
used in various multimedia processing applications. Inspired
by a recent study which uses DCT coefficients in saliency es-
timation [7], DCT coefficients are adopted to compute the fea-
ture contrast for stereoscopic video in this study.

The input image is firstly transformed in YCbCr color
space and divided into small image patches. For each im-
age patch, the DCT coefficients are adopted to represent the
energy. Here, we use the DC coefficient of Y component to
represent the luminance feature of each image patch. Assume
that YDC is the DC coefficient of Y component, the lumi-
nance feature L can be represented as: L = YDC . The DC
coefficients of Cb and Cr components are used to represent
the color features of image patches. Assume that CbDC and

CrDC are the DC coefficients of Cb and Cr components, re-
spectively, The color features of each image patch C1 and C2

can be denoted as: C1 = CbDC and C2 = CrDC .
As we know, the Cb and Cr components mainly include

color information in images. Thus, we only use AC co-
efficients in Y component to represent the texture feature
for each image patch. In each DCT block, the first sev-
eral low-frequency coefficients in the left-upper corner in-
clude most energy. Thus, similar with the study [24], we
only use the first nine AC coefficients in each DCT block
with zig-zag scanning to represent the texture feature T :
T = {YAC1, YAC2, ..., YAC9}.

For stereoscopic video, the disparity map shows the paral-
lax of image pixels between the left-view and right-view im-
age pair. It is estimated in unit of pixels for disparity system.
Here, we first estimate the disparity map for depth feature
extraction. The disparity map P is computed with the varia-
tional algorithm by Chambolle and Pock [27]. The depth map
P ′ can be calculated based on the disparity as follows [23]:

P ′ = v/(1 +
d · h
P · w

) (1)

where v denotes the viewing distance; d is the interocular dis-
tance; w and h are the width (in cm) and horizontal resolution
of the display screen, respectively.

After the depth map is computed, DC coefficients of im-
age patches in the depth map are used as the depth feature in
the proposed model. The depth feature D can be represented
as: D = P ′

DC .
There are two types of motion in stereoscopic video: the

planar motion and depth motion. The motion map of the left
view is first estimated by optical flow [28]. The motion map
can be represented as the motion vectors in x and y directions:
Mx(i, j, t) and My(i, j, t), respectively (where (i, j) denotes
the pixel location in the image; t represents the t-th frame.).
The depth motion Md can be computed as follows [29].

Md(it, jt, t) = P (it +Mx(it, jt, t), jt +

My(it, jt, t), t+ 1)− P (it, jt, t) (2)

where P is the disparity map.
Since the depth motion would influence the 2D motion

estimation in x-direction, the 2D motion map Mx(i, j) is ac-
tually a combination of the depth motion and 2D x-direction
motion. Thus, the planar x-direction motion can be computed
by removing depth motion part from Mx(x, y). The planar
motion at x and y directions can be computed as follows [29].

Mpx = Mx − 1

2
Md (3)

Mpy = My (4)

2.2. Saliency Estimation

It is well known that the salient regions in images pop out
due to its high feature contrast from their surround regions.



The salient regions can be detected by the center-surround
differences between image patches. Following the study [7],
we compute the saliency value of each image patch by the
feature differences between this image patch and all the others
in the image. A Gaussian model of spatial distances between
image patches is adopted to weight the feature differences for
saliency estimation. For each image patch i, its saliency value
Sm
i from feature m can be calculated as:

Sq
i =

∑
j ̸=i

1

σ
√
2π

e−d2
ij/(2σ

2)Rq
ij (5)

where q ∈ {L,C1, C2, T,D}; dij is the spatial distance be-
tween image patches i and j; Rq

ij represents the feature dif-
ference between image patches i and j; σ is the parameter
of Gaussian model, which is used to determine the degree of
local and global feature contrast. For the luminance, color
and depth features, the feature differences Rq

ij between im-
age patches i and j can be computed by the normalized dif-
ferences between the corresponding DC coefficients. For the
texture feature composed of nine AC coefficients, the feature
difference RT

ij can be calculated by the L2 norm.
After the feature maps from luminance, color, texture, and

depth are computed according to Eq. (5), we calculate the
spatial saliency map for stereoscopic video by simply linear
combination of these feature maps as follows.

Ss =
1

Q

∑
q

Sq (6)

where Q represents the number of features used for spatial
saliency prediction.

It is well accepted that object motion is highly correlated
with visual attention [30, 31]. In general, an object with
strong motion with respect to the background would attract
human’s attention [30, 31]. The planar motion and depth mo-
tion we compute in Eqs. (2) - (4) are absolute local motion.
Usually, the object motion we perceive represents the relative
motion between the object and background [33, 34]. Thus,
we have to calculate the relative planar motion and relative
depth motion for temporal saliency extraction of stereoscopic
video.

To be aligned with the spatial saliency map computation
in Eq.(5), the motion feature maps are estimated as relative
planar motion and relative depth motion by motion feature
contrast. For each image patch i, the relative motion value
from planar/depth motion can be computed as follows:

vmi =
∑
j ̸=i

1

σ
√
2π

e−d2
ij/(2σ

2)Rm
ij (7)

where m ∈ {Md,Mp} (Md and Mq represent depth mo-
tion and planar motion, respectively). Rm

ij denotes the
depth/planar motion differences between patches i and j. The
other parameters are similar with those in Eq. (5). Please note

that the depth/planar motion difference Rm
ij is computed by

motion normalization as follows:

Rm
ij =

|Mm
i −Mm

j |
|Mm

i |+ |Mm
j |+ C

(8)

where Mm ∈ {Md,Mp}; C is a small constant.
Eq. (7) computes the relative motion in a more localized

form within a large neighboring region rather than comparing
with the global background motion. After the feature maps of
planar and depth motion are computed in Eq. (7), we estimate
the temporal saliency by combining these two motion feature
maps as follows.

St =


0,maxi(v

p
i ) ≤ T && maxi(v

d
i ) ≤ T

vd,maxi(v
p
i ) ≤ T && maxi(v

d
i ) > T

vp,maxi(v
d
i ) ≤ T && maxi(v

p
i ) > T

1
2 (v

d + vp), otherwise

(9)

where i denotes the image patch in the video frame; vp and vd
represent the relative planar motion and relative depth motion
computed by Eq. (7), respectively; T is a threshold value.
From Eq. (9), we can see that, the temporal saliency would
be zero if both relative planar motion and relative depth mo-
tion are small; the temporal saliency would be relative planar
motion (relative depth motion) if the relative depth motion
(relative planar motion) is small; the temporal saliency would
be the linear combination of relative planar motion and rela-
tive depth motion if both of them are larger than the threshold.

With the computed spatial and temporal saliency maps,
the final saliency map for stereoscopic video can be obtained
by combining these two maps. Here, we consider the spatial
and temporal saliency as the same important, and thus we use
the simple linear combination method to fuse these two types
of saliency maps as follows.

S =
1

2
(Ss + St) (10)

3. EXPERIMENTAL RESULTS

In this section, we conduct the comparison experiment to
show the performance of the proposed visual attention model
of stereoscopic video. We use a subset of the eye track-
ing database [35] to conduct the experiment. This database
includes video sequences with various content with differ-
ent levels of 3D effect, aesthetic composition, variations in
colour, environment, motion, texture, light, etc. [35]. The
stereoscopic video sequences are obtained by the Panasonic
AG-3D camera and Intel SATA3 SSDs to record the visual
content. These video sequences are recorded with the res-
olution of 1920 × 1080. The eye tracking data is obtained
from the recording data by the SMI RED (4 firewire) re-
mote eye-tracker working at 60Hz. A set of 40 subjects from



19 to 44 years old were involved in the eye tracking exper-
iment and they were asked not to move during the experi-
ment. The stereoscopic video sequences were displayed on
a 26-inch Panasonic BT-3DL2550 LCD screen with the re-
fresh rate of 60Hz and resolution of 1920× 1080. The video
sequences were viewed by subjects with a pair of passive po-
larized glasses. The lab environment luminance was adjusted
for subjects with an appropriate size for the pupil during the
eye tracking experiment. The gaze points recorded by the
eye tracker are used to create the fixation density map, which
is used as the ground truth of saliency estimation for stereo-
scopic video.

In this experiment, we evaluate the performance of the
proposed model by comparing the saliency maps from the
computational visual attention models with the fixation den-
sity map from eye tracking data. In general, an effective vi-
sual attention model can predict the saliency map similar with
the fixation map. We use three common methods to evaluate
the performance of the proposed model: Receiver Operating
Characteristics (ROC), Linear Correlation Coefficient (CC),
and Normalized Scanpath Saliency (NSS).

In the research community, ROC curve is widely adopted
for performance evaluation of visual attention models.
Through the defined threshold, the saliency map from visual
attention model can be divided into salient points and non-
salient points. There are target points and background points
in the fixation map from eye tracking data. The True Posi-
tive Rate (TPR) is computed as the percentage of target points
falling into the salient points from the visual attention model,
while the False Positive Rate (FPR) is calculated by the per-
centage of background points falling into the salient points
from the visual attention model. The ROC curve of the visual
attention model can be obtained as the curve of TPR vs. FPR
through defining different thresholds. The area under ROC
curve (AUC) provides an overall performance evaluation. A
better visual attention model is expected to have a larger AUC
value.

CC can be used to measure the degree of linear correlation
between the saliency map and fixation map. Here, Pearson’s
correlation coefficient between two variables is used to com-
pute CC for visual attention models. It is computed by the
covariance of the saliency map and fixation map divided by
the product of the standard deviations as:

CC(s, f) =
cov(s, f)

σsσf
(11)

where s and f are saliency map and fixation map, respec-
tively. The CC values are in the range of [0,1] and with larger
CC value, the visual attention model can obtain better perfor-
mance of saliency prediction.

Besides, we also use NSS to evaluate the performance of
the proposed model. It is defined by the response value at
human fixation locations in the normalized saliency map with

zero mean and unit standard deviation as:

NSS(s, f) =
1

σs
(s(if , jf )− µs) (12)

where (if , jf ) is the pixel location in the fixation map; µs is
the mean value of the saliency map; s and f are the saliency
map and fixation map, respectively; σs is the standard devi-
ation of the saliency map. Usually, with the higher the NSS
value, the visual attention model can estimate better saliency
results.

In this experiment, we compare the proposed model with
several existing studies including Itti-2D [4], Fang-3D [24],
Seo-2DV [36]. Specially, Itti-2D is a classical visual at-
tention model for 2D images; Fang-3D is a visual attention
model proposed recently for stereoscopic images; Seo-2DV
is a saliency detection model for 2D video sequences. The
comparison experimental results are shown in Table. 1. From
this table, we can see that Fang-3D and Seo-2DV can obtain
much better performance than Itti-2D, which mean that the re-
cent 3D saliency detection model [24] and 2D video saliency
detection model can predict more accurate saliency informa-
tion for stereoscopic video than the classic model [4]. Com-
pared with the other existing related saliency detection mod-
els, the proposed model can obtain higher values of AUC,
CC and NSS. This means that the proposed model can obtain
the best performance of saliency prediction for stereoscopic
video among the compared models.

In Fig. 1, we also provide some comparison samples from
different saliency detection models. From these comparisons,
we can find that Itti-2D can only detect the contour infor-
mation in the images. The Fang-3D model would lost some
salient regions. On the contrary, the proposed model can ob-
tain better saliency maps than other existing ones.

4. CONCLUSION

In this paper, we propose a novel visual attention model
for stereoscopic video by combining the spatial and tempo-
ral saliency. The features of luminance, color, texture and
depth are extracted to compute the feature contrast, which is
adopted for spatial saliency prediction for stereoscopic video.
For temporal saliency estimation, we consider both of the rel-
ative planar and depth motion. Experimental results show
the promising performance of the proposed model in saliency
prediction of stereoscopic video. In the future, we will fur-
ther investigate the combination methods for different feature
maps in the final saliency prediction for stereoscopic video.
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