3D Object detection and viewpoint selection in sketch images using local patch-based Zernike moments

Anh Phuong Ta 1 Christian Wolf 1 Guillaume Lavoué 1 Atilla Baskurt 1
1 M2DisCo - Geometry Processing and Constrained Optimization
LIRIS - Laboratoire d'InfoRmatique en Image et Systèmes d'information
Abstract : In this paper we present a new approach to detect and recognize 3D models in 2D storyboards which have been drawn during the production process of animated cartoons. Our method is robust to occlusion, scale and rotation. The lack of texture and color makes it difficult to extract local features of the target object from the sketched storyboard. Therefore the existing approaches using local descriptors like interest points can fail in such images. We propose a new framework which combines patch-based Zernike descriptors with a method enforcing spatial constraints for exactly detecting 3D models represented as a set of 2D views in the storyboards. Experimental results show that the proposed method can deal with partial object occlusion and is suitable for poorly textured objects.
Type de document :
Communication dans un congrès
7th International conference on Content-Based Multimedia Indexing (CBMI), Jun 2009, Chania, Crete, Greece. IEEE, pp.189-194, 2009, 〈10.1109/CBMI.2009.29〉
Liste complète des métadonnées

https://hal.archives-ouvertes.fr/hal-01437638
Contributeur : Équipe Gestionnaire Des Publications Si Liris <>
Soumis le : mardi 17 janvier 2017 - 13:53:45
Dernière modification le : jeudi 19 avril 2018 - 14:38:04

Lien texte intégral

Identifiants

Citation

Anh Phuong Ta, Christian Wolf, Guillaume Lavoué, Atilla Baskurt. 3D Object detection and viewpoint selection in sketch images using local patch-based Zernike moments. 7th International conference on Content-Based Multimedia Indexing (CBMI), Jun 2009, Chania, Crete, Greece. IEEE, pp.189-194, 2009, 〈10.1109/CBMI.2009.29〉. 〈hal-01437638〉

Partager

Métriques

Consultations de la notice

125