Secondary organic aerosol formation from isoprene photooxidation during cloud condensation-evaporation cycles - Archive ouverte HAL Accéder directement au contenu
Article Dans Une Revue Atmospheric Chemistry and Physics Année : 2016

Secondary organic aerosol formation from isoprene photooxidation during cloud condensation-evaporation cycles

Résumé

The impact of cloud events on isoprene secondary organic aerosol (SOA) formation has been studied from an isoprene / NOx / light system in an atmospheric simulation chamber. It was shown that the presence of a liquid water cloud leads to a faster and higher SOA formation than under dry conditions. When a cloud is generated early in the photooxidation reaction, before any SOA formation has occurred, a fast SOA formation is observed with mass yields ranging from 0.002 to 0.004. These yields are 2 and 4 times higher than those observed under dry conditions. When the cloud is generated at a later photooxidation stage, after isoprene SOA is stabilized at its maximum mass concentration, a rapid increase (by a factor of 2 or higher) of the SOA mass concentration is observed. The SOA chemical composition is influenced by cloud generation: the additional SOA formed during cloud events is composed of both organics and nitrate containing species. This SOA formation can be linked to the dissolution of water soluble volatile organic compounds (VOCs) in the aqueous phase and to further aqueous phase reactions. Cloud-induced SOA formation is experimentally demonstrated in this study, thus highlighting the importance of aqueous multiphase systems in atmospheric SOA formation estimations.
Fichier principal
Vignette du fichier
acp-16-1747-2016.pdf (2.57 Mo) Télécharger le fichier
Origine : Fichiers éditeurs autorisés sur une archive ouverte
Loading...

Dates et versions

hal-01436747 , version 1 (29-05-2017)

Identifiants

Citer

L. Bregonzio-Rozier, C. Giorio, F. Siekmann, E. Pangui, S. B. Morales, et al.. Secondary organic aerosol formation from isoprene photooxidation during cloud condensation-evaporation cycles. Atmospheric Chemistry and Physics, 2016, 16 (3), pp.1747-1760. ⟨10.5194/acp-16-1747-2016⟩. ⟨hal-01436747⟩
263 Consultations
171 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More