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Abstract

The aim of this work is to design an explicit finite volume scheme with high-order MOOD recon-
struction for specific systems of conservation laws with stiff source terms which degenerate into
diffusion equations. We propose a general framework to design an asymptotic preserving scheme
that is stable and consistent under a classical hyperbolic CFL condition in both hyperbolic and
diffusive regimes for any 2D unstructured mesh. Moreover, the developed scheme also preserves the
set of admissible states, which is mandatory to conserve physical solutions in stiff configurations.
This construction is achieved by using a non-linear scheme as a target scheme for the limit diffusion
equation, which gives the form of the global scheme for the full system. The high-order polyno-
mial reconstructions allow to improve the accuracy of the scheme without getting a full high-order
scheme. Numerical results are provided to validate the scheme in every regime.

Keywords: asymptotic-preserving schemes, finite volumes schemes, hyperbolic systems of
conservation laws with source terms, MOOD.

1. Introduction

In this work we study the numerical approximation of systems of conservation laws with stiff
source terms, which can be written in the following formalism:

∂tU + div(F(U)) = γ(U)(R(U)−U), (1.1)

where the vector of conservative variable U is in A ⊂ Rn the set of admissible states. The source
term is composed of γ a positive function that controls its stiffness and R(U) ∈ A. The homoge-
neous hyperbolic system associated to (1.1) is:

∂tU + div(F(U)) = 0, (1.2)
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with F the hyperbolic physical flux. The compatibility conditions from [5] are assumed to be
fulfilled so that when γ(U)t→∞ the system (1.1) degenerates into a diffusion equation:

∂tu− div
(
D(u)∇u

)
= 0, (1.3)

where u ∈ R is linked to U, and D is positive function.
The key point of this work is to construct high-order schemes which extend the 1D asymptotic

preserving (AP for short) scheme designed in [7] and the one for 2D unstructured meshes from [9].
This extension to high-order has to be done without losing the AP property of the first-order
schemes.

The AP property will be considered in the sense of Jin [40] that is Figure 1 holds with uniform
bounds on the parameters in terms of γt (eg. the CFL condition).

Model:
∂tU+ div(F(U)) = γ(U)(R(U)−U)

Diffusion equation:
∂tu− div

(
D(u)∇u

)
= 0

γ(U)t→ ∞

Numerical scheme

consistent:
∆t,∆x→ 0

Limit scheme
γ(U)t→ ∞

consistent?

Figure 1: Aim of an AP scheme

Throughout this paper, the isentropic Euler model with friction is used as an example:

U =

(
ρ
ρu

)
,F(U) =

(
(ρu)

T

ρu⊗ u + pI

)
,R(U) =

(
ρ
0

)
, (1.4)

where γ(U) = κ(ρ) > 0 is the friction coefficient and p(ρ) a pressure law with p′(ρ) > 0. For all the
test cases we choose p(ρ) = ρ1.4. The set of admissible states of this model is, in 2D:

A = {U = (ρ, ρu)
T ∈ R3/ρ > 0}.

When κt→∞, the system degenerates into the following diffusion equation (see [47, 33, 36, 5] for
a rigorous proof):

∂tρ− div
(
p′(ρ)

κ(ρ)
∇ρ
)

= 0. (1.5)

Various others systems enter the framework of (1.1), including the P1 model for radiative trans-
fer [14] or the M1 model [25, 7, 9]. Let us emphasize the fact that γ does indeed strongly depends
on U in several applications. Hence, it is crucial to build a numerical scheme able to deal with this
feature.

There is a strong interest in developing AP schemes in our context since the pioneer work of
Gosse and Toscani [29]. This work has been generalised in [7] for all systems in our formalism (1.1)
for the 1D case. Then, several works have been done to construct AP schemes in 2D, by using
1D techniques [26, 6, 9] or MPFA based schemes [13, 14, 15, 16]. The aim is now to develop
high-order finite volume schemes for those systems, especially for 2D unstructured meshes. IMEX
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methods [1] and (W)ENO discretizations [34, 45] has been used to get up to second and third-order
schemes in [11, 10] for some 1D hyperbolic systems and kinetic equations. When dealing with
kinetic equations one may also use projective integrations [43] or again IMEX time schemes with
micro-macro decomposition and Discontinuous Galerkin [38] to construct high-order schemes, for
instance. This list of techniques is not exhaustive and for more details about each method the
reader is referred to the cited works and dereferences therein.

The content of this work is divided into two main parts: one for 1D schemes and another one
for 2D schemes conducted on unstructured meshes. Inside each part, the first-order scheme is
quickly recalled for the homogeneous hyperbolic system (1.2) then extended to high-order. Then,
the construction of a scheme using high-order polynomial reconstruction of the MOOD method [19]
is also done with the two AP schemes for the system with source term (1.1) in 1D and 2D. Besides,
results are presented with reference solutions constructed in the appendices, and the convergence
towards the diffusion limit is investigated.

2. Asymptotic preserving scheme in 1D

2.1. High-order scheme for the homogeneous system
First of all, let us recall the general framework for an explicit first-order 1D finite volume scheme

for the homogeneous hyperbolic system (1.2):

Un+1
i = Un

i −
∆t

∆x

(
F i+1/2 −F i−1/2

)
, (2.1)

where the classical notations are used. Hence, when using uniform 1D meshes, a cell i is composed
of a segment [xi−1/2;xi+1/2], with a cell center located at xi :=

xi+1/2+xi−1/2

2 and the space step is
∆x := xi+1/2 − xi−1/2.

In this scheme F i+1/2 = F(Ui,Ui+1) is a two points approximate Riemann solver such as
Rusanov [48], HLL [35] or HLLC [57, 58, 3] for instance. This first-order scheme is consistent with
the hyperbolic system (1.2), stable and conserves the set of admissible states A under a classical
hyperbolic CFL condition:

∆t

∆x
max
i

(
|b−i+1/2|, |b+i+1/2|

)
≤ 1

2
, (2.2)

where b+i+1/2 and b−i+1/2 are speeds respectively larger and smaller than all wave speeds at interface
xi+1/2.

In order to get a better accuracy, the extension of (2.1) to high-order is considered. In order to
do so, different technique in the framework of the finite volume method can be used. For instance,
MUSCL [59], ENO [34] or WENO [45, 39, 51] reconstructions can be set up. For space and time
high-order methods it is also possible to use the ADER [56] or GRP [2] methods. We choose to use
the MOOD method initially introduced in [19] and then extended and used in [22, 23, 4, 46, 12].
This choice has been made as the a posteriori paradigm is already used for the first-order scheme
in 2D [9]. Besides, the MOOD method allows to easily reach very high-order scheme with a general
formalism.

In this method the polynomial reconstruction of degree d of the solution on cell i is:

Ũn
i (x) = Un

i +

d∑
α=1

Rα
i (Un)

(
(x− xi)α −

1

∆x

∫
i

(x− xi)αdx
)
, (2.3)
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where Rα
i are the polynomial coefficients obtained by least-square interpolations, the reader is

referred to [22] to see the details of this interpolation.

Remark 2.1. The expression of the polynomial reconstruction (2.3) can be slightly simplified in
1D, but we keep this general expression to make easier the link with the 2D extension (4.3). Besides,
we can easily see that the MOOD reconstruction preserves the mean values: 1

∆x

∫
i
Ũn
i (x)dx = Un

i ,
which is critical to obtain an order greater than two.

The key point of the MOOD method is the a posteriori limitation, where the others methods
a priori limit the polynomial reconstruction. Indeed, this paradigm (see Figure 2) consists in
computing a candidate solution U? with an unlimited high-order scheme then check if this solution
respects some criteria. If the solution is not acceptable (in the sense of the criteria chosen), then the
degree of the polynomial reconstruction is locally decreased until the first-order scheme is reached.
In order to end the loop, the last scheme of order one (known as the “parachute” scheme) has to
satisfy all the criteria. Practically speaking, those checks need to be done at each stage of the
Runge-Kutta time schemes, to ensure the validity of the solution during all the computations.
This a posteriori limitation allows to reach a very high-order without complex modifications of the
original scheme.

Un High-order scheme U? Ok? Un+1
Yes

Re-
computations
with a lower

scheme

No

Figure 2: MOOD paradigm

For the sake of completeness, we recall the main limiters that may be used in the MOOD
method:

• the Physically Admissible Detector (PAD) which detects if a solution is in the set of admissible
states A,

• the Discrete Maximum Principle (DMP) detector or the Extrema Detector (ED) introduced
in [20], coupled with the u2 detector in order to eliminate spurious oscillations and keep
smooth extrema,

• the entropic criterion developed in [4], to filter non-entropic solutions.

In this work, we mainly use the PAD limiter on the density when dealing with the isentropic Euler
equations (1.4) and the DMP is only used for the last numerical test. For the linear systems studied
(the Telegraph equations (3.1), the P1 model (5.2) or the transport equation (5.1)) the DMP limiter
is sometimes used. When nothing is mentioned, no limiters are used in the MOOD loop.

With the MOOD paradigm, all the properties of the based scheme can be preserved if the proper
tests are made during the a posteriori limitation. For instance, it can be proved that the high-order
scheme preserves the set of admissible states A if the PAD criterion is used.
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Using the high-order polynomial reconstruction (2.3), one can build the high-order version of
the scheme for the homogeneous system in 1D (2.1):

Un+1
i = Un

i −
∆t

∆x

(
F
(
Ũn
i (xi+1/2), Ũn

i+1(xi+1/2)
)
−F

(
Ũn
i−1(xi−1/2), Ũn

i (xi−1/2)
))

, (2.4)

where Ũn
i (xi+1/2) is the polynomial reconstruction of the solution on cell i evaluated at xi+1/2

defined by (2.3).
To get the same order in space and time a method of lines may be used. Good candidates for the

time integrators are Total Variation Diminishing (TVD) [51, 52, 31] or Strong-Stability Preserving
(SSP) [32, 53, 54, 50, 30, 49, 42] time schemes. Those schemes are very interesting as it is directly
possible to use them in place of the forward Euler scheme and get a high-order scheme in time. This
is possible since their CFL conditions are directly linked to the one of the forward Euler scheme [41].

For instance, in this work, the time schemes used for the numerical tests are: the forward Euler,
SSPRK(2, 2), SSPRK(3, 3) and SSPRK(5, 4) schemes [53], where SSPRK(s, p) refers to an SSP RK
scheme of order p with s stages. When using a time scheme with more stages than the order (s > p),
the stability of the scheme is increased and the global computational time can decrease due to less
re-computations. In this paper, we will only make reference to explicit discretization in time, as it
is known [21, 44, 37, 30] that the high-order implicit SSP schemes are not computationally efficient
for very high-order because their CFL condition become at most twice the one of the forward Euler
method.

2.2. First-order scheme for the full system
Next, let us recall the HLL-AP scheme from [7] to get an approximated solution of the system

with source term (1.1). We choose to work with the HLL-AP scheme as the construction of the 2D
scheme is based on this scheme: the HLL-DLP-AP flux from [9] uses it in several directions. Hence,
this part aims to introduce the various techniques without dealing with the difficulties of the 2D
unstructured meshes.

This scheme is obtained by introducing the source term in the approximate Riemann solver and
has the AP property. In its classical form the HLL-AP scheme can be written as:

Un+1
i = Un

i −
∆t

∆x

(
αi+1/2F i+1/2 − αi−1/2F i−1/2

)
+

∆t

∆x
Sni . (2.5)

This scheme is consistent with (1.1), stable and conserves the set of admissible states A under the
same hyperbolic CFL condition as the scheme for the homogeneous system (2.1):

∆t

∆x
max
i

(
|b−i+1/2|, |b+i+1/2|

)
≤ 1

2
. (2.2)

The α coefficients define a convex combination between the mean values and the discretization of
the source term. Those coefficients are defined as:

α(Ui,Ui+1/2) = αi+1/2 =
b+i+1/2 − b−i+1/2

b+i+1/2 − b−i+1/2 + (γi+1/2 + γi+1/2)∆x
, (2.6)

with γi+1/2 = γ
(

Ui+Ui+1

2

)
and γ > 0 the AP correction. This correction is introduced to reach

the right diffusive limit by applying the scheme on the following system, equivalent to (1.1):

∂tU + div(F(U)) = (γ(U) + γ)(R(U)−U), (2.7)
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which defines:
R(U) :=

γ(U)R(U) + γU

γ(U) + γ
. (2.8)

Then, the form of the free parameter γ is set in order to target a specific scheme in the diffusive
limit. Finally, the source term is discretized using the following quantities:

Sni = (1− αi−1/2)S+
i−1/2 + (1− αi+1/2)S−i+1/2,

S−i+1/2 = min(0, b−i+1/2)
(
Un
i −Ri+1/2

)
+ min(0, b+i+1/2)

(
Ri+1/2 −Un

i+1

)
− F(Un

i ),

S+
i−1/2 = max(0, b−i−1/2)

(
Un
i−1 −Ri−1/2

)
+ max(0, b+i−1/2)

(
Ri−1/2 −Un

i

)
+ F(Un

i ),

Ri+1/2 =
γ(Un

i )R(Un
i ) + γi+1/2U

n
i

γ(Un
i ) + γi+1/2

. Let us remark, that if the source term is not present (γ = 0),

then HLL-AP scheme (2.5) is nothing but the classical finite volume schemes (2.1), as αi+1/2|γ=0 =
1.

As an illustration, when γt → ∞ and with the right γ, the limit of the scheme (2.5) for the
isentropic Euler model with friction (1.4) is:

ρn+1
i = ρni +

∆t

∆x2

(
p′(ρni+1/2)

κni+1/2

(ρni+1 − ρni )−
p′(ρni−1/2)

κni−1/2

(ρni − ρni−1)

)
, (2.9)

which is consistent with the limit equation (1.5).

2.3. High-order scheme for the full system
The HLL-AP scheme from [7] recalled in (2.5) is consistent and stable, conserves the set of

admissible states A under a classical hyperbolic CFL condition (2.2) and is AP. Moreover, it is
only a first-order scheme. High-order schemes may be needed to correctly describe discontinuities
that can appear in the transport regime, without the need of a very fine mesh.

There a two main difficulties that arise to extend the first-order HLL-AP to high-order. First,
the choice of the α coefficients (2.6) from [7] forbids the scheme to be high-order in every regime.
Indeed, this would require the following properties to hold:

αi+1/2 ∈ [0; 1]

αi+1/2 = 1 +O(∆x2)
(
or at least αi+1/2 − αi−1/2 = O(∆x3)

)
1− αi−1/2

∆x
S+
i−1/2 +

1− αi+1/2

∆x
S−i+1/2 = γ(Un

i )(R(Un
i )−Un

i ) +O(∆x2)

. (2.10)

The last two properties are mutually exclusive, hence the scheme with this choice of α cannot reach
a uniform high-order. The second difficulty is that high-order extensions of parabolic schemes are
more suited to polynomial reconstructions per interface instead of the cell reconstructions (2.3).
Hopefully, the limit diffusion is slow compared to the hyperbolic time scales and therefore, the
benefits of high-order are expected to mainly occur near the transport regime, where the limiting
effects of the α coefficient on the order can be overcome.

Consequently, a new coefficient β is introduced to get a high-order scheme in the transport
regime (γ ∼ 0) and the first-order scheme in the diffusive limit (γt � 1) to recover the AP
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property. Hence, βni is defined in order to create a convex combination between the polynomial
reconstruction Ũn

i (2.3) and the mean value Un
i on cell i at time tn:

U
n

i (x) := βni Ũ
n
i (x) + (1− βni )Un

i , (2.11)

where βni needs to fulfil the following properties:
βni ∈ [0; 1]
βni −−−−→

γt→∞
0

βni −−−→
γ→0

1

βni = 1 +O(∆x)

. (2.12)

The first property allows to properly define the convex combination and the two others permit to
have the limit scheme in the diffusive limit and the high-order scheme in the transport regime. The
last property ensures that the scheme with the high-order polynomial reconstruction is used on fine
meshes as the scheme is able to properly discretize the source term. One possible choice, among
all the possibilities that satisfy the properties (2.12) is:

βni :=
∆l

∆l + γni t
n∆x

, (2.13)

where γi = γ(Un
i ) and ∆l is a characteristic length. This characteristic length has to be chosen

such that the high-order polynomial reconstruction Ũn
i takes the leads in the transport regime

(γt∆x ' 1), whereas, the mean values dominates in the diffusive limit (γt∆x� 1). The numerical
tests show that ∆l := 5 × 10−2L is a reasonable choice, where L is a characteristic length of the
computational domain. The effects of a change of ∆l can be observed by comparing the numerical
results in 1D (Tables 1, 2 and 3) and 2D (Tables 6, 7 and 8) as there is a multiplicative factor between
the two space steps. Let us remark that this change only modify the transitional area between the
use of the mean values and polynomial reconstruction. In fact, with the properties (2.12) the scheme
is always AP when γt→∞.

In addition to provide a simple extension of the first-order scheme (2.5) this convex combination
allows to only use one polynomial reconstruction by cell.

Next, to get the high-order HLL-AP scheme, one has to use the values of the new convex
combination U(x) evaluated on the interfaces in the scheme (2.5) and use an appropriate time
scheme. For instance, with a forward Euler discretization in time, the scheme is:

Un+1
i =Un

i −
∆t

∆x

(
α
(
U
n

i (xi+1/2),U
n

i+1(xi+1/2)
)
F
(
U
n

i (xi+1/2),U
n

i+1(xi+1/2)
)

− α
(
U
n

i−1(xi−1/2),U
n

i (xi−1/2)
)
F
(
U
n

i−1(xi−1/2),U
n

i (xi−1/2)
))

+
∆t

∆x
Sni (U).

(2.14)

Finally, to prove the AP property we need to investigate the asymptotic behaviour of the high-
order scheme (2.14) when γt → ∞. Rigorous techniques based on [8] may be considered, however
we will only use a classical Champmann-Enskog expansion here since it provides the correct limit.
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Hence, ε > 0 is introduced to make the following rescaling:
γ ← γ

ε

∆t ← ∆t

ε

(2.15)

In order to get the limit one can assume that the wave speeds and γ are continuous and let us
notice, that according to (2.12):

U
n

i (x) = βni Ũ
n
i (x) + (1− βni )Un

i −−−−→
γt→∞

Un
i .

The previous rescaling (2.15) induced the following expansions:

∆t αi+1/2 = ∆t
b+i+1/2 − b−i+1/2

(b+i+1/2 − b−i+1/2)ε+ (γi+1/2 + γi+1/2)∆x

= ∆t
b+i+1/2 − b−i+1/2

(γi+1/2 + γi+1/2)∆x
+O(ε)

∆t (1− αi+1/2) = ∆t
(γi+1/2 + γi+1/2)∆x

(b+i+1/2 − b−i+1/2)ε2 + (γi+1/2 + γi+1/2)∆xε

=
∆t

ε
−∆t

b+i+1/2 − b−i+1/2

(γi+1/2 + γi+1/2)∆x
+O(ε)

βni =
ε2∆l

ε2∆l + (γi + γi)t
n∆x

= O(ε2)

. (2.16)

By introducing the expansions (2.16) in the scheme (2.14), and identifying the powers of ε, it leads
first for the ε−1 terms:

0 =
∆t

∆x

(
S+
i−1/2(U) + S−i+1/2(U)

)
,

which implies R(U) = U. Then, for the ε0 terms:

Un+1
i = Un

i −
∆t

∆x2

(
b+i+1/2 − b−i+1/2

γi+1/2 + γi+1/2

F(Un
i+1,U

n
i )−

b+i−1/2 − b−i−1/2

γi−1/2 + γi−1/2

F(Un
i ,U

n
i−1)

)
|R(U)=U

− ∆t

∆x2

(
b+i+1/2 − b−i+1/2

γi+1/2 + γi+1/2

Si+1/2(Un
i+1,U

n
i ) +

b+i−1/2 − b−i−1/2

γi−1/2 + γi−1/2

Si−1/2(Un
i ,U

n
i−1)

)
|R(U)=U

.

(2.17)

Let us notice that the expression for the ε0 terms (2.17) is independent of the high-order polynomial
reconstruction thanks to the definition of U

n

i (2.11). Thus, the asymptotic preserving correction γ
for the high-order HLL-AP scheme (2.14) is the same as for the first-order HLL-AP scheme (2.5)
from [7].

Finally, the high-order version of the HLL-AP scheme (2.14) is a high-order scheme in the
transport regime and degenerates to the same limit scheme as the first-order HLL-AP scheme (2.5).
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3. 1D numerical results

3.1. 1D Riemann problems with the Telegraph equations
In order to inspect the behaviour of the high-order HLL-AP scheme (2.14) developed in the

previous section, we first compare the results between the new scheme and reference solutions for
the Telegraph [40, 29] equations (or Goldstein-Taylor [28, 55]) in 1D:{

∂tu+ a∂xu = σ(v − u)
∂tv − a∂xv = σ(u− v)

, (3.1)

with a > 0 and σ > 0. Those equations enter in the framework of (1.1) with:

U =

(
u
v

)
, F(U) =

(
au
−av

)
, R(U) =

(
v
u

)
, (3.2)

where γ(U) = σ > 0. When σt→∞, the system (3.1) degenerates into the following limit equation
on (u+ v), on the local map of the equilibrium u− v = 0 (R(U) = U):

∂t(u+ v)− ∂x
(
a2

2σ
∂x(u+ v)

)
= 0. (3.3)

Those reference solutions for Riemann problems are constructed in Appendix A using two meth-
ods. The first one (M1) uses a reformulation of the system (3.1) and a finite difference scheme. The
second one (M2) is set up with a power series decomposition of the solution.

3.1.1. Comparison between the two methods
First, the two methods to obtain the reference solutions are compared on the following test

case: σ = 1, a = 0.5 with a final time t = 1. The initial left state is defined as UL = (−1 0)
T and

UR = (1 − 1)
T for the right initial state. This test is constructed in order that the two methods

are well defined and to present a solution with different behaviours.
The solution is plotted in Figure 3, with ∆x = 2 · 10−3 for the space discretization. The

substitution method (M1) uses 1000 points and in the power series method (M2) 10 ODEs from (A.9)
are solved numerically. As it could be seen in Figure 3 the two methods give the same result with a
complex structure in the central zone. Let us remark that due to the presence of the source term,
the left and right states are not constant in time (see (A.3) and (A.4)) as with a usual Riemann
problem for a homogeneous hyperbolic system (1.2).

3.1.2. Comparison with a continuous σ
Using the same initialisation as for the comparison between the two methods we make a com-

parison with the HLL-AP scheme in Figure 4. The results are presented with 80 cells, and the
high-order scheme uses a polynomial reconstruction of degree 1 (P1). The curves in Figure 4 show
that the high-order version of the scheme gives a better description of the discontinuities, and the
spurious oscillations can be easily cut with the DMP limiter of the MOOD method.
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Figure 3: Comparison between the substitution method (M1) and the power series method (M2)
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Figure 4: Comparison between the results obtained by M1, HLL-AP and HLL-AP-P1 with ∆x = 2.5 · 10−2: u on
the left and v on the right

3.1.3. Comparison with a discontinuous σ
The next case use the same initialisation as the previous one with a discontinuous σ:

σ(x) =

{
σL = 0.1 if x < 0

σR = 1.0 otherwise.

Here, only the power series method (M2) can be used. The results are also compared to the HLL-AP
and the HLL-AP-P1 schemes on 80 cells in Figure 5. This figure shows that both schemes capture
the discontinuity of σ. Besides, as previously the high-order scheme gives a better description of
the discontinuities.
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Figure 5: Comparison between the results obtained by M2, HLL-AP and HLL-AP-P1 with ∆x = 2.5 · 10−2: u on
the left and v on the right

3.1.4. Comparison with a discontinuous σ and the DMP
In order to show that the oscillations can be easily cleaned, a result with the same initialisation

with a discontinuous σ and 80 cells is presented in Figure 6. The second-order HLL-AP scheme
(HLL-AP-P1) without limitations and the same scheme limited with the DMP (HLL-AP-P1-DMP)
on u and v are compared to the reference solution obtained by the power series method (M2). In
the zoom of Figure 6, one can see that the spurious oscillation near the discontinuity is deleted with
the DMP limiter and the precision is improved compared to the HLL-AP-P0 scheme.
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Figure 6: Comparison between on v of the results obtained by M2, HLL-AP-P0, HLL-AP-P1, and HLL-AP-P1 limited
with the DMP on a mesh of size ∆x = 2.5 · 10−2
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3.2. Smooth solutions and order
After the comparison and the study of the behaviour of the high-order scheme regarding to some

discontinuous solutions, the next test cases are set up with some smooth solutions. This second
comparison is made in order to tackle with the real order of the high-order version of the HLL-AP
scheme (2.14). The solutions computed by the schemes are compared to a set of smooth exact
solutions obtained with the same method used for the hyperbolic heat equation in [14, 16]. The
reader is referred to Appendix B for more details about the construction of those solutions.

In Tables 1, 2 and 3 the comparison is made between the first-order scheme and the high-order
version using the convex combination with the β coefficients. In those tables the errors are the
relative errors computed in L2-norm on u (the results on v are similar) regarding to the exact
solution described in Appendix B. The results are obtained on uniform meshes of [0; 1] with a = 1.
Dirichlet boundary conditions are used with the exact solution on both sides. All the quantities are
computed at the final time t = 1.

Mesh β P0 P1 P2 P3

Nb. cells ∆x (2.13) eL1 pL2 eL2 pL2 eL2 pL2 eL2 pL2

160 6.25E-03 1.00 3.60E-02 — 8.14E-04 — 6.99E-05 — 5.29E-05 —
320 3.13E-03 1.00 1.82E-02 0.98 2.07E-04 1.98 1.53E-05 2.19 1.32E-05 2.01
640 1.56E-03 1.00 9.18E-03 0.99 5.21E-05 1.99 3.54E-06 2.12 3.26E-06 2.01

1 280 7.81E-04 1.00 4.60E-03 1.00 1.31E-05 1.99 8.35E-07 2.08 8.01E-07 2.03
2 560 3.91E-04 1.00 2.30E-03 1.00 3.27E-06 2.00 1.97E-07 2.09 1.92E-07 2.06
5 120 1.95E-04 1.00 1.15E-03 1.00 8.17E-07 2.00 4.49E-08 2.13 4.43E-08 2.12
10 240 9.77E-05 1.00 5.76E-04 1.00 2.03E-07 2.01 9.36E-09 2.26 9.28E-09 2.26

Table 1: Convergence rates with σ = 10−2 and t = 1

In Table 1 the source term is not preponderant and the high-order scheme is clearly better than
the first-order scheme. The precision is increased as the scheme uses mainly the polynomial recon-
struction Ũ in the convex combination created with β (2.11). More in details, the reconstruction
of degree 1 reaches the second-order, whereas, the third-order is not reached with the P2 recon-
struction even if the precision is still improved. Then, a limit is reached when using a polynomial
reconstruction of degree greater than 2, where the impact of the reconstruction is not visible in this
configuration.

Mesh β P0 P1 P2 P3

Nb. cells ∆x (2.13) eL1 pL2 eL2 pL2 eL2 pL2 eL2 pL2

160 6.25E-03 0.89 3.89E-02 — 3.18E-03 — 3.19E-03 — 3.17E-03 —
320 3.13E-03 0.94 1.97E-02 0.98 5.31E-04 2.58 6.51E-04 2.29 6.50E-04 2.29
640 1.56E-03 0.97 9.88E-03 0.99 3.37E-04 0.66 3.75E-04 0.80 3.75E-04 0.79

1 280 7.81E-04 0.98 4.95E-03 1.00 2.39E-04 0.49 2.47E-04 0.60 2.47E-04 0.60
2 560 3.91E-04 0.99 2.48E-03 1.00 1.40E-04 0.78 1.42E-04 0.81 1.42E-04 0.81
5 120 1.95E-04 1.00 1.24E-03 1.00 7.50E-05 0.90 7.55E-05 0.91 7.55E-05 0.91
10 240 9.77E-05 1.00 6.20E-04 1.00 3.88E-05 0.95 3.89E-05 0.95 3.89E-05 0.95

Table 2: Convergence rates with σ = 1 and t = 1
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With a larger source term in Table 2 the high-order scheme is again more accurate than the
first-order scheme even if the second-order is not reached as expected. This can be explained with
a previous remark regarding to the properties (2.10) that the α coefficients developed in [7] need
to fulfill in order to have a second-order scheme with source term. Here, the limitation can be seen
since the P2 reconstruction is not more precise than the P1.

Mesh β P0 P1 P2 P3

Nb. cells ∆x (2.13) eL1 pL2 eL2 pL2 eL2 pL2 eL2 pL2

160 6.25E-03 0.44 1.01E-02 — 1.11E-01 — 1.11E-01 — 1.11E-01 —
320 3.13E-03 0.62 4.93E-03 1.03 6.49E-02 0.75 6.49E-02 0.78 6.49E-02 0.78
640 1.56E-03 0.76 2.44E-03 1.01 3.57E-02 0.84 3.57E-02 0.86 3.57E-02 0.86

1 280 7.81E-04 0.86 1.21E-03 1.01 1.88E-02 0.91 1.88E-02 0.92 1.88E-02 0.92
2 560 3.91E-04 0.93 6.06E-04 1.00 9.69E-03 0.95 9.69E-03 0.96 9.69E-03 0.96
5 120 1.95E-04 0.96 3.02E-04 1.00 4.92E-03 0.98 4.92E-03 0.98 4.92E-03 0.98
10 240 9.77E-05 0.98 1.51E-04 1.00 2.48E-03 0.99 2.48E-03 0.99 2.48E-03 0.99

Table 3: Convergence rates with σ = 10 and t = 1

Finally, in the intermediary regime with an even larger source term in Table 3, the convergence
is slower for the high-order than the first-order as there is a competition between the two schemes
in addition of the convex combination between the numerical flux and the source term with the α
coefficients from (2.6).

Let us emphasize, that for all these computations no limiter is used in the MOOD loop. The
order is only limited as the computations are done with the convex combination created by the β
coefficients (2.13) in U (2.11).

With those three tables we can see the behaviour of the high-order HLL-AP scheme regarding
to smooth solutions. The P1 reconstruction significantly improves the results except very close to
the diffusion limit, whereas the P2 and P3 are less useful in this case mainly due to the limitations of
the α coefficients and the regularity of the solutions. This conclusion needs to be linked with more
meaningful results in more complex situations in 2D (see Figures 15 and 16) where the polynomial
reconstruction gives better results. Moreover, those results are strongly linked to the choice of the
β coefficient which determines when the high-order polynomial reconstruction is used.

Remark 3.1. The tests are not run for σ � 10 as the exact solutions involve the computations of
some exponential functions which are not well defined numerically in those scales. Besides, no tests
are made with σ = 0 in this section as the behaviour of the high-order homogeneous scheme (2.4)
is well-known. For the 2D case without source term, one may see the results in Table 5.

3.3. Convergence to the diffusion with late time
We now investigates with AP property of the scheme by looking at its convergence towards the

diffusive regime. One way to reach the diffusion limit is to set κ and then to increase the final time.
In order to do that the initial condition is a Gaussian in density:

ρ0(x) = exp(−(x− 75)
2
) + 1

with a null speed: u0(x) = 0, so that the initial condition is well-prepared. The computational
domain [0; 150] is meshed with 3000 cells and Neumann boundary conditions are used on both
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sides. This domain is chosen such that the solution does not approach the boundary, in order to
avoid spurious effects. The final time of the simulation is t = 100 and during the simulations the L2

and L∞-norms of the density and the momentum are computed. For the density one has to remove
the value of the equilibrium ρE := 1 in order to make the comparison easier. Then, according to [8]
the variables satisfy:

‖∂βx (ρ− ρE)‖Lp = O(1 + γt)
−1/2(1−1/p)−β/2

‖∂βx (ρu)‖Lp = O(1 + γt)
−1/2(1−1/p)−β/2−1/2

Besides, after some computations the time derivatives should verify :

‖∂tρ‖Lp = O(1 + γt)
−1/2(1−1/p)−1

‖∂t(ρu)‖Lp = O(1 + γt)
−1/2(1−1/p)−3/2

In Figures 7 to 9 and C.20 to C.22 (in appendix) the L2 and L∞-norms for the HLL-AP and
the HLL-AP-P1 are plotted over time for κ = 1 and κ = 5. For each figure, we present the results
and the theoretical slopes.
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Figure 7: Convergence speeds to the equilibrium in L2 and L∞-norms for density and momentum with ∆x = 5×10−2

and κ = 1 in 1D

The space and time derivatives are computed using classical centered and upwind finite differ-
ences approximations :

∂xf
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xf
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i
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where fn+1
i is the mean value of the quantity on cell i at time tn+1 = tn + ∆tn.
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Figure 8: Convergence speeds to the equilibrium in L2 and L∞-norms for the time derivatives of the density and
momentum with ∆x = 5× 10−2 and κ = 1 in 1D

We can see that for both values of the friction coefficient κ the first-order and the high-order
scheme respect the convergence speeds to the equilibrium. For the high-order scheme as small
transition is needed due to the β coefficient, however, the introduction of this new coefficient allows
to preserve the right convergence speeds in all cases tested. If the coefficient β is too small, the
high-order polynomial reconstruction will not be used and in the other hand if β is too large the
transition area is longer. Only the second time derivatives in Figures 8 and C.21 are problematic
with the presence of oscillations due to the numerical derivatives.

Indeed, if the scheme respects the various convergence rates for ρu, ∂xρ, ∂tρ, ∂xρu and ∂2
xρ it

can be proved that the scheme will be AP, which is our case.
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Figure 9: Convergence speeds to the equilibrium in L2 and L∞-norms for the space derivatives of the density and
momentum with ∆x = 5× 10−2 and κ = 1 in 1D

One last check is made by comparing the solution obtained by the hyperbolic scheme and a
parabolic one, on the limit equation near the diffusive regime. As with the previous figures, the
diffusive limit is reached by setting κ and increasing the final time, contrary to the next test done
in Table 4 and Figure 11 where the product γt is increasing.

Hence, in Figure 10 we compare the rates of convergence to the theory of [8]. Hence, the
Lp-norm, with p > 1, of the difference should satisfy:

‖∂βx (ρP − ρH)‖Lp = O(1 + γt)
−1/2(1−1/p)−β/2−1/2 (3.4)

As in Figure 11, the results are no so good than the previous comparison. This difference may be
explained by the fact that ρP is not an analytical solution of (1.5) and rounding errors may disturb
the convergence rates. With this last check, we can make a link with Table 3 to justify the fact
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that the scheme with the P1 reconstruction converges slower than the first-order one to the diffusive
limit. However, the overall behaviour is still satisfactory.

3.4. Convergence to the diffusion with increasing κt
The next test case also inspects the convergence to the diffusive limit. To do so, the isentropic

Euler model with friction described by (1.4) is also used but, with an increasing γt. The domain is
the segment [0; 1] with a uniform mesh composed of 100 cells and Neumann boundary conditions
are imposed. The solution given by the first-order and the second order HLL-AP schemes (ρH) are
compared to the solution computed by a parabolic scheme (2.9) (ρP ) on the limit equation (1.5).
Besides, the comparison is also made with a non-AP scheme using a centered discretization of the
source term:

Un+1
i = Un

i −
∆t

∆x

(
F i+1/2 −F i−1/2

)
+ ∆tγ(Un

i ) (R(Un
i )−Un

i ) . (3.5)

Finally, the initialisation uses a Gaussian in density:

ρ0(x) =
1

10

(
exp

(
− (x− 1/2)

2

2 · 0.052

)
+ 1

)
,

with an initial speed set to zero: u0(x) = 0, in order to be on the equilibrium map.

κ 1 5 25 125 625 3125
t 0.1 0.2 0.4 0.8 1.6 3.2
γt = κt 10−1 1 101 102 103 104

β (2.13) 9.80E-01 8.33E-01 3.33E-01 4.76E-02 4.98E-03 5.00E-04

Scheme ‖ρP − ρH‖L2

HLL-AP (2.5) 1.55E-02 6.97E-03 4.55E-04 1.08E-04 7.08E-05 3.38E-05
HLL-AP-P1 (2.14) 1.60E-02 7.97E-03 8.34E-04 4.95E-04 1.74E-04 2.85E-05
HLL-SRC (3.5) 1.54E-02 1.07E-02 2.16E-02 1.90E-02 2.08E-02 2.29E-02

Table 4: Convergence to the diffusion equation regarding to γt

In Table 4, it can be seen that both the first and second-order schemes converge to the diffusion
limit, thanks to the definition of β (2.13). Whereas, the solution obtained by the scheme (3.5)
does not converge to the diffusion solution when γt increases. The same results can be observed in
Figure 11 with the theoretical rates (3.4) from [8].

The convergence speeds is not clearly reached as the solution of the diffusion equation ρP is
computed numerically. Moreover, as κt∆x ' 1 for most of the tests, we are in a intermediary
regime where the asymptotic convergence speeds may not be reached yet.

Throughout those different tests, the behaviour of the scheme has been investigated. Let us
underline that the HLL-AP scheme (2.5) and its high-order extension (2.14) are able to capture the
solution in all the configurations tested: Riemann problems with reference solutions and smooth
exact solutions. The high-order scheme is still AP thanks to the β coefficients (2.13) and the high-
order polynomial reconstruction allows us to have a better description of the discontinuities in the
transport regime.
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4. Asymptotic and admissibility preserving scheme in 2D

After the presentation of the first-order scheme and the construction of the high-order scheme
in 1D for both the homogeneous (1.2) and the full (1.1) systems, the next part of this work is
devoted to the recall of the HLL-DLP and HLL-DLP-AP schemes in 2D from [9]. Those schemes
are constructed using a reconstruction of fluxes that leads to schemes which have a proper numerical
diffusion. This point is essential to get a consistent scheme in the diffusive limit with unstructured
meshes. Then, using the same technique as in 1D, we construct the high-order version of those two
schemes as they are based on a combination of the 1D schemes.

Hence, the outline of this part is similar to the one for 1D schemes. First, we recall some
results for discretization of hyperbolic systems in 2D. Then, an extension to high-order is made.
After that, the same methodology is applied to the HLL-DLP-AP scheme for the system with
source term (1.1) where the use of a β coefficient is needed to preserve the AP property with the
polynomial reconstruction of the MOOD method.

To describe a 2D unstructured meshM composed of polygonal cells K the following notations
are used:

• |K|: area of cell K,

• EK : set of interfaces of K,

• |ei|: length of the i-th interface of K,

• nK,i: normal to interface i outgoing of cell K,

• L: neighbour of K by the edge i,

• ∆xK := |K|/pK : space step of cell K, with pK :=
∑
i∈EK |ei| the perimeter of cell K.
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4.1. Hyperbolic scheme
In this first section the HLL-DLP scheme from [9] for the homogeneous hyperbolic system (1.2)

is recalled then extended to a high-order scheme. First of all, let us recall the classical two points
flux (TPF) scheme in 2D:

Un+1
K = Un

K −
∆t

|K|
∑
i∈EK
|ei|F(Un

K ,U
n
L;nK,i) · nK,i, (4.1)

where F is a consistent and conservative two points approximate Riemann solver. Let us underline
that the TPF scheme (4.1) is consistent, stable and preserves the set of admissible states A under
the following classical CFL condition:

max
K∈M
L∈EK

(
bKL

∆t

∆xK

)
≤ 1, (4.2)

where bKL is a speed larger than all wave speeds between the states UK and UL.
To get a high-order scheme, we use the MOOD method as in 1D. Indeed, we use the polynomial

reconstruction Ũn
K(x) of degree d of the solution on cell K from the MOOD method:

Ũn
K(x) = Un

K +
∑

1≤|α|≤d
Rα
K(Un)

(
(x− xK)

α − 1

|K|

∫
K

(x− xK)
α
dx

)
, (4.3)

where α = (α1, α2) ∈ N2 is a multi-index with |α| = α1 + α2 and as in 1D (2.3) Rα
i are the

polynomial coefficients obtained with least-square interpolations from [22]. Then, one can easily
get the high-order version of the TPF scheme (4.1) using the polynomial reconstructions:

Un+1
K = Un

K −
∆t

|K|
∑
i∈EK
|ei|

Ri∑
r=1

ξirF(Ũn
K,ir, Ũ

n
L,ir;nK,i) · nK,i, (4.4)

where ξir are the weights of the quadrature rules used on interface i and Ri is the number of
quadrature points used for interface i. Besides, Ũn

K,ir is the polynomial reconstruction of the
solution in the cell K evaluated at the quadrature points xir: Ũn

K,ir := Ũn
K(xir). Let us recall

that the high-order version of the TPF scheme (4.4) is presented here with a forward Euler time
integrator and in order to get a high-order scheme in space and time, one has to use a proper RK
time scheme as presented in 1D.

Furthermore, with a classical centered discretization of the source term this scheme does not
have the AP property. Besides, the limit scheme is the FV4 scheme which is generally not consistent
for unstructured meshes. Whereas, the limit scheme of the HLL-DLP-AP scheme is the Droniou
and Le Potier (DLP) scheme for parabolic problems [24], which is consistent and conserve the set
of admissible states on any mesh. To get the AP property and conserve the set of admissible states
the HLL-DLP-AP scheme has been designed in [9]. As for the TPF scheme, we recall it then we
present the high-order version.

Indeed, in the same manner the first-order HLL-DLP scheme developed in [9] is:

Un+1
K = Un

K −
∆t

|K|
∑
i∈EK
|ei|

∑
J∈SK,i

νJK,i(U
n)F(Un

K ,U
n
J ;ηKJ) · ηKJ , (4.5)
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where SK,i are the set of points used for the reconstruction and νJK,i(U
n) ≥ 0 are the non-linear

coefficients computed in [9] inspired by those used in the DLP scheme for parabolic equations [24].
Lastly, ηKJ is the unit vector between xK and xJ .

The main advantage of this scheme compared to the TPF flux one is that the numerical diffusion
occurs along nK,i whereas the TPF scheme (4.1) has its numerical diffusion following ηKL. This
is one of the key point, to get an AP preserving scheme in 2D with an unstructured mesh. Let
us remind, that the HLL-DLP scheme fall back to the TPF scheme when using admissible meshes
(ηKL = nK,i): for instance on Cartesian grids or with Delaunay triangulations.

Then, to get the high-order version of the HLL-DLP scheme (4.5), the polynomial reconstruction
Ũ (4.3) of the MOOD method is also used:

Un+1
K = Un

K −
∆t

|K|
∑
i∈EK
|ei|

Ri∑
r=1

ξir
∑

J∈SK,i

νJK,i(Ũ
n
ir)F(Ũn

K,ir, Ũ
n
J,ir;ηKJ) · ηKJ , (4.6)

where Ũn
ir is the polynomial reconstruction of the solution on interface i at the right quadrature

point. The coefficients νJK,i(Ũ
n
ir) are computed using F(Ũn

K,ir, Ũ
n
J,ir;ηKJ), whereas νJK,i(U

n) were
computed using F(Un

K ,U
n
J ;ηKJ).

Let us underline that the scheme defined by (4.6) is consistent and conservative by construc-
tion, as the first-order scheme (4.5). Furthermore, the HLL-DLP scheme (4.5) and its high-order
version (4.6) do not preserve the set of admissible states A on general meshes. Hence, as detailed
in [9] the TPF correction still need to be used. This correction consist to use the TPF scheme (4.1)
as the last scheme in the MOOD loop since the TPF scheme preserves the set of admissible states
A.

Remark 4.1. Nevertheless, this TPF correction does not delete the AP property of the scheme as
in the limit the HLL-DLP-AP and the high-order version give the DLP scheme which conserves the
set of admissible states A. Hence, the TPF flux correction is only activated in the transport regime
(see [9] for a full proof).

4.2. Scheme with source term
After this recalling of the HLL-DLP scheme for the homogeneous hyperbolic system (1.2), we

now summon up the HLL-DLP-AP scheme with discretization of the source term for the full sys-
tem (1.1).

As in [26, 6, 9] and as in 1D, the source term is introduced in the numerical flux by using the
technique of [7] in order to recover the AP preserving property. Hence, with a general formalism a
scheme for the full system (1.1) can be written as:

∀K ∈M, Un+1
K = Un

K −
∆t

|K|
∑
i∈EK
|ei|FK,i · nK,i, (4.7)

where FK,i is a numerical flux that contains the discretization of the source term.
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The HLL-DLP-AP scheme with source term from [9] written with the Rusanov flux [48] is:

Un+1
K = Un

K −
∆t

|K|
∑
i∈EK
|ei|FK,i · nK,i (4.7)

= Un
K −

∆t

|K|
∑
i∈EK
|ei|

∑
J∈SK,i

νJK,iFKJ · ηKJ

= Un
K −

∆t

|K|
∑
i∈EK
|ei|

∑
J∈SK,i

νJK,i
(
αKJFKJ · ηKJ

− (αKJ − αKK)F(Un
K) · ηKJ

)
(4.8)

+
∆t

|K|
∑
i∈EK
|ei|

∑
J∈SK,i

νJK,i(1−αKJ)bKJ(R(Un
K)−Un

K),

where νJK,i = (νJ,jK,i)j is obtained as previously on FKJ (the chosen approximate Riemann solver),
with j the index of the equation and bKJ a speed greatest than all wave speeds between the states
UK and UJ . Moreover, the α coefficients are defined in 2D as (see (2.6) for the 1D definition):

(αKJ)
j

= αjKJ =
bKJ

bKJ + γKδ
j
KJ

∈ [0; 1],

αKK =
bKK

bKK + γKδKK
, with δKK = ∆xK

(4.9)

where γK = γ(Un
K), and δjKJ =

|K|∑
i∈EK |ei|

∑
J∈SK,i

νJ,jK,i
. Let us underline, that in the case of

another two points approximate Riemann solver, such as HLL [35] or even HLLC [57, 58, 3], the
definition of the α coefficients and the scheme in (4.8) are slightly different.

The high-order version of the scheme (4.7) is built using the same technique used for the scheme
without source term (4.6): each term is evaluated at the quadrature points with the polynomial
reconstruction (4.3). Moreover, as in 1D we need to introduce a coefficient β to get the high-order
polynomial reconstruction in the transport regime and the first-order one near the diffusive limit.
Hence, as in (2.13) we defined βnK , with the same properties (2.12) as:

βnK :=
∆l

∆l + γ(Un
K)tn∆xK

, (4.10)

where ∆l := 5 · 10−2L is the same characteristic length as in the 1D and ∆xK := |K|
pK

is the 2D
space step of the cell K. Then, the same definition applies for the convex combination U:

U
n

K(x) := βnKŨn
K(x) + (1− βnK)Un

K . (4.11)

The introduction of this new coefficient in 2D has the same effect as in 1D: the high-order scheme
will be used in the transport regime whereas the scheme will go back to first-order near the diffusive
limit. The same remarks concerning the use of the first-order scheme when γt increases can be done.

With this new convex combination, we introduce the high-order scheme with source term:

Un+1
K = Un

K −
∆t

|K|
∑
i∈EK
|ei|

Ri∑
r=1

ξir
∑

J∈SK,i

νJK,i(U
n

ir)F(U
n

K,ir,U
n

J,ir;ηKJ) · ηKJ , (4.12)
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where F is the numerical flux that includes the discretization of the source term used in (4.7) and
U
n

K,ir := UK(xir). Let us recall that the scheme (4.12) is presented with the forward Euler scheme
for the time discretization and, when using a high-order time discretization, one needs to write this
scheme at each RK step.

As in 1D, the high-order HLL-DLP-AP scheme (4.12) has the AP property as β −−−−→
γt→∞

0,

which allows to recover the first-order HLL-DLP-AP scheme in the diffusive limit with the same
AP correction γ (see [9] for the details of the computations). Hence, with this AP correction the
limit scheme of the high-order HLL-DLP-AP is also the DLP scheme [24].

5. Results in 2D

5.1. Order of the HLL-DLP scheme without source term
Before presenting the results with the source term, some results are presented to tackle with

the order of the high-order version of the HLL-DLP scheme (4.6) on some smooth exact solutions.
The test is done using the transport equation:

∂tU + div(aU) = 0, (5.1)

with the transport at speed a = (1 1)
T of a double sinus U0(x, y) = sin(2πx) sin(2πy) in the unit

square [0; 1]
2. The square is meshed with an unstructured mesh composed of triangles obtained

with Gmsh [27], and each mesh is a refinement of the previous one. In 2D, we use the following
definition for the mesh size:

∆x := min
K∈M

∆xK .

Dirichlet boundary conditions are imposed with the exact solution on each side of the square.
The L2-errors for the high-order HLL-DLP scheme (4.6) with a polynomial reconstruction of

degree 0, 1, 2 and 3 are presented at time t = 1 in the Table 5. For each computation the appropriate
time scheme is used to get the same order in space and time. Hence, as it can be seen the desired
order is reached for each polynomial reconstruction.

Mesh HLL-DLP-P0 HLL-DLP-P1 HLL-DLP-P2 HLL-DLP-P3

Nb. cells ∆x eL2 pL2 eL2 pL2 eL2 pL2 eL2 pL2

676 6.45E-03 4.49E-01 — 4.19E-02 — 4.49E-02 — 3.15E-03 —
2 704 3.22E-03 2.86E-01 0.65 8.37E-03 2.32 6.46E-03 2.80 1.86E-04 4.08

10 816 1.61E-03 1.65E-01 0.79 2.24E-03 1.90 8.84E-04 2.87 1.72E-05 3.44
43 264 8.06E-04 8.93E-02 0.89 6.27E-04 1.83 1.22E-04 2.85 1.02E-06 4.07
173 056 4.03E-04 4.66E-02 0.94 1.74E-04 1.85 1.64E-05 2.90 5.91E-08 4.11
692 224 2.01E-04 2.38E-02 0.97 4.97E-05 1.81 2.15E-06 2.93 3.79E-09 3.96

Table 5: Convergence rates with the double sinus
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5.2. Order of the HLL-DLP-AP scheme with source term
In order to inspect the order of the HLL-DLP-AP scheme with source term and polynomial

reconstruction, we apply the same kind of computations done with the Telegraph equations in 1D
to the hyperbolic heat equation (or P1 model) in 2D:{

∂tp+ div(u) = 0

∂tu +∇p = −σ(p,u)u
(5.2)

This model also enters in the formalism of the system (1.1) with γ(U) = σ(U) and:

U =

(
p
u

)
, F(U) =

(
uT

pI

)
, R(U) =

(
p
0

)
. (5.3)

Using the exact solutions constructed in Appendix D following the methods from [14, 16], the
relative L2-errors on p are computed for the first-order HLL-DLP-AP and the HLL-DLP-AP with
P1 and P2 reconstructions limited with the DMP criterion. The DMP limiter is mainly used with
low σ and fine meshes, as in those case the high-order scheme is preponderant (see the definition
of β (4.10)) and can create spurious oscillations. The results are presented in Tables 6, 7 and 8
for different meshes and three different values of σ. Dirichlet boundary conditions with the exact
solution are used on each side of the square.

Mesh β HLL-DLP-AP HLL-DLP-AP-P1 HLL-DLP-AP-P2

Nb. cells ∆x (4.10) eL2 pL2 eL2 pL2 eL2 pL2

676 6.45E-03 1.00 3.20E-01 — 9.13E-02 — 9.17E-02 —
2 704 3.22E-03 1.00 1.93E-01 0.73 3.07E-02 1.57 2.95E-02 1.63

10 816 1.61E-03 1.00 1.05E-01 0.88 1.32E-02 1.22 1.42E-02 1.05
43 264 8.06E-04 1.00 5.52E-02 0.93 6.43E-03 1.03 7.21E-03 0.98
173 056 4.03E-04 1.00 2.84E-02 0.96 3.30E-03 0.96 4.05E-03 0.83
692 224 2.01E-04 1.00 1.44E-02 0.98 1.73E-03 0.93 2.70E-03 0.58

Table 6: Convergence rates with σ = 10−2 and t = 1

Mesh β HLL-DLP-AP HLL-DLP-AP-P1 HLL-DLP-AP-P2

Nb. cells ∆x (4.10) eL2 pL2 eL2 pL2 eL2 pL2

676 6.45E-03 0.89 3.18E-01 — 1.09E-01 — 1.08E-01 —
2 704 3.22E-03 0.94 1.91E-01 0.73 3.35E-02 1.71 3.17E-02 1.77

10 816 1.61E-03 0.97 1.03E-01 0.89 1.30E-02 1.37 1.36E-02 1.22
43 264 8.06E-04 0.98 5.40E-02 0.93 6.10E-03 1.09 6.75E-03 1.01
173 056 4.03E-04 0.99 2.76E-02 0.97 3.13E-03 0.96 3.86E-03 0.80
692 224 2.01E-04 1.00 1.40E-02 0.98 1.64E-03 0.93 2.53E-03 0.61

Table 7: Convergence rates with σ = 1 and t = 1

The behaviours observed are in the same kind as those observed in 1D with the Telegraph
equations in Tables 1, 2 and 3, as the 2D scheme is based on the same construction. Indeed,
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Mesh β HLL-DLP-AP HLL-DLP-AP-P1 HLL-DLP-AP-P2

Nb. cells ∆x (4.10) eL2 pL2 eL2 pL2 eL2 pL2

676 6.45E-03 0.44 1.08E+00 — 1.49E+00 — 1.48E+00 —
2 704 3.22E-03 0.61 7.38E-01 0.55 8.48E-01 0.82 8.56E-01 0.79
10 816 1.61E-03 0.76 4.23E-01 0.80 4.15E-01 1.03 4.22E-01 1.02
43 264 8.06E-04 0.86 2.25E-01 0.91 2.00E-01 1.06 2.02E-01 1.06
173 056 4.03E-04 0.93 1.15E-01 0.97 9.74E-02 1.04 9.90E-02 1.03
692 224 2.01E-04 0.96 5.81E-02 0.98 4.81E-02 1.02 4.89E-02 1.02

Table 8: Convergence rates with σ = 10 and t = 1

with a small source term, the high-order scheme gives a better precision without reaching the
theoretical order of convergence linked to the polynomial reconstruction. Indeed, the scheme with
the P1 reconstruction in the convex combination is better of an order of magnitude whereas the P2

reconstruction does not lead to smaller errors. Then, when the source term increases, the high-order
scheme and first-order scheme are in competition in the convex combination with the β coefficients
from (4.10) but for σ = 1 the high-order scheme is still better than the first-order one. Finally,
contrary to the 1D test case, with σ = 10 in Table 8 the high-order has the same precision as the
first-order.

Besides, the coefficient β used in 2D (4.10) is the same as in 1D (2.13) whereas the convergence
speeds depend on the dimension of the space [8]. A change of the β coefficients may modify the
transition between the polynomial reconstruction and the mean values which will have an impact
on the quality of the solution depending of the regime. As a consequence, the quality of the results
may be improved if one find a better coefficient β for the 2D case. Let us again remark, contrary
to the 1D case, the two schemes have the same precision for σ = 10, however, the precision is lower
with small σ. Moreover, the results are better if one use a more regular mesh but the aim of this
scheme is to be used on unstructured meshes.

Remark 5.1. As in 1D, the test cases are not run for σ � 10 as the numerical computations of
the initial solution and the exact solutions are not well defined numerically due to the exponential
functions (see Appendix D).

5.3. Convergence to the diffusion with late time
As in 1D, we now inspect the convergence to the diffusive limit of the high-order scheme, with

the same kind of tests.
The first test to check the AP property and the respect of the convergence speeds is made by

setting γ and using a final time t = 100 as in paragraph 3.3 in 1D. The initial state is a gaussian in
density:

ρ0(x, y) = exp(−(x− 50)
2 − (y − 50)

2
) + 1.

without any initial speed u0(x, y) = 0. A coarse mesh of the square [0; 100]
2 composed of 2.6× 104

triangles for a space step of ∆x ' 9.05×10−2 is used for this test. As in 1D, in Figures 7 and C.20,
the L2 and L∞-norms of the density (minus the value at the equilibrium ρE = 1) and the momentum
are plotted over time in Figures 12 and 13 for κ = 1 and 5. In order to have a better definition of
the coefficient β (4.10) with this domain, the characteristic length ∆l is multiplied by the length of
the domain which leads, for this test case, to ∆l := 5.
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Following [8], the expected convergence speeds are in 2D, for p > 1:

‖ρ− ρE‖Lp = O(1 + γt)
−(1−1/p)

‖ρu‖Lp = O(1 + γt)
−(1−1/p)−1/2

and as it can be seen in Figures 12 and 13, they are properly satisfied by the two schemes in both
norms even if there is small transition needed for the scheme with polynomial reconstruction due
to the use of the β coefficient from (4.10).

101 102
10−3

10−2

10−1

100

1/2
1

1

1 + γt

‖ρ− ρE‖

101 102

10−4

10−3

10−2

10−1

100

1

3/2

1

1 + γt

‖ρu‖

P0 − L2

P1 − L2

P0 − L∞
P1 − L∞

Figure 12: Convergence speeds to the equilibrium in L2 and L∞-norms for density and momentum with ∆x '
9.05× 10−2 and κ = 1 in 2D

5.4. Convergence to the diffusion with increasing κt
The next test reaches the limit by increasing γt and the solution obtained by the HLL-DLP-

AP scheme (ρH) is compared in L2-norm to the solution (ρP ) given by the DLP scheme [24] on
the limit equation (1.5). On the unit square [0; 1]

2 meshed with 104 triangles for a space step
∆x ' 1.6× 10−3, the initial condition is given by :

ρ0(x, y) =
1

10

(
exp

(
− (x− 1/2)

2

2 · 0.052
− (y − 1/2)

2

2 · 0.052

)
+ 1

)
,

with once again u0(x, y) = 0. This configuration is similar to the 1D test done in paragraph 3.4.
In Table 9 the results obtained by the scheme with and without reconstruction are presented.

The following scheme with a centered discretization of the source term, denoted by HLL-SRC, has
also been added to make the comparison with a none AP scheme:

Un+1
K = Un

K −
∆t

|K|
∑
iEK

F i + ∆tγ(Un
K) (R(Un

K)−Un
K) . (5.4)
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Figure 13: Convergence speeds to the equilibrium in L2 and L∞-norms for density and momentum with ∆x '
9.05× 10−2 and κ = 5 in 2D

κ 1 5 25 125 625 3125
t 0.1 0.2 0.4 0.8 1.6 3.2
γt = κt 10−1 1 101 102 103 104

β (2.13) 9.97E-01 9.69E-01 7.56E-01 2.37E-01 3.01E-02 3.09E-03

Scheme ‖ρP − ρH‖L2

HLL-DLP-AP (4.7) 4.11E-03 2.39E-03 1.68E-04 4.56E-05 4.46E-05 2.23E-05
HLL-DLP-AP-P1 (4.12) 4.52E-03 3.09E-03 1.98E-04 4.01E-04 2.08E-04 3.41E-05
HLL-DLP-AP-P2 (4.12) 4.49E-03 3.06E-03 1.96E-04 3.63E-04 1.53E-04 2.20E-05
HLL-SRC (5.4) 4.13E-03 3.93E-03 5.14E-03 4.13E-03 5.32E-03 6.43E-03

Table 9: Convergence to the diffusion equation regarding to γt

Let us notice that the three AP scheme converge to the solution of the limit equation, whereas,
with the “naïve” scheme (5.4) the norm between the two solutions does not decrease.

Again, from [8] the difference should verify, for all p > 1:

‖∂βx (ρP − ρH)‖Lp = O(1 + γt)
−(1−1/p)−β/2−1/2

.

The results of Table 9 are plotted in Figure 14 in L2-norm. As in 1D, the convergence speeds are
not fully reached. The effect of the β coefficient (4.10) is also clearly seen near γt ' 10.

5.5. Supersonic step with friction
The next test case is inspired from the step at Mach 3 from [60] with the same computational

domain, whereas the isentropic Euler with friction (1.4) is used. Hence, the initialisation is done
with ρ0 = 1.4 and u0 = (3 0)

T and the same value is used for the input flow on the left side of
the domain. The right boundary is an outflow with Neumann boundary conditions and the others
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Figure 14: Convergence to the diffusion equation regarding to γt

sides of the step are considered as walls. For the outflow boundary, some large cells (not presented
in the results) are added to the computational domain to avoid oscillations leaving the boundary.
The friction coefficient follow a nonlinear law : κ(ρ) = 10

(
ρ
7

)3. This friction is chosen in order to
have the different regimes in the computations and validate the behaviour of the scheme when γ
depends on the solution. Finally, the final time of the simulation is set to t = 2.

The density result with the first-order HLL-DLP-AP scheme (4.7) on a fine mesh is presented
in Figure 15 and the results for the high-order version (4.12) are presented on coarser meshes in
Figures 15 and 16 using a polynomial reconstruction of degree 0, 1, 2 and 3. Let us underline, that
the appropriate time schemes are used to get the same order in space and time. For the high-order
computations with a polynomial degree of 0, 1, and 2 only the PAD criterion on the density with the
TPF correction is used to limit the polynomial reconstruction. The other limiters are not needed
in this test case as the left boundary gives the main behaviour and the source term “smoothes”
the computations. Whereas, with the fourth-order scheme (P3), the DMP limiter on the density is
needed to get a reasonable solution.

As it can be seen, the high-order schemes give a good solution even on really coarse meshes, and
especially near the discontinuities, even if all different regimes are present during the simulation.
Moreover, the front discontinuity is not well placed in the coarse mesh of Figure 15 (first-order
scheme), compared to the fine mesh in the same figure and the coarse meshes with the high-order
scheme in Figure 16.

For the computations with the polynomial reconstruction of degree 0, 1 and 2 the TPF correction
is never used and the polynomial degree is decreased on less than 1% percent of the cells. The re-
computations and the tests needed by the MOOD paradigm cost less than 1% of the total CPU
time. Only the computations with a polynomial reconstruction of degree 3 need the DMP limiter in
order to have a good solution. This criterion activates the TPF correction as the first-order scheme
with the HLL-DLP-AP flux does not respect the DMP.
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Figure 15: Density results for the step with friction with the first-order scheme on 4 · 104 (top) and 106 triangles
(bottom)

Figure 16: Density results for the step with friction with the high-order schemes on 4 · 104 triangles, from top to
bottom : P1, P2 and P3
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Regarding to the computational cost, the result on the fine mesh with the first-order HLL-DLP-
AP scheme needs 270 hours of CPU time. Whereas, the results for the coarse meshes use only 1,
6, 12 and 24 hours of CPU time for the P0 to P3 computations. Hence, it can be clearly seen that
the high-order scheme is less expensive in order to have a solution as good as the first-order one on
the fine mesh. Besides, the P3 reconstruction still improves the resolution of the solution near the
various reflexions on the left of the domain.

In addition of Figures 15 and 16, we display the polynomial degree and the actual value of the
β coefficient (4.10) in Figures 17 and 18. These two figures present the results obtained on the
coarse mesh composed of 4 · 104 triangles with the P1 reconstructions. In Figure 17, it can be seen
that the first-order scheme is only used in a very small set of cells, indeed the MOOD loop get back
to the P0 reconstructions on a maximum of 20 cells during the computations. Furthermore, the
two-points flulx corrections is never activated. Besides, the figure 17 shows that the scheme with
the P1 reconstruction is mainly used as the coefficient β is near one (4.11).

Figure 17: Map of the polynomial degree at time tn = 2 on 4 · 104 triangles (blue: P1, red: P0)

Figure 18: Value of the β coefficient (4.10) at time tn = 1.2 and 2 with the P1 reconstruction on 4 · 104 triangles
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Within the various configurations tested the high-order version of the HLL-DLP-AP scheme has
the behaviour expected: the AP property and the set of admissible states are conserved. Moreover,
the accuracy is improved even though the scheme degenerates to order one in the diffusive regime.

Conclusion, extensions

With this work, we provide a high-order extension for asymptotic preserving schemes adapted
to system of conservation laws with source term (1.1) in 1D [7] and 2D [9]. This extension was
done using a convex combination between a polynomial reconstruction of the solution and the mean
values to preserve the AP property. Some reference solutions were proposed to study the high-order
schemes regarding to the different scales of γt using continuous or discontinuous solutions. These
tests lead to the conclusion that the scheme is more accurate within the transport regime and that
the classical first order scheme is reached when γt increases. Besides, the scheme is always AP
as the first scheme (HLL-AP or HLL-DLP-AP) preserves this behaviour. The set of admissible
states is conserved with the high-order scheme thanks to the a posteriori limitation of the MOOD
method [19].

For now the scheme is not uniformly high-order but as it can be seen in the various results
and especially on the step with friction in Figure 16, that the polynomial reconstruction greatly
improves the solution in the transport regime. Let us remark, as it was already said for both the 1D
and 2D cases, the fact that the scheme is not high-order near the diffusive limit is not preponderant
as the phenomena are slow for large γ in this case. As a consequence, one of the main outlook
for this work is to create a full high-order and AP scheme by modifying the α coefficients (2.6)-
(4.9) to obtain the properties described in (2.10) to get ride of the convex combination with the β
coefficients (2.13)-(4.10)
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A. Reference solution for 1D Riemann problems for Telegraph equations

The aim is to find reference solutions to Riemann problems associated to the system (3.1) with
the following initial condition (see also Figure A.19):

U(t = 0, x) =

{
UL if x < 0,

UR otherwise.
(A.1)

The reader is referred to [18, 17] for a full proof of the structure of the Riemann problem with
source term described in Figure A.19 and used in the next parts.

Then, reference solutions are build in the upcoming parts. The construction is done first in the
left and right zones of the Riemann problem then, using two different methods for the central zone.
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Figure A.19: Structure and zones of the Riemann problem

A.1. Solution in the left and right zones
Firstly, the left and right zones (zones 1 and 3 in Figure A.19) are treated in the same manner.

In this part the mean free path σ may be discontinuous across the initial interface (x = 0):

σ := σ(x) =

{
σL if x < 0

σR otherwise.
(A.2)

In these zones of the Riemann problem, the system (3.1) is reduced to:{
∂tu = σ(v − u)
∂tv = σ(u− v)

⇐⇒
{
∂t(u+ v) = 0
∂t(u− v) = −2σ(u− v)

,

which leads for zone 1: {
u1(t) = 1

2

(
(uL + vL) + (uL − vL)e−2σLt

)
v1(t) = 1

2

(
(uL + vL) + (vL − uL)e−2σLt

) , (A.3)

and for zone 3: {
u3(t) = 1

2

(
(uR + vR) + (uR − vR)e−2σRt

)
v3(t) = 1

2

(
(uR + vR) + (vR − uR)e−2σRt

) . (A.4)

For the central zone, some preliminary computations are needed, and two methods are presented
in the two following paragraphs.

A.2. Central zone, method 1: substitution
The first method presented uses a reformulation of the initial system (3.1) and a finite difference

scheme on the reformulated system to get the solution in the central zone (zone 2 in Figure A.19).
This method assumes that σ is constant over the whole area, hence: σ := σL = σR.

The following substitutions are done to reduce the system (3.1) and rotate the central zone:{
u ← e−σtū
v ← e−σtv̄

and
{
y ← at+ x
s ← at− x ,

which leads to: {
2a∂yū = σv̄
2a∂sv̄ = σū

. (A.5)
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Where the boundary condition is known for ū at the interface t = −xa (y = 0), since u is continuous
across the interface between zone 1 and 2. For v̄, the boundary condition is located at the interface
t = x

a (s = 0): {
ū(y = 0, s) = eσtu1(t)
v̄(y, s = 0) = eσtv3(t)

, (A.6)

with t = 1
2a (y + s). The other sides of the computational domain remain open. In order to get a

solution to the problem (A.5)-(A.6) an explicit finite difference scheme is set up, with the following
discretization: {

∀i ∈ N, yi = i∆
∀j ∈ N, sj = j∆

and
{
ūi,j := ū(yi, sj)
v̄i,j := v̄(yi, sj)

.

Finally, a finite difference scheme for this problem is:{
∀i ∈ N,∀j ∈ N, ūi+1,j = ūi,j + σ∆

2a v̄i,j

∀j ∈ N,∀i ∈ N, v̄i,j+1 = v̄i,j + σ∆
2a ūi,j

. (A.7)

A.3. Central zone, method 2: power series
The second method uses a power series decomposition of u and v, with y := x

t :
u(t, x) =

∞∑
i=0

φi(y)ti

v(t, x) =
∞∑
i=0

ψi(y)ti
. (A.8)

The advantages of this method over the first one is that the mean free path σ may be discontinuous
in the central zone (zone 2 in Figure A.19) as in (A.2). Introducing the power series of (A.8)
into (3.1) and grouping the different powers of t leads to:

(a− y)φ′0 +
∞∑
i=1

((a− y)φ′i + iφi − σ (ψi−1 − φi−1)) ti = 0

−(a+ y)ψ′0 +
∞∑
i=1

(−(a+ y)ψ′i + iψi − σ (φi−1 − ψi−1)) ti = 0
.

Isolating the term in t0, and using the appropriate initial conditions gives:{
φ0 = uL
ψ0 = vR

.

Then for a general i > 1, we have:
φ′i =

1

a− y (σ (ψi−1 − φi−1)− iφi)

ψ′i =
−1

a+ y
(σ (φi−1 − ψi−1)− iψi)

. (A.9)

The previous ODEs are solved numerically, using a classical explicit scheme:
φi,j+1 = φi,j +

∆y

a− y (σ (ψi−1,j − φi−1,j)− iφi,j)

ψi,j+1 = ψi,j +
−∆y

a+ y
(σ (φi−1,j − ψi−1,j)− iψi,j)

, (A.10)
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with the following discretization: φi,j := φi(j∆y) and ψi,j := ψi(j∆y), where ∆y := ∆x
t . Those

ODEs are valid only in zone 2, hence, j ∈ JN1;N3K, where xmin +N1∆x = −at (beginning of zone
2) and xmin + N3∆x = at (end of zone 2) in the domain [xmin;xmax]. The initial conditions are
extracted from the power series decomposition of (A.3)-(A.4):

φi,N1 =
1

2
(uL − vL)

(−2σL)
i

i!
(y = −a)

ψi,N3
=

1

2
(vR − uR)

(−2σR)
i

i!
(y = a)

.

B. Smooth solutions in 1D

We now present the construction of smooth solutions for the Telegraph equations (3.1). Fol-
lowing the method used for the hyperbolic heat equation in [14, 16] they can be expressed as:

u(t, x) = f(t, x) +
1

2σ
∂tf(t, x)− a

2σ
∂xf(t, x)

v(t, x) = f(t, x) +
1

2σ
∂tf(t, x) +

a

2σ
∂xf(t, x)

, (B.1)

where f is a solution of the following PDE:

2σ∂tf(t, x) + ∂2
t f(t, x)− a2∂2

xf(t, x) = 0. (B.2)

For instance, with a separation of variables, a solution of (B.2) can be expressed as: f(x, t) = α(t) cos(2πx),
with α(t) solution of this ODE:

4π2a2α(t) + 2σα′(t) + α′′(t) = 0.

Hence, depending on the sign of σ− 2πa, three solutions are proposed. For 0 < σ < 2πa, a solution
reads as:

α(t) = e−σt
(

sin
(√

4π2a2 − σ2t
)

+ cos
(√

4π2a2 − σ2t
))

(B.3)

Then, for σ = 2πa, a solution is:

α(t) = exp (−2πat) (1 + t) (B.4)

Finally, for σ > 2πa, the computations leads to:

α(t) = exp
(
−(σ −

√
σ2 − 4π2a2)t

)
+ exp

(
−(σ +

√
σ2 − 4π2a2)t

)
(B.5)

Then using one of the expression from (B.3), (B.4) or (B.5), the expression of f and (B.1), it is
possible to compute a smooth and exact solution of (3.1).

C. Convergence speeds in 1D

The rates of convergence to the diffusion limit with κ = 5 are presented in the Figures C.20
to C.22. For the description of this test case the reader is referred to the description done with
κ = 1 linked to the results in Figures 7 to 9.

The theoretical rates from [8] are respected for the space and time derivatives of the density
and the momentum. Only the second time derivatives show some oscillations due to the method
used for the numerical derivations.
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Figure C.20: Convergence speeds to the equilibrium in L2 and L∞-norms for density and momentum with ∆x =
5× 10−2 and κ = 5 in 1D

D. Smooth solutions in 2D

Again, by following the same method from [14, 16] already used in 1D with the Telegraph
equations (3.1), three exact solutions can also be exhibited on the unit square [0; 1]

2 with different
σ for the hyperbolic heat equation (5.2). Those solutions can be expressed as:

p(t,x) = f(t,x) +
1

σ
∂tf(t,x)

u(t,x) = − 1

σ
∇f(t,x)

,

with, f solution of the following PDE:

σ∂tf(t,x) + ∂2
t f(t,x)−∆f(t,x) = 0.

Then, for instance, f can be chosen such that: f(t,x) = α(t) cos(2πx) cos(2πy). In this case, α(t)
is solution of this ODE:

σα′(t) + α′′(t)− 4π2α(t) = 0.

Hence, a first solution is, for 0 < σ <
√

32π:

α(t) = exp

(−σt
2

)(
sin

(√
32π2 − σ2t

2

)
+ cos

(√
32π2 − σ2t

2

))
.

Then, for σ =
√

32π, the computations gives:

α(t) = exp
(
−2
√

2πt
)

(1 + t).
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Figure C.21: Convergence speeds to the equilibrium in L2 and L∞-norms for the time derivatives of the density and
momentum with ∆x = 5× 10−2 and κ = 5 in 1D

Finally for σ >
√

32π, α(t) can be defined as:

α(t) = exp

(
−σ +

√
σ2 − 32π2

2
t

)
+ exp

(
−σ −

√
σ2 − 32π2

2
t

)
.
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Figure C.22: Convergence speeds to the equilibrium in L2 and L∞-norms for the space derivatives of the density
and momentum with ∆x = 5× 10−2 and κ = 5 in 1D
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