Dictator functions maximize mutual information

Abstract : Let (Xn,Yn) denote n independent, identically distributed copies of two arbitrarily correlated Rademacher random variables (X,Y) on {−1,1}. We prove that the inequality I(f(Xn);g(Yn))≤I(X;Y) holds for any two Boolean functions: f,g:{−1,1}n→{−1,1} (I(⋅;⋅) denotes mutual information.) We further show that equality in general is achieved only by the dictator functions: f(x)=±g(x)=±xi for every i∈{1,2,…,n}.
Type de document :
Article dans une revue
Annals of Applied Probability, Institute of Mathematical Statistics (IMS), 2018, 28 (5), pp.3094-3101. 〈10.1214/18-aap1384 〉
Liste complète des métadonnées

https://hal.archives-ouvertes.fr/hal-01436725
Contributeur : Pablo Piantanida <>
Soumis le : lundi 16 janvier 2017 - 16:41:33
Dernière modification le : lundi 18 février 2019 - 19:52:11

Lien texte intégral

Identifiants

Citation

Pichler Georg, Pablo Piantanida, Gerald Matz. Dictator functions maximize mutual information. Annals of Applied Probability, Institute of Mathematical Statistics (IMS), 2018, 28 (5), pp.3094-3101. 〈10.1214/18-aap1384 〉. 〈hal-01436725〉

Partager

Métriques

Consultations de la notice

220