Self noise and contrast controlled thinning of gray images

Abstract : Homotopic grayscale thinning leads to " over-connected skeleton " when applied on noisy images. One way to avoid this phenomenon is the parametric thinning. It consists in relaxing the initial constraint by lowering low contrast crests, peaks and ends, according to a manually selected parameter and under the constraint of ascendant gray level processing. We propose to control this parameter by considering the lowering decision in a statistical framework of hypothesis test under the assumption of an additive Gaussian noise. A unitary hypothesis test based on the minimum test statistic is used for the elimination of peaks and noise related extremities, while a fusion of multiple tests is required for the insignificant crest lowering decision. This leads to a local adjustment and a standardization of the parametric thinning process that depends only on the chosen significance level of the test.
Type de document :
Article dans une revue
Pattern Recognition, Elsevier, 2016, 57, pp.97 - 114. <10.1016/j.patcog.2016.03.033>
Liste complète des métadonnées


https://hal.archives-ouvertes.fr/hal-01436709
Contributeur : Rabaa Youssef <>
Soumis le : lundi 16 janvier 2017 - 16:34:55
Dernière modification le : jeudi 19 janvier 2017 - 01:05:34
Document(s) archivé(s) le : lundi 17 avril 2017 - 15:24:33

Fichier

Manuscript_Rabaa_Youssef.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

Citation

Rabaa Youssef, Sylvie Sevestre-Ghalila, Anne Ricordeau, Amel Benazza. Self noise and contrast controlled thinning of gray images. Pattern Recognition, Elsevier, 2016, 57, pp.97 - 114. <10.1016/j.patcog.2016.03.033>. <hal-01436709>

Partager

Métriques

Consultations de
la notice

36

Téléchargements du document

25