A note on the Poisson bracket of 2d smeared fluxes in loop quantum gravity

Abstract : We show that the non-Abelian nature of geometric fluxes---the corner-stone in the definition of quantum geometry in the framework of loop quantum gravity (LQG)---follows directly form the continuum canonical commutations relations of gravity in connection variables and the validity of the Gauss law. The present treatment simplifies previous formulations and thus identifies more clearly the root of the discreteness of geometric operators in LQG. Our statement generalizes to arbitrary gauge theories and relies only on the validity of the Gauss law.
Type de document :
Article dans une revue
Classical and Quantum Gravity, IOP Publishing, 2017, 34 (10), pp.107001. <10.1088/1361-6382/aa69b4>
Liste complète des métadonnées

https://hal.archives-ouvertes.fr/hal-01436645
Contributeur : Alejandro Perez <>
Soumis le : lundi 16 janvier 2017 - 16:08:19
Dernière modification le : jeudi 21 septembre 2017 - 16:55:50

Identifiants

Collections

Citation

Alberto S. Cattaneo, Alejandro Perez. A note on the Poisson bracket of 2d smeared fluxes in loop quantum gravity. Classical and Quantum Gravity, IOP Publishing, 2017, 34 (10), pp.107001. <10.1088/1361-6382/aa69b4>. <hal-01436645>

Partager

Métriques

Consultations de la notice

78