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Probabilistic safety analysis of the collision

between a space debris and a satellite with an

island particle algorithm
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Abstract

Collision between satellites and space debris seldom happens, but the loss of a satel-
lite by collision may have catastrophic consequences both for the satellite mission
and for the space environment. To support the decision to trigger o� a collision
avoidance manoeuver, an adapted tool is the determination of the collision prob-
ability between debris and satellite. This probability estimation can be performed
with rare event simulation techniques when Monte Carlo techniques are not enough
accurate. In this chapter, we focus on analyzing the in�uence of di�erent simulation
parameters (such as the drag coe�cient) that are set for to simplify the simulation,
on the collision probability estimation. A bad estimation of these simulation param-
eters can strongly modify rare event probability estimations. We design here a new
island particle Markov chain Monte Carlo algorithm to determine the parameters
that, in case of bad estimation, tend to increase the collision probability value. This
algorithm also gives an estimate of the collision probability maximum taking into
account the likelihood of the parameters. The principles of this statistical technique
are described throughout this chapter.
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1 Introduction

On February 10th 2009, active commercial satellite Iridium-33 and out of order
Russian satellite Cosmos-2251 collided [Kelso, 2009]. The impact produced
more than 2000 trackable debris. Most of them may destroy any satellite,
whether in use or not, they might encounter. The safest practice for satellites
that encounter space debris is to avoid collision. Avoidance maneuvers are an
e�cient mean to reduce the collision probability between two orbiting objects,
nevertheless they consume fuel reducing the operational lifetime of the satel-
lite and they perturb the operational mission of the satellite. Consequently,
satellite safety responsible teams have to take into account the operational
mission prior to the de�nition of a collision avoidance maneuver and try to
combine, whenever possible, planned station keeping maneuvers with collision
avoidance maneuvers. Avoidance maneuvers are decided, among other param-
eters, based on the estimated collision probability.
The orbital motion of the space objects is simulated using a simpli�ed deter-
ministic dynamical model that may be considered as an input-output function
where the random inputs are, for instance, the position and the speed of the
debris and of the satellite as well as other dynamic parameters as the drag
coe�cient, and the output is the minimum distance between the debris and
the satellite. The collision probability is then estimated on this output. This
input-output function can be seen as a "black-box" with random inputs. Some
parameters, denoted by a vector Θ, in black-box functions are implicitly set,
such as parameters of the model (the drag coe�cient for instance) or of the
input parametric model density, and their value in�uences the collision prob-
ability estimation. These hypotheses are often assumed for simpli�cation and
computational reasons. From a risk analysis point of view, it is interesting to
determine the variability of the collision probability w. r. t. the uncertainty
on theses input parameters Θ or w. r. t. one particular parameter, and to
quantify the impact of such tuning in the realization of a collision. Of course,
di�erent values of Θ can strongly modify rare event probability estimation
and sometimes miss a risk situation. The issue of concern in safety would
be to underestimate a risk because of a bad tuning of model parameters Θ.
That is why in this paper we propose to estimate the law of the parameters Θ
conditionally on a collision between the debris and the satellite. We develop
in this chapter the SMC2 (Sequential Monte Carlo Square) algorithm to esti-
mate this kind of targeted laws introduced [Chopin et al., 2013] to do �ltering
on hidden Markov models. We apply this island particle algorithm to debris
satellite collision use case and analyse its results for the system safety.
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2 Debris satellite collision simulation

We consider two space objects (a debris and a satellite) orbiting around an
Earth centered inertial reference frame. Their geometry is assumed spherical
(i.e. the objects have a high tumbling motion when compared with their or-
bital period) and we assume that we perfectly know the radius of such sphere
and the mass of the objects. We wonder about the relative position of the
two satellites and ask whether the distance between the two objects could be
smaller than a con�ict distance T during the given time span I. To model
the orbital motion of both space objects, we consider a general perturbation
approach where the original equations of motion are replaced with an analyt-
ical approximation that captures the essential character of the motion over
some limited time interval, which also enables analytical integration of the
equations. SGP4 model [Miura, 2009] is used to propagate the trajectories of
debris and satellite according to the time. At time t, the space objects will
be represented by their 6-dimensional state vectors ~s1(t) and ~s2(t), i.e. their
3-dimensional position vectors ~r1(t) and ~r2(t) and their 3-dimensional speed
vectors ~v1(t) and ~v2(t) such that ~si = (~ri, ~vi). The initial conditions in the pro-
posed example is de�ned in terms of two line elements (TLE), similar to those
provided by NORAD (North American Aerospace Defense Command), as the
SGP4 model is used for the orbital propagation of the considered objects. The
initial condition value is denoted ~smi at a given time tmi . SGP4 enables us to
propagate the orbit of both space objects through time, denoted by a scalar
continuous function ν such that

∀i ∈ {1, 2},∀t ∈ I, ~si(t) = ν(~smi , t
m
i , t),

δ = min
t∈I
{‖~r2 − ~r1‖(t)}.

The function of time t ∈ I 7→ ‖~r2−~r1‖(t) makes δ available through numerical
optimisation in a deterministic approach. In fact, the position and velocity of
space objects are estimated from more or less imprecise measurements. While
the measurement means used for satellites (e.g. GPS, laser) result in a reason-
able orbital accuracy (e.g. several tens of meters) the measurement means used
for debris and uncooperative space-objects (e.g. mainly radar and telescopes)
could result in quite imprecise orbits (e.g. several hundred of meters or few
kilometers). This lack of accuracy will depend on a great number of factors.
TLEs sum up this information and feed the models with the couple (~smi , t

m
i )

for i = 1, 2, but to cope with their uncertainty, we have added independent
and identically distributed Gaussian noises to the model inputs ~smi .
Debris satellite con�ict may be modelled as an input-output function where:

• the input X represents the position and the speed of the debris space (the
position and the speed of the satellite are assumed to be known). X is a 6-
dimensional multivariate normal random vector of mean (Θ1,Θ2,Θ3,Θ4,Θ5,Θ6)t
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and covariance matrix is equal to the identity matrix de�ned on a measur-
able space (X,X ). The means corresponds to the debris measurement errors
on its position and speed;
• the input-output function φ enables to propagate the debris and satellite
trajectories with the SGP4 model during I. The input-output code includes
the transformation that allows to switch from the standard space of the
input to the physical space in which evolve the satellite and debris position
and speed. The function φ is a continuous positive scalar function φ : R6 →
R and is static;
• the error on the drag coe�cient which is considered inside the function φ is
also random and follows a normal distribution with mean Θ7 and variance
1;
• the output Y is the minimum distance between the debris and the satellite
during I. We assume that it is a positive random variable.

The complete set of model parameters is summed up in the vector Θ =
(Θ1,Θ2,Θ3,Θ4,Θ5,Θ6,Θ7)t. The quantity of interest on the output Y is the
probability

P(Y < T ) = P(φ(X) < T ) .

When the event {φ(X) < T} is rare relatively to the available simulation
budget (which is often the case in safety and reliability issues), di�erent al-
gorithms described in [Sobol, 1994], [Bucklew, 2004], [Rubinstein and Kroese,
2004], [Zhang, 1996], [Bjerager, 1991], [Botev and Kroese, 2012], [Cérou et al.,
2012] have notably been proposed to estimate accurately its probability.

3 Basics of safety analysis

In the present chapter, one focuses on the case where the law of X is uncertain
and depends upon unknown parameters. We assume that X is distributed
according to a well known parametric model and its parameters, denoted by
a random vector Θ, have a probability density ν. We also suppose that Θ has
a density fΘ w. r. t. a dominating measure of reference λ, that is

ν(dθ) = fΘ(θ) λ(dθ) .

In the application considered here, X is a random vector with a multivariate
normal distribution, and Θ describe the mean of X. It corresponds notably to
realistic applications where it is not always possible to evaluate accurately the
density of input parameters. This formalism enables thus to consider a large
range of input probability density function.

The probability of interest P(Y < T ) depends of course on Θ and thus on the
distribution ν. In safety applications, it is important to estimate a superior
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bound of the rare event probability P(Y < T ) taking also into account the
prior on Θ. The prior on Θ is important since unrealistic bad tuning values
of Θ which lead to high probabilities P(Y < T ) are not relevant. The idea of
this chapter is thus to determine the distribution of Θ conditionally on the
fact that Y does not exceed the threshold T . This distribution, denoted by π,
will be referred to in the sequel as the target law.

In the further development, when there is no confusion, we sometimes write
P(Y < T |θ) instead of P(Y < T |Θ = θ).

Note that using the Bayes' formula, the target law can be written

π(dθ) =
1

P(Y < T )
P(Y < T |θ)ν(dθ) . (1)

We propose in this paper a SMC (Sequential Monte Carlo) algorithm which
evolves according to iterative selection and mutation steps, and which approx-
imates π when the number of particles gets large. This algorithm requires the
estimation of P(φ(X) < T |Θ = θ) for di�erent settings of parameter θ. For
that purpose, we describe the splitting algorithm that enables us to estimate
this probability with accuracy.

4 The SMC2 algorithm

4.1 Principle

The SMC2 algorithm is based on the use of two sets of particles to iteratively
approach π. The �rst set of particles is de�ned on the parameter Θ and the
second set of particles is useful to estimate the probabilities P(Y < T |θ). The
complete demonstration of interacting particles systems (IPS) convergence
and the link with Feynman-Kac framework is given in Moral et al. [2012].
De�ne T1, T2, ..., Tn = T a serie of decreasing thresholds and denote for all
i ∈ J0, nK

πi =
1

P(Y < Ti)
P(Y < Ti|θ)ν(dθ) .

The target law is of course π = πn. The probability law πn is thus proportional
to

πn ∝ P(Y < Tn|θ) ν(dθ)

πn ∝ Hn(θ) ν(dθ) ,
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where Hn(θ) = P(Y < Tn|θ). The term Hn(θ) can be expressed as a product
of conditional probabilities

Hn(θ) =

n−1∏
p=1

P(Y < Tp+1|Y < Tp, θ)

× P(Y < T1|θ) =
n−1∏
p=0

hp(θ) , (2)

with hp(θ) = P(Y < Tp+1|Y < Tp, θ)

h0(θ) = P(Y < T1|θ) .

In this notation, we have

πn ∝
n−1∏
p=0

hp(θ) ν(dθ) . (3)

One can also remark that Hp = Hp−1×hp−1 and consequently the link between
πp+1 and πp can be written on the following way

πp+1 = ψhp(πp), (4)

where ψhp is the so-called Boltzmann-Gibbs transformation. Let P(E) be the
set of probability measures on E. For all positive bounded function G, the
Boltzmann-Gibbs transformation ΨG : P(E) → P(E) is de�ned for all µ ∈
P(E) such that µ(G) =

∫
G(x)µ(dx) > 0 by

ΨG(µ)(dx) :=
1

µ(G)
G(x)µ(dx).

If one assumes that it is possible to determine a Markovian kernel Mp that
let πp invariant (which is not restrictive using, for example, a stage of the
acceptance/rejection of Metropolis-Hastings algorithm) we have

πp = (πpMp)(dθ) =
∫
πp(dθ

′)Mp(θ
′, dθ). (5)

This yields the evolution equation

πp+1 = ψhp(πp)Mp+1 . (6)

Equation 6 may be cast in the Feynman-Kac framework and then, each mea-
sure πp can be approximated by an IPS which evolves with selection steps
related to the so called potential functions hp and mutation steps related to
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the Markov kernel Mp. Denote by {(θ1
p, ..., θ

N1
p )}n≥0 a system of N1 particles.

θ1
0

.

.

.

.

.

.

θN1
0



Selection−−−−−→



θ̂1
0

.

.

.

.

.

.

θ̂N1
0



Mutation−−−−−−→



θ1
1

.

.

.

.

.

.

θN1
1



Selection−−−−−→



θ̂1
1

.

.

.

.

.

.

θ̂N1
1



Mutation−−−−−−→

The selection stage consists in sampling {θ̂ip}
N1
i=1 independently according to

the probability measure ψhp , i.e. selecting the particles {θip}
N1
i=1 with probabil-

ities proportional to their weights {hp(θip)}
N1
i=1. The mutation stage consists in

updating the selected particles conditionally independently using the Markov
kernelMp+1 that let πp+1 invariant. This step enables to increase the diversity

of θ̂p without changing its probability law, that is already close to πp+1. The
Feynman-Kac theory Moral et al. [2012] ensures that at each transition stage
p :

1

N1

N1∑
i=1

δθip −−−−−→N1→+∞
πp .

Thus, at the end of the nth transition stage, the system of particles converges
to the target law πn so that

1

N1

N1∑
i=1

δθin −−−−−→N1→+∞
πn .

Nevertheless, the knowledge of hp is required to apply the di�erent selec-
tion/mutation stages. In practice, hp(θ

i
p) is not analytically computable but

can be estimated by de�ning a new set of particles {ξi,jp }
N2
j=1 on the random

variable X conditionally to the di�erent thresholds Tp and associated to each
θip.

4.2 Description

Consider {θi0}
N1
i=1 generated with probability law ν. At iteration k of the algo-

rithm, with k ≥ 1, we assume that particles {θik}
N1
i=1 are available and then,

the interacting island algorithm consists in two iterative type stages:
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• Selection stage The selection stage consists in choosing randomly and
independently N1 particles amongst {θik}

N1
i=1 with probabilities proportional

to their weights {hk(θik)}
N1
i=1. Thus, the particles with low weights are killed

whereas those with high weights are multiplied. The number of particles is
kept constant in this stage and a new set particles {θ̂ik}

N1
i=1 can be de�ned.

Remind that the potential functions hk are de�ned by:

hk(θ
i
k) = P(Y < Tk+1|Y < Tk, θ = θik), k ≥ 1

h0(θi0) = P(X < T1|θ = θi0)

These quantities have to be computed.
• Mutation stage Even if the number of particles is still equal to N1, some
particles have been duplicated, so we apply a Markov kernel to increase
the diversity of the particles. Building a πk+1-reversible transition kernel
that let πk+1 invariant is the objective of mutation stage. For that purpose,
the acceptance/rejection step of the Metropolis-Hastings algorithm Tier-
ney [1994] is useful. This approach results in the exploration of Θ space

set without changing the
(
θ̂ik
)

1≤i≤N1

distribution and the increase of the

particle diversity. A new particle θik
′ is proposed with a ν-reversible kernel

Q. The acceptation rate of a new proposal is consequently 1 ∧ Hk+1(θ̂ik
′)

Hk+1(θ̂i
k
)
.

If Hk+1(θ̂ik
′) > Hk+1(θ̂ik), the proposal θ̂ik

′ is automatically accepted and
replaces θ̂ik in the set of current particles. Otherwise, the proposal θ̂ik

′ is

accepted with probability
Hk+1(θ̂ik

′)

Hk+1(θ̂i
k
)
. This acceptance/rejection procedure is

repeated Napp times to decrease the correlation between the particles. At
the end of this stage, a new set of particles {θik+1}

N1
1=i can be de�ned.

Mutation and selection stage are applied n times until reaching the target
threshold Tn. At the end of the algorithm, the particles {θin}

N1
1=i provides an

estimate of πn :

π̂N1
n =

1

N1

N1∑
i=1

δθin .

For i ∈ [1, N1] and k ∈ [0, n], the point is to estimate each probability
{hl(θik)}1≤l≤k. It can be done with another interacting particle system (also
called, in that case, sequential Monte Carlo, importance splitting, subset sim-
ulation or subset sampling). It is a rare event estimation technique which
considers the estimation of several conditional probabilities that are easier
to evaluate than estimate only one probability through a very tough simula-
tion. Its principle is also based on selection and mutation stages. Let us de�ne
{ξi,j0 }N2

j=1 with probability density fX|θij w.r.t. λX , i.e. the density of X knowing

Θ = θik. At iteration l of the algorithm, we assume that particles {ξi,jl }
N2
j=1 are

available and then IPS consists in two iterative stages:
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• Selection stage The selection stage consists in choosing randomly and
independently N2 particles amongst the particles {ξi,jl }

N2
j=1 which are above

Tl. The particles which have not reached the threshold Tl are thus killed.
The number of particles is kept constant, and a new set of particles {ξ̂i,jl }

N2
j=1

can be de�ned.
• Mutation stage The mutation stage is patterned with acceptance/rejection
principle using the Metropolis-Hastings algorithm Tierney [1994]. A new
particle ξ̂i,jl

′ is then proposed with a Markov kernel Q̃. If φ(ξ̂i,jl
′) < Tl,

then the proposal is accepted with probability 1 ∧
f
X|θi

l
(ξ̂i,j
l

′)Q̃(ξ̂i,j
l

′,ξ̂i,j
l

)

f
X|θi

l
(ξ̂i,j
l

)Q̃(ξ̂i,j
l
,ξ̂i,j
l

′)
and

ξ̂i,jl
′ replaces ξ̂i,jl in the set of current particles. If φ(ξ̂i,jl

′) > Tl, the pro-
posal is automatically rejected and the particle ξ̂i,jl is remained. This accep-
tance/rejection procedure is repeated Napp2 times to decrease the correla-
tion between the particles. At the end of this stage, a new set of particles
{ξi,jl+1}

N2
j=1 can be de�ned. An estimate ĥl(θ

i
k) of hl(θ

i
k) = P(Y < Tl+1|Y <

Tl,Θ = θik) is given by the ratio between the number of {ξi,jl }
N2
j=1 particles

such that φ(ξi,jl ) < Tl+1 and the total number of particles N2.

Mutation and selection stages are applied k times until reaching the target
threshold Tk. At the end of the algorithm, Hk+1(θik) = P(Y < Tk+1|θik) is
estimated by

Ĥk+1(θik) =
k∏
l=0

ĥl

For a given particle θik, a complete set of particles {ξi,jl }
1≤l≤k
1≤j≤N2

is thus gener-
ated. An island particle is thus constituted of a particle θik and its associated
{ξi,jl }

1≤j≤N2

1≤l≤k particle set.

The SMC2 algorithm is described more precisely in Algorithm 1. Interact-
ing particle system for probability estimation required in Algorithm 1 is
developed in Algorithm 2.

The determination ofQ and Q̃, in the general case, implies the use of Metropolis-
Hastings algorithm. Nevertheless, if µ is a standard normal distribution, a
transition from x to z de�ned with the following expression

x 7→ z =
√

1− a x+
√
a W, (7)

whereW ∼ N (0, 1) and a is scalar parameter such as a ∈ [0, 1], is µ-reversible.
In order to use equation 7 instead of Metropolis-Hastings algorithm, it is also
possible to apply a transformation on the variables X or Θ so that they follow
a standard normal PDF. Depending on the available information on the PDF
of X, several transformations can be proposed Nataf [1962], Pei-Ling and
Kiureghian [1991], Lebrun and Dutfoy [2009b], Rosenblatt [1952] and Lebrun
and Dutfoy [2009a].
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Algorithm 1 The SMC2 algorithm

1: Setting de�nition:
2: De�ne the thresholds T1, ..., Tn, the sample sizes N1, N2 and the number

of applications Napp of Markov kernel Q.
3: Initialization:
4: Sample (θi0)1≤i≤N1

with probability law ν.
5: for i from 1 to N1 do

6: Sample
(
ξi,j0

)
1≤j≤N2

according to the probability density fX|θi0 .

7: end for

8: Transition:
9: for k from 0 to n do
10: Associate a system of particles

(
ξi,jl
)1≤j≤N2

1≤l≤k
to each θik in order to esti-

mate hk (θik) and Hk+1 (θik) with Algorithm 2.
11: Selection of the θ-particles:
12: Sample Ik = (I ik)1≤i≤N1

multinomially with probability proportional to

{hk (θik)}
N1
i=1.

13: Set θ̂ik = θ
Iik
k .

14: Mutation of the θ-particles:
15: for m from 1 to Napp do

16: for i from 1 to N1 do

17: Sample θ̂ik
′ with a ν reversible kernel Q.

18: Sample u with a uniform random variable.

19: if

(
u < 1 ∧ Hk+1(θ̂ik

′)

Hk+1(θ̂i
k
)

)
then set θik+1 = θ̂ik

′.

20: else set θik+1 = θ̂ik.
21: end if

22: end for

23: if m < Napp then set θ̂ik = θik+1.
24: end if

25: end for

26: end for

27: Estimation:
28: Estimate πn with π̂N1

n = 1
N1

∑N1
i=1 δθin

5 Estimation of collision probability between orbiting objects

The SMC2 algorithm has been applied on the debris satellite collision test
case in order to estimate π, the conditional law of Θ given φ(X) < T ,
with the following parameters: N1 = 1000, N2 = 50, Napp = 1, Napp2 = 1.
The intermediate thresholds Ti on the output distance are expressed in me-
ters with {200, 100, 66, 50, 40, 33, 28, 25, 22, 20}. The estimators of the di�erent
marginals of π, obtained with the SMC2 algorithm, are given in Figure 1, where
the �rst marginal is related to the �rst parameter and so on.
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Algorithm 2 Interacting particle system for probability estimation

1: For a given value θik, we build an IPS which allows to estimate both
hk (θik) = P (Y < Tk+1|Y < Tk,Θ = θik) and Hk+1 =

∏k
p=0 hp (θik).

2: Setting de�nition:

3: De�ne the number of applications Napp2 of Markov kernel Q̃ and recall the
iteration parameter k and the particle value θik, the thresholds T1, ..., Tk+1

and the sample size N2, that have been de�ned or obtained in Algorithm
1.

4: Initialisation:
5: Sample

(
ξi,j0

)
1≤j≤N2

following probability density fX|θi
k
.

6: Transition:
7: for l from 0 to k − 1 do
8: Selection of the ξ particles:
9: for j from 1 to N2 do

10: if φ
(
ξi,jl
)
≤ Tl+1 then set ξ̂i,jl = ξi,jl .

11: else Sample ξ̂i,jl randomly and uniformly among particles which are
below the threshold Tl+1.

12: end if

13: end for

14: Mutation of the ξ particles:
15: for r from 1 to Napp2 do

16: for j from 1 to N2 do

17: Sample ξ̂i,jl
′ according to Q̃

(
ξ̂i,jl , .

)
.

18: if φ
(
ξ̂i,jl
′
)
> Tl+1 then set ξi,jl+1 = ξ̂i,jl .

19: else Sample u with a uniform random variable.

20: if

(
u < 1 ∧

f|θi
k

(ξ̂i,j
l

′)Q̃(ξ̂i,j
l

′,ξ̂i,j
l

)

f|θi
k

(ξ̂i,j
l

)Q̃(ξ̂i,j
l
,ξ̂i,j
l

′)

)
then set ξi,jl+1 = ξi,jl

′

21: else set ξi,jl+1 = ξ̂i,jl
22: end if

23: end if

24: end for

25: if r < Napp2 then set ξ̂i,jl = ξi,jl+1.
26: end if

27: end for

28: Set ĥl (θ
i
k) = 1

N2

∑N2
j=1 1φ(ξi,jl )≤Tl+1

29: end for

30: Set ĥk (θik) = 1
N2

∑N2
j=1 1φ(ξi,jk )≤Tk+1

31: Estimation:
32: Estimate hk (θik) with ĥk (θik) and Hk+1 (θik) with

∏k
l=0 ĥl (θ

i
k).

The estimated probabilities P̂(Y < T |Θ = θ), when Θ follows ν and π are
represented in Figure 2. The mean probability P̂(Y < T |Θ = θ) when Θ
follows ν is estimated to 3.9 10−4. When θ =

∑Nθ
i=1 θ

i
m/Nθ, the probability

11
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Fig. 1. Estimations of the marginals of π using the SMC2 algorithm. The red curve

corresponds to the standard normal density that is the initial marginal of the di�er-

ent parameters.

P̂(Y < 20|Θ =
∑Nθ
i=1 θ

i
m/Nθ) is equal to 0.034.

The question is how to analyze the estimated density of π for the tuning of Θ.
A possible approach is to consider the Kullback-Leibler distance between the
estimated marginal density of π for the parameter Θi and the initial marginal
density of ν for parameter Θi. If the Kullback-Leibler distance is signi�cant for
Θi, then one can assume that Θi has to be �nely tuned and conversely. In that
case, a misestimation of Θi will indeed tend to increase the failure probability.
Table 1 summaries the di�erent Kullback-Leibler distance obtained for the
di�erent components of Θ. The �rst error component Θ1 of the position vector
seems to be the most in�uent parameter on P(φ(X) < T ). On the contrary,
the second error component of position and speed vector, that are Θ2 and
Θ5 require a lower accuracy since the considered values for these parameters

12



0 0.002 0.004 0.006 0.008 0.01 0.012 0.014
0

200

400

600

800

1000

P(φ(X) < T |Θ = θ)

N
um

be
r 

of
 s

am
pl

es

0 0.002 0.004 0.006 0.008 0.01 0.012 0.014
0

50

100

150

200

P(φ(X) < T |Θ = θ)

N
um

be
r 

of
 s

am
pl

es

Fig. 2. Estimates of P(Y < T |θ) with Θ following ν and π.

lead the maximum of the collision probability; an error on these parameters
will thus tend to decrease the failure probability. In the same way, the density
parameter Θ7 of the drag coe�cient does not require also a too �ne tuning in
the proposed example.
It may be also interesting in practice to transform the six �rst components of Θ
into usual orbital parameters (the semi-major axis a, eccentricity e, inclination
i, argument of perigee ω, longitude of the ascending node Ω, the mean anomaly
m) and then to evaluate π in that case. The estimation of the marginals of π
for the di�erent orbital parameters is proposed in Figure 3. The corresponding
Kullback-Leibler analysis is given in Table 2. The mean anomaly is on this use
case the orbital parameter that has to be most �nely tuned. There is indeed
a higher chance that the collision probability increases if the mean anomaly
is not correctly set.

6 Conclusion

In this chapter, we have proposed an original methodology to analyze the in-
�uence of parameter model that are set for the sake of simplicity, on a rare

13



Component of Θ Kullback-Leibler distance with the marginal of π

Θ1 0.46

Θ2 0.13

Θ3 0.30

Θ4 0.24

Θ5 0.11

Θ6 0.25

Θ7 0.10

Table 1

Kullback-Leibler distance between marginal density π and ν for parameters Θi.

failure probability. The proposed SMC2 algorithm has been described in the
case of a general problem where the model is a black-box system with random
inputs. This algorithm has been applied with success for the analysis of colli-
sion probability between space debris and satellite. The set model parameters
in�uence strongly the value of the collision probability and their value has to
be carefully investigated to avoid collision probability underestimation.
The complete interpretation of target law π remains complicated and has to
be continued. The analysis of the particles obtained by the SMC2 algorithm
with Sobol indices [Sobol and Kuchereko, 1993] is a potential perspective to
this work.
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Fig. 3. Estimations of the marginals of π using the SMC2 algorithm on the orbital

parameters. The red curve corresponds to the initial density of the orbital parame-

ters.
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