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Summary: In this paper we propose a general methodology for testing the null hypothesis that an excess hazard

rate model, with or without covariates, belongs to a parametric family. Estimating the excess hazard rate function

parametrically through the maximum likelihood method and non-parametrically (or semi-parametrically) we build a

discrepancy process which is shown to be asymptotically Gaussian under the null hypothesis. Based on this result we

are able to build some statistical tests in order to decide wether or not the null hypothesis is acceptable. We illustrate

our results by the construction of chi-square tests which the behavior is studied through a Monte-Carlo study. Then

the testing procedure is applied to a population based colon cancer data.
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1. Introduction

Cure models are used in population based cancer epidemiology, their application relies on

the existence of statistical cure. Net survival, which is the survival that would be observed in

a hypothetical world where cancer would be the only possible cause of death (see e.g. Cronin

and Feuer 2000, Pohar Perme, Stare and Estève 2012), provides an objective measure of the

proportion of patients dying from direct or indirect consequences of cancer without requiring

a record of the cause of death. It is usually estimated by excess mortality rate modeling. In

situations where some patients will never experience death due to cancer (”cured patients”),

the net survival curve flattens at a non-zero value after a while, when the excess mortality

rate due to cancer, denoted hereafter λexc, reaches zero. This is a population definition of

cure and does not necessarily imply that patients are medically cured. In order to use cure

models, the cure assumption needs to be assessed. Current methods are based on graphical

assessment of a plateau in net survival, which may not be satisfactory, thus there is a need

to provide an objective answer to the existence of statistical cure. This requires to provide

more and more sophisticated models for the excess hazard function. These models can be

parametric, semi- or non-parametric. Danieli et al. (2012) have shown the importance of

using flexible nonparametric estimators of the net survival function in order to prevent bias

due to several practical situations that maybe encountered in population based studies for

cancer registries. The choice of the best estimation methodology is still an important matter,

for recent contributions see for instance Yu et al. (2013), Lambert, Dickman and Rutherford

(2015), Seppä, Hakulinen and Pokhrel (2015), Seppä et al. (2016). Because semi- or non-

parametric models are less constrained than parametric ones, they should be preferred when

we are not able to guarantee that a parametric model is compatible with the data. However,

if the parametric model is data–compatible, it may be more interesting to use such a model



since usual indicators (e.g. risk functions, quantiles, conditional expectations, confidence

domains, etc.) are generally obtained more easily under parametric assumptions.

The aim of the paper is to provide a general methodology for testing the hypothesis that

the excess risk function λexc belongs to a parametric family. Our approach is based on a

comparison of the maximum likelihood estimator (MLE) of the excess cumulative hazard

and an adaptation of the semiparametric (or nonparametric) estimator of Sasieni (1996)

that includes a large class of performant nonparametric estimators like Pohar Perme et

al. (2012), and Kodre and Perme (2013). However we want to emphasize that the class of

available nonparametric estimators is not reduced to the Sasieni familly of estimators. For

instance Cortese and Scheike (2008) proposed to estimate the excess hazard rate function

by a nonparametric additive regression model extending the well–known additive hazard

model introduced by Aalen (1980). Let us note that in the domain of inference Cortese and

Scheike (2008) also developed test procedures based on residuals for the proportional excess

model (see also Stare, Pohar, and Henderson 2005), and Kannan et al. (2010) developed

some graphical goodness–of–fit for a generalized exponential cure rate model with covariates.

Recently Grafféo et al. (2016) developed some log-rank-type tests to compare net survival

distributions.

In order to test that the excess risk function λexc belongs to a parametric family we build

some statistical tests based on the discrepancy process, that is the difference between the

MLE and the Sasieni estimator of the excess cumulative hazard rate, multiplied by the root

of n (the sample size). The study of the asymptotic behavior (with respect to n) of the

discrepancy process, using usual martingale methods for counting processes a la Andersen

et al. (1993), allows to derive some test statistics as well as their distribution. In this paper

we focus on chi-square type statistics which present the advantage of having an asymptotic
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distribution free of the unknown model parameters under the null hypothesis (for more on

chi-square testing see for instance Greenwood and Nikulin 1996 and Khmaladze 2013).

The paper is organized as follows. In Section 2 we describe both parametric and semipara-

metric models for the excess hazard rate and we recall the basic martingale properties of

counting processes. Section 3 is devoted to the construction of test statistics for homogeneous

data, that is data for which we consider that there is no covariate effect on the excess hazard

rate. Section 4 is similar to Section 3 for data including covariate effects on the excess hazard

rate function. A numerical study is conducted in Section 5 including both a simulation

part giving empirical evidence that our testing procedure behaves well, and an analysis of

colorectal cancer data. Some concluding remarks are given in Section 6.

2. Parametric and semiparametric models for the excess hazard rate

Let A be the age at which an individual is diagnosed, T be the time elapsed between A

and the time of death of the individual, C be a right censoring time and Z be a vector of

covariates in Rd. An observation is a quadruple (X,∆, A,Z), where X = min(T,C) and

∆ = 1{T6C} (here 1E denotes the set indicator function, equal to 1 if E is true and 0

otherwise). We denote by λobs(t|a, z) the hazard rate function of T given (A,Z) = (a, z).

When there is no covariate in the model we simply delete Z or z from our notations.

We denote by λpop(a + t|z) the general population hazard rate for an individual with

covariate Z = z at the calendar time a + t. Then we consider two different models for the

conditional excess hazard rate function λexc(t|z).

Proportional hazards model. We assume that the observed hazard rate function λobs is

defined by

λobs(t|a, z) = λpop(a+ t|z) + exp(βz)λexc(t), (1)



where β is an unknown regression parameter in Rd and λexc is an unknown baseline hazard

rate function. Both parameters β and λexc have to be estimated. Notice that considering a

single vector of covariates z is a simplification of notations in the sense that (1) could be

rewritten

λobs(t|a, z) = λpop(a+ t|z1) + exp(βz2)λexc(t),

with z1 and z2 two subsets of covariates from z.

Parametric proportional hazards model. We assume that the observed hazard rate

function λobs is defined by

λobs(t|a, z) = λpop(a+ t|z) + exp(βz)λexc(t|θ), (2)

where β is an unknown regression parameter in Rd and λexc(t;θ) belongs to a parametric

family A = {λexc(·|θ);θ ∈ Θ ⊂ Rp}. Assuming the absence of covariate effects on the excess

risk function is equivalent to suppose that β = 0 in the above models (1) and (2). We note

that generallyA is a parametric family of cure models. It means that the net survival function

corresponding to the excess risk function λexc(·|θ) is written Snet(·|θ) = π + (1 − π)S0(·|γ)

with θ = (γ, π) ∈ Γ × [0, 1] where S0(·|γ) is a parametric survival function indexed by the

Euclidean parameter γ ∈ Γ, and π ∈ [0, 1] is the cure rate. An example of such a Weibull

cure model is defined in the appendix. Because π represents the fraction of cured people and

because π belongs to [0, 1], such a model includes the possibility of curing (π ∈ (0, 1]) as

well as the possibility of dealing with an incurable disease (π = 0). Thus, for a parametric

family A, testing absence of cure is possible only if we are able to verify that the data are

compatible with the parametric model (2), which in turn requires to test the composite null

hypothesis H0 that λexc ∈ A.

Data and martingale properties. Let us now consider that we observe n independent and
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identically distributed copies {(Xi,∆i, Ai,Zi); 1 6 i 6 n} of (X,∆, A,Z). The realization

of (X,∆, A,Z) (resp. (Xi,∆i, Ai,Zi)) is denoted (x, δ, a, z) (resp. (xi, δi, ai, zi)).

Let us introduce the usual processes N (counting process) and Y (at risk process) defined

by N(t) = 1{X6t;∆=1} and Y (t) = 1{X>t} and in a similar way the 2n processes Ni and Yi.

Then, considering the natural filtration Fn = (Ft; t > 0) generated by the 2n processes Ni

and Yi, and the n diagnosis times ai and covariates zi we define

Mi(t|ai, zi) = Ni(t)−
∫ t

0

Yi(s)λobs(s|ai, zi)ds (3)

which are square integrable martingales with respect to the filtration Fn (see Andersen et

al. 1993). Note that even if there is no covariate effect to specify in the excess hazard rate

function, the population risk function generally varies with the individuals through several

characteristics (sex, age, etc.). Thus we mention this fact by noticing λ
(i)
pop the population

risk of the ith individual.

3. Testing a parametric model without covariates effect

3.1 Maximum likelihood principle

The maximum likelihood estimator (MLE) satisfies

θ̂ = arg max
θ∈Θ

n∑
i=1

{
log
(
λ(i)

pop(xi + ai) + λexc(xi|θ)
)
δi − Λexc(xi|θ)

}
= arg max

θ∈Θ
`n(θ).

For any function f : θ 7→ f(θ) we note ḟ(θ) = ∂f
∂θ

(θ) and f̈(θ) = ∂2f

∂θ∂θT
(θ). Because

√
n
(
θ̂ − θ0

)
= −

[
1

n
῭
n(θ∗)

]−1
1√
n

˙̀
n(θ0),

where θ∗ lies between θ0 and θ̂, and

˙̀
n(θ0) =

n∑
i=1

∫ τ

0

λ̇exc(x|θ0)

λ
(i)
pop(x+ ai) + λexc(x|θ0)

dMi(x|ai),

where τ is the study duration (in practice we set τ = +∞). Then, using standard martingale

methods for counting processes we obtain under standard regularity conditions (see Andersen



et al. 1993)

√
n
(
θ̂ − θ0

)
= I−1(θ0)

1√
n

˙̀
n(θ0) + oP (1), (4)

where

Î =
1

n

n∑
i=1

[
δiλ̇exc(xi|θ̂)

λ
(i)
pop(xi + ai) + λexc(xi|θ̂)

]⊗2

P−→ I(θ0),

where for a column vector u, u⊗2 = uuT . From the previous results we obtain

√
n
(
θ̂ − θ0

)
d−→ N

(
0, I−1(θ0)

)
. (5)

The practical use of the last result consists in considering that N
(
θ0, n

−1Î−1
)

is a good

approximation of the distribution of the consistent estimator θ̂ of θ0.

3.2 Nonparametric estimation principle

In Sasieni (1996) it is proved that the following nonparametric estimator of Λexc is asymp-

totically efficient:

Λ̃exc(t) =
n∑
i=1

∫ t

0

wi(s)∑n
j=1wj(s)Yj(s)

(
dNi(s)− Yi(s)λ(i)

pop(ai + s)ds
)

whenener the weights functions wi are defined by

wi(s) =
λ

(i)
pop(ai + s)

λ
(i)
pop(ai + s) + λexc(s)

.

Because the weights wi depend on the unknown quantity λexc and because our aim is to

obtain a good estimator of Λexc (whether the data fit the parametric model or not) we

propose to replace the unavailable quantities wi by

wi(s; θ̂) =
λ

(i)
pop(ai + s)

λ
(i)
pop(ai + s) + λexc(s|θ̂)

. (6)

Thus Λexc(t) is estimated by

Λ̂exc(t|θ̂) =
n∑
i=1

∫ t

0

wi(s; θ̂)∑n
j=1 wj(s; θ̂)Yj(s)

(
dNi(s)− Yi(s)λ(i)

pop(ai + s)ds
)
. (7)

Remark 1: For various definitions of the weights we retrieve some well known estimators.

(i) If wi(s; θ̂) = 1 then (7) is nothing but the usual estimator by Andersen and Vaeth

(1989), also known as Ederer II estimator (Ederer, Axtell and Cutler 1961).
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(ii) If wi(s; θ̂) = 1/S
(i)
pop(s) then (7) is the famous Pohar Perme et al. (2012) estimator.

(iii) If wi(s; θ̂) = λ
(i)
pop(ai + s)/(λ

(i)
pop(ai + s) + λexc(s; θ̂)) then (7) is the Sasieni (1996)

estimator (obtained by fixing the regression parameter to 0) that is shown to be

asymptotically efficient in the nonparametric setup.

(iv) If wi(s; θ̂) = 1/(ŜC(s)S
(i)
pop(s)), where ŜC is an estimator of the censoring time survival

function, then (7) is the Kodre and Perme (2013) estimator.

3.3 Testing a composite hypothesis

Since the aim is to test the following composite null hypothesis

H0 : λexc ∈ {λexc(·|θ);θ ∈ Θ ⊂ Rp},

thus under H0 our interest is to chose the weights defined in (6). It is important to note also

that even if H0 is not satisfied the estimator defined by (7) remains consistent.

Let us consider the discrepancy process Dn defined for t ∈ [0, τ ] by

Dn(t) =
√
n
(

Λexc(t|θ̂)− Λ̂exc(t|θ̂)
)
.

We show in the appendix that Dn converges weakly to a centered gaussian process D∞ in

D([0, τ ]) whose the covariance function η, defined for (s, t) ∈ [0, τ ]2 by η(s, t) = E (D∞(s)D∞(t)),

is consistently estimated by

η̂(s, t) =
(

Λ̇T
exc(s|θ̂)Î−1,−1

)
γ̂(s, t)

(
Λ̇T

exc(t|θ̂)Î−1,−1
)T

,

where

γ̂(s, t) = 1
n

∑n
i=1 δiw

2
i (xi; θ̂)×

(
λ̇exc(xi|θ̂)

λ
(i)
pop(ai + xi)

)⊗2
nλ̇exc(xi|θ̂)1{xi6t}

λ
(i)
pop(ai + xi)

∑n
j=1 wj(xi; θ̂)Yj(xi)

nλ̇Texc(xi|θ̂)1{xi6s}

λ
(i)
pop(ai + xi)

∑n
j=1 wj(xi; θ̂)Yj(xi)

n21{xi6s∧t}(∑n
j=1 wj(xi; θ̂)Yj(xi)

)2

 .

Example 1 (Chi-square testing): The construction of chi-square goodness–of–fit tests for



right censored survival data has been studied for instance by Kim (1993) or Li and Doss

(1993). Let us construct a chi-square test with d degrees of freedom with the following steps.

(a) Select a partition 0 < t1 < · · · < td < τ ∧max16i6nXi. Generally choosing data-driven

ti’s is allowed (see Kim 1993). For instance we can set ti = S−1
net(π̂ + (1− π̂)i/(d+ 1)|θ̂)

for i = 1, . . . , d where for t > 0

Snet(t|θ̂) = exp

(
−
∫ t

0

λexc(s|θ̂)ds

)
,

and π̂ is the estimate of the cure rate π.

(b) Set Ŷ = (Dn(t1), . . . ,Dn(td))
T be a d × 1 real valued vector and Σ̂ = (σ̂ij)16i,j6d the

d× d real-valued matrix with entry (i, j) equal to σ̂ij = η̂(ti, tj) for 1 6 i, j 6 d. Then

calculate X̂ = ŶT Σ̂−1Ŷ .

(c) Let α ∈ (0, 1), if X̂ > χ2
d(1 − α) where χ2

d(1 − α) is the (1-α)–quantile of a chi-square

distribution with d degrees of freedom, then reject H0 with an α–risk of type I.

4. Testing a parametric model in presence of covariates

4.1 Maximum likelihood principle

Let us write ξ = (θT ,βT )T ∈ Θ × Rp = Ξ be the Euclidean parameter of the model (2).

Defining the log–likelihood function by

`n(ξ) =
n∑
i=1

{
log
(
λ(i)

pop(xi + ai) + eβ
T ziλexc(xi|θ)

)
δi − eβ

T ziΛexc(xi|θ)
}

the maximum likelihood estimator (MLE) satisfies

ξ̂ = arg max
ξ∈Ξ

`n(ξ). (8)

Again we note ḟ(θ) = ∂f
∂θ

(θ), f̈(θ) = ∂2f

∂θ∂θT
(θ), ḟ(ξ) = ∂f

∂ξ
(ξ) and f̈(ξ) = ∂2f

∂ξ∂ξT
(ξ). Because

√
n
(
ξ̂ − ξ0

)
= −

[
1

n
῭
n(ξ∗)

]−1
1√
n

˙̀
n(ξ0),
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where ξ∗ lies between ξ0 and ξ̂, and

˙̀
n(ξ0) =

n∑
i=1

∫ τ

0


eβ
T
0 zi λ̇exc(x|θ0)

λ
(i)
pop(x+ai)+e

βT0 ziλexc(x|θ0)

zie
βT0 ziλexc(x|θ0)

λ
(i)
pop(x+ai)+e

βT0 ziλexc(x|θ0)

 dMi(x|ai, zi),

where τ is the study duration (in practice we set τ = +∞). Then, using standard martingale

methods for counting processes we obtain under standard regularity conditions (see Andersen

et al. 1993)

√
n
(
ξ̂ − ξ0

)
= I−1(ξ0)

1√
n

˙̀
n(ξ0) + oP (1), (9)

where I(ξ0) is consistently estimated by Î be defined by

Î =
1

n

n∑
i=1

δi

(λ
(i)
pop(xi + ai|zi) + eβ̂

T
ziλexc(xi|θ̂))2

×
(
eβ̂

T
ziλ̇exc(xi|θ̂)

)⊗2

e2β̂
T
ziλ̇exc(xi|θ̂)zTi λexc(xi|θ̂)

zie
2β̂

T
ziλ̇Texc(xi|θ̂)λexc(xi|θ̂) z⊗2

i e2β̂
T
ziλ2

exc(xi|θ̂)

 .

4.2 Semiparametric estimation principle

Following Sasieni (1996) we define the following weight functions

wi(s; ξ̂) =
eβ̂ziλexc(x|θ̂)

λ
(i)
pop(x+ ai) + eβ̂

T
ziλexc(x|θ̂)

,

and the estimator of Λexc defined by

Λ̂exc(t|ξ̂) =
n∑
i=1

∫ t

0

wi(s; ξ̂)∑n
j=1 wj(s; ξ̂)Yj(s)eβ̂

T
zj

(
dNi(s)− Yi(s)λ(i)

pop(s+ ai)ds
)
.

Remark 2: Note that combining the MLE with the semiparametric estimator provided

by Sasieni allows to skip the step of the semiparametric estimation of β since under H0 the

estimator ξ̂ is
√
n–consistent.

4.3 Testing a composite hypothesis

As in Section 3.3 testing the following composite null hypothesis

H0 : λexc ∈ {λexc(·|θ);θ ∈ Θ ⊂ Rp},



requires to study the discrepancy process Dn defined for t ∈ [0, τ ] by

Dn(t) =
√
n
(

Λ̂exc(t|ξ̂)− Λexc(t|θ̂)
)
,

where ξ̂ = (θ̂
T
, β̂

T
)T is the MLE defined by (8).

We show in the appendix that Dn converges weakly to a centered gaussian process D∞ in

D([0, τ ]) whose the covariance function η, defined for (s, t) ∈ [0, τ ]2 by η(s, t) = E (D∞(s)D∞(t)),

is consistently estimated by

η̂(s, t) = υ̂(s)T γ̂(s, t)υ̂(t),

where

γ̂(s, t) = 1
n

∑n
i=1 δiw

2
i (xi; ξ̂)


1/η̂(0)(xi)

λ̇exc(xi|θ̂)/λexc(xi|θ̂)

zi


⊗2

1{xi6s∧t},

υ̂(t) =

(
1,

(
Λ̇T

exc(t|θ̂),

∫ t

0

η̂(1)T (u)

η̂(0)(u)
λexc(u|θ̂)du

)
Î−1

)T
and

η̂(0)(t) =
n∑
i=1

wi(t; ξ̂)Yi(t)e
β̂
T
zi and η̂(1)(t) =

n∑
i=1

wi(t; ξ̂)Yi(t)zie
β̂
T
zi .

Example 2: Following the methody of Example 1 it is easy to construct a chi-square

statistic for testing H0.

5. Numerical study

5.1 Simulation results

We consider the model where the age at diagnostic is uniform on {20, . . . , 79}, the population

rate is Weibull with scale (resp. shape) parameter 90 (resp. 3), and the excess hazard rate

is Weibull where the unknown parameter θ = (σ, γ, π) = (5, 2, 0.5) has to be estimated from

a sample of size n, where σ is the scale parameter, γ the shape parameter, and π is the

cure rate. An example of the three risk functions for an individual diagnosed at 40 years is
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given in Figure 1. The net survival function, the excess hazard rate as well as its gradient

with respect to θ are defined in the appendix. Because our goodness–of–fit procedure is

based on the MLE we start with the performance of the MLE for several sample sizes in

Table 1. First, by calculating the empirical mean (mean) of the 1000 estimates, we note

that the bias decreases as the sample size n increases. Second we can see that the standard

deviations of the 1000 estimates (st.dev) are very close to the empirical means of the standard

deviation estimates (ŝt.dev). Third going from n = 250 to n = 1000 diminishes the standard

deviations by half, which means that the asymptotic regime is quickly reached. Last we

note that whatever the value of n, the coverage probabilities (cp) are close to 0.95 which is

another indicator of the good behavior of the MLE for moderate sample sizes. In Figure 2

are provided parametric (i.e. Λexc(·|θ̂)) and nonparametric (i.e. Λ̂exc(·|θ̂)) estimates of the

excess cumulative hazard function based on one sample of size 1000 under H0. We can see

that these two estimates are close to the true cumulative excess risk function.

[Table 1 about here.]

[Figure 1 about here.]

[Figure 2 about here.]

[Figure 3 about here.]

In Figure 3 we compare the empirical cumulative distribution function (cdf) of the chi-

square test of Exemple 1 (for 1000 simulated samples of size n = 1000 under H0 and 10

degrees of freedom according the method defined in the same exemple) with the theoretical

asymptotic chi-square distribution with 10 degrees of freedom. This gives empirical evidence

that for such a sample size the empirical distribution of the test statistic X̂ is close to the

expected asymptotic distribution. At the contrary, we can see in Figures 4 and 5 that if

the true underlying distribution doesn’t belong to the Weibull cure model family (here the



underlying distributions belong to the log–normal cure model family) then the values of the

test statistic increase, and thus the empirical distribution of X̂ is shifted to the right. This

leads to a rejection rate (power) of 15.7% in Figure 4 and 34.8% in Figure 5. Of course the

larger is the distance between the alternative distribution (that is the distribution under H1)

and the Weibull cure model family, the larger is the power of the test statistic. We can also

check that the power increases with the sample size.

[Figure 4 about here.]

[Figure 5 about here.]

5.2 Real data set analysis

We consider now a colon cancer data set provided by population based specialized cancer

registry: Registre Bourguignon des Cancers Digestifs. The 5,772 patients newly diagnosed

with colon cancer in the two administrative areas (département) of Côte–d’Or and Saône

et Loire between 1995 and 2009 were included in the dataset. The available information for

each individual are: sex, département of residence, age at diagnosis, time elapsed between

diagnosis and the terminal event, and the background mortality rate (mortality rate in the

general population) for an individual having the same characteristics (sex, département, age,

calendar year). To illustrate our goodness–of–fit method we fit a Weibull cure model on four

data sets obtained by crossing the variables sex (male or female) and département (21 or

71). Parameters of the net survival Snet(t;θ) = π + (1 − π) exp(−(t/σ)γ) are θ = (σ, γ, π),

the MLE is denoted by θ̂ = (σ̂, γ̂, π̂) and the estimated standard deviations are given within

parenthesis. We can see that the sample sizes of the four samples vary from 1,010 to 1,951

which is close to the conditions we fixed in the simulation study. The statistical test we used

is that of Example 1.
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5.2.1 Males from département 21. The sample size is 1,531 and σ̂ = 3.409 (0.461), γ̂ =

0.773 (0.038) and π̂ = 0.491 (0.028). On Figure 6 are given MLE and nonparametric (NP)

estimates of the cumulative excess risk function while on Figure 7 are given the p–values

of the chi–square test as a function of the degrees of freedom. The mean of the p–values is

0.113, thus H0 can be accepted. Here we do not reject the Weibull cure model, however we

have to mention that 44% of the calculated p–values are less than 0.05 even if they are close

to 0.05. Overall the relevance of this model remains unclear here. We can see also that the

variations of the p–values may be quite important as the number of the degrees of freedom

varies (which corresponds to a variation of the location of the partition when building the

text statistic X̂ ). This is why it is important to perform several tests with several degrees of

freedom.

[Figure 6 about here.]

5.2.2 Males from département 71. The sample size is 1,951 and σ̂ = 3.766 (0.414), γ̂ =

0.802 (0.035) and π̂ = 0.452 (0.026). On Figure 8 are given MLE and NP estimates of the

cumulative excess risk function while on Figure 9 are given the p–values of the chi–square

test as a function of the degrees of freedom. The mean of the p–values is 0.040, here the

situation is clearer than in the previous case. Indeed very few p–values are larger than 0.05,

and if not, they are close to 0.05 anyway. As a consequence H0 is rejected, the Weibull cure

model is not acceptable for this data set.

[Figure 7 about here.]

5.2.3 Females from département 21. The sample size is 1,010 and σ̂ = 4.214 (0.663),

γ̂ = 0.800 (0.044) and π̂ = 0.474 (0.035). On Figure 10 are given MLE and NP estimates

of the cumulative excess risk function while on Figure 11 are given the p–values of the chi–

square test as a function of the degrees of freedom. The mean of these p–values is 0.489. Here



the situation is clear since all the calculated p–values are larger than 0.05. As a consequence

H0 can be accepted, thus on the one hand the Weibull cure model is acceptable, and on

the other hand, the 95%–Wald confidence interval for the cure rate being [0.405, 0.543] the

presence of cure is clearly accepted.

[Figure 8 about here.]

5.2.4 Females from département 71. The sample size is 1,280 and σ̂ = 3.172 (0.300),

γ̂ = 0.881 (0.040) and π̂ = 0.520 (0.021). On Figure 12 are given MLE and NP estimates

of the cumulative excess risk function while on Figure 13 are given the p–values of the chi–

square test as a function of the degrees of freedom. The mean of these p–values is 0.212, again

the situation is clear since all the calculated p–values are larger than 0.05. As a consequence

H0 can be accepted, thus on the one hand the Weibull cure model is acceptable, and on

the other hand, the 95%–Wald confidence interval for the cure rate being [0.479, 0, 561] the

presence of cure is clearly accepted.

[Figure 9 about here.]

It is important to notice that the earlier (with respect to time t) the separation between the

MLE Λexc(t|θ̂) and the NP estimator Λ̂exc(t|θ̂), the greater the risk of rejection (see Figures

6 and 8 for males versus Figures 10 and 12 for females). For large values of t, this difference is

not so important since the variance of the discrepancy process increases witht. The previous

results also show that there is a low impact of the administrative areas (département) with

respect to the gender. Indeed the Weibull cure model is either acceptable with small p–values

for males of département 21 or clear rejected for males of département 71, while for females

of both départements the Weibull cure model is clearly accepted.
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6. Concluding remarks

We have proposed a general goodness–of–fit procedure which may be applied to any regular

parametric model. As an example of this goodness–of–fit procedure we developed some chi-

square type tests which the behavior has been studied through a simulation study. These

tests have been successfully applied to colon cancer data. It is important to emphasize that

when the null hypothesis is not rejected it means that the assumption that the cumulative

excess risk function belongs to a specified parametric cure model (here Weibull cure model)

is acceptable while otherwise this the whole parametric model which is rejected. Thus when

the null hypothesis is rejected it does not mean that the cure assumption is rejected, it only

means that the specified parametric distribution family is not adapted to the data.

Chi-square type tests are only one example of test building. Indeed there is a large range

of classical alternative statistics like for instance Kolmogorov–Smirnov, Cramér–von Mises,

or Anderson-Darling statistics. However, although these statistics may be more powerful

than the chi-square statistic we proposed, their asymptotic distributions are not free of the

unknown parameters in general, which prevents to derive a p–value in a easy way. However,

it is possible to derive such a p–value using a bootstrap approach. This will be the subject

of a future work.
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Appendix

Asymptotics of the discrepancy process of Section 3.3

First, if θ0 is the true value of θ under H0 note that for t ∈ [0, τ ] we have

Dn(t) =
√
n
(

Λexc(t|θ̂)− Λexc(t|θ0)
)
−
√
n
(

Λ̂exc(t|θ̂)− Λexc(t|θ0)
)
,

and in addition from (4) we can write

√
n
(

Λexc(t|θ̂)− Λexc(t|θ0)
)

= Λ̇T
exc(t|θ0)I−1(θ0)n−1/2 ˙̀

n(θ0) + oP (1),

and using the martingale property in (3) and Lenglart’s inequality (see Andersen et al. 1993)

we derive

√
n
(

Λ̂exc(t|θ̂)− Λexc(t|θ0)
)

= n1/2
∑n

i=1

∫ t
0

wi(s;θ0)∑n
j=1 wj(s;θ0)Yj(s)

dMi(s|ai) + oP (1).

Thus the asymptotic behavior of Dn is obtained by studying the asymptotic behavior of

n−1/2 ˙̀
n(θ0) and t 7→ n1/2

∑n
i=1

∫ t
0

wi(s;θ0)∑n
j=1 wj(s;θ0)Yj(s)

dMi(s|ai) on [0, τ ]. First by the Rebolledo

theorem (see Andersen et al. 1993) we show that

Un(t) =

 n−1/2 ˙̀
n(θ0)

n1/2
∑n

i=1

∫ t
0

wi(s;θ0)∑n
j=1 wj(s;θ0)Yj(s)

dMi(s|ai)


= n−1/2

n∑
i=1

∫ τ

0

wi(s)

 λ̇exc(s|θ0)

λ
(i)
pop(ai+s)

n1{s6t}∑n
j=1 wj(s;θ0)Yj(s)

 dMi(s|ai),

converges weakly in D([0, τ ]) to a centered Gaussian process U∞ whose the covariance

function γ(s, t) is consistently approximated by γn(s, t) defined in Section 3.3. Since

Dn(t) =
(

Λ̇T
exc(t|θ0)I−1(θ0),−1

)
Un(t) + oP (1)

we conclude that Dn converges weakly to the centered Gaussian D∞ in D([0, τ ]).
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Asymptotics of the discrepancy process of Section 4.3

We have

Dn(t) =
√
n

n∑
i=1

∫ t

0

wi(s; ξ̂)∑n
j=1 wj(s; ξ̂)Yj(s)eβ

T
nzj

dMi(s|ai, zi)

+
√
n

n∑
i=1

∫ t

0

wi(s; ξ̂)Yi(s)∑n
j=1wj(s; ξ̂)Yj(s)eβ

T
nzj

(
eβ

T
0 ziλexc(s|θ0)− eβTnziλexc(s|θ̂)

)
=
√
n

n∑
i=1

∫ t

0

wi(s; ξ0)∑n
j=1 wj(s; ξ0)Yj(s)eβ

T
0 zj

dMi(s|ai, zi)

+

 Λ̇exc(t|θ0)∫ t
0
η
(1)
n (s)

η
(0)
n (s)

ds


T

I−1
n

`n(ξ0)√
n

+ oP (1)

=

(
1,

(
Λ̇T

exc(t|θ0),

∫ t

0

η
(1)T
n (s)

η
(0)
n (s)

ds

)
I−1
n

)
×

1√
n

n∑
i=1

∫ t

0

wi(s; ξ0)


1/η

(0)
n (s)

λ̇exc(s|θ0)/λexc(s|θ0)

zi

 dMi(s|ai, zi) + oP (1),

where the second equality is obtained by a Taylor expansion of the right most term of the

right hand side of the first equality. The convergence of Dn to the centered Gaussian process

D∞ in D([0, τ ]) results from the Rebolledo central limit theorem.

Weibull excess hazard model

For θ = (σ, γ, π) ∈ Θ = (0,+∞)2 × [0, 1], the excess (or net) survival function is defined for

x ∈ R+ by

Snet(x|θ) = π + (1− π) exp(−(x/σ)γ).

The cumulative excess hazard is defined by Λexc(x|θ) = − log (Snet(x|θ)) and the excess

hazard is therefore equal to

λexc(x|θ) =
(1− π)γx

γ−1

σγ
exp(−(x/σ)γ)

π + (1− π) exp(−(x/σ)γ)
.



Thus we have

λ̇exc(x|θ) = λ(x|θ)


− γ
σ

+ ( γ
σ
)
(
x
σ

)γ − λ(x|θ)
(
x
σ

)
1
γ

+ log
(
x
σ

) (
1−

(
x
σ

)γ
+ λ(x|θ)x

γ

)
−1/(1− π)− (1− exp (−(x/σ)γ)) /Snet(x|θ)

 .
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Figure 1. Observed risk function of an individual diagnosed at 40 years (green solid line),
population risk function (red dashed line), and excess risk function (blue dotted line).
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Figure 2. True cumulative excess hazard rate (solid red line) with parametric (dashed
green line) and nonparametric (dotted black line) estimates based on a sample of size n =
1000.
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Figure 3. Empirical cdf of the chi-square statistic in Exemple 1 for 10 degrees of freedom
and 1000 simulated samples of size n = 1000 in black versus the true pdf of the chi-square
distribution with 10 degrees of freedom. The H0 rejection rate is of 5,0%.
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Figure 4. Empirical cdf of the chi-square statistic in Exemple 1 for 10 degrees of freedom
and 1000 simulated samples of size n = 1000 in black versus the pdf of the chi-square
distribution with 10 degrees of freedom. The true underlying distribution is log-normal with
mean 2 and standard deviation 1.5. The H0 rejection rate is of 15,7%.
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Figure 5. Empirical cdf of the chi-square statistic in Exemple 1 for 10 degrees of freedom
and 1000 simulated samples of size n = 1000 in black versus the pdf of the chi-square
distribution with 10 degrees of freedom. The true underlying distribution is log-normal with
mean 2 and standard deviation 0.5. The H0 rejection rate is of 34,8%.
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Figure 6. Parametric cumulative excess
risk estimation (MLE) vs nonparametric
estimation (NP).
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Figure 7. p–values of the chi-square
tests as a function of the degrees of free-
dom.
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Figure 8. Parametric cumulative excess
risk estimation (MLE) vs nonparametric
estimation (NP).
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Figure 9. p–values of the chi-square
tests as a function of the degrees of free-
dom.
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Figure 10. Parametric cumulative ex-
cess risk estimation (MLE) vs nonpara-
metric estimation (NP).
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Figure 11. p–values of the chi-square
tests as a function of the degrees of free-
dom.
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Figure 12. Parametric cumulative ex-
cess risk estimation (MLE) vs nonpara-
metric estimation (NP).
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Figure 13. p–values of the chi-square
tests as a function of the degrees of free-
dom.



Table 1
MLE performance for various sample sizes based on 1000 simulated samples: mean is the empirical mean, st.dev is

the empirical standard deviation, ŝt.dev is the mean of the estimated standard deviations and cp is the 95% coverage
probabilities. The censoring rate is about 55%.

n indicator σ = 5 γ = 2 π = 0.5

mean 5.016 2.027 0.499
250 st.dev 0.352 0.209 0.041

ŝt.dev 0.340 0.206 0.041
cp 0.931 0.957 0.944

mean 4.989 2.019 0.500
500 st.dev 0.231 0.141 0.030

ŝt.dev 0.236 0.144 0.029
cp 0.954 0.940 0.936

mean 5.004 2.007 0.500
1000 st.dev 0.169 0.102 0.020

ŝt.dev 0.168 0.101 0.020
cp 0.946 0.947 0.950


