Pairwise Identity Verification via Linear Concentrative Metric Learning

Lilei Zheng 1 Stefan Duffner 1 Khalid Idrissi 1 Christophe Garcia 1 Atilla Baskurt 1
1 imagine - Extraction de Caractéristiques et Identification
LIRIS - Laboratoire d'InfoRmatique en Image et Systèmes d'information
Abstract : This paper presents a study of metric learning systems on pairwise identity verification, including pairwise face verification and pairwise speaker verification, respectively. These problems are challenging because the individuals in training and testing are mutually exclusive, and also due to the probable setting of limited training data. For such pairwise verification problems, we present a general framework of metric learning systems and employ the stochastic gradient descent algorithm as the optimization solution. We have studied both similarity metric learning and distance metric learning systems, of either a linear or shallow nonlinear model under both restricted and unrestricted training settings. Extensive experiments demonstrate that with limited training pairs, learning a linear system on similar pairs only is preferable due to its simplicity and superiority, i.e. it generally achieves competitive performance on both the LFW face dataset and the NIST speaker dataset. It is also found that a pre-trained deep nonlinear model helps to improve the face verification results significantly.
Liste complète des métadonnées

Littérature citée [73 références]  Voir  Masquer  Télécharger
Contributeur : Stefan Duffner <>
Soumis le : vendredi 13 janvier 2017 - 19:26:23
Dernière modification le : jeudi 1 novembre 2018 - 01:19:44
Document(s) archivé(s) le : vendredi 14 avril 2017 - 19:34:01


Fichiers produits par l'(les) auteur(s)




Lilei Zheng, Stefan Duffner, Khalid Idrissi, Christophe Garcia, Atilla Baskurt. Pairwise Identity Verification via Linear Concentrative Metric Learning. IEEE Transactions on Cybernetics, IEEE, 2016, pp.1 - 12. 〈10.1109/TCYB.2016.2634011〉. 〈hal-01435368〉



Consultations de la notice


Téléchargements de fichiers