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Abstract. This article is devoted to shape optimisation of contact problems in linearised elasticity,
thanks to the level set method. We circumvent the shape non-differentiability, due to the contact
boundary conditions, by using penalised and regularised versions of the mechanical problem. This
approach is applied to five different contact models: the frictionless model, the Tresca model, the
Coulomb model, the normal compliance model and the Norton-Hoff model. We consider two types of
optimisation problems in our applications: first, we minimise volume under a compliance constraint,
second, we optimise the normal force, with a volume constraint, which is useful to design compliant
mechanisms. To illustrate the validity of the method, 2D and 3D examples are performed, the 3D
examples being computed with an industrial software.

Keywords. Shape and topology Optimisation; Level set method; Unilateral contact problems; Fric-
tional contact; Penalisation and Regularisation.
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1. Introduction

We study the shape optimisation of a structure, the behaviour of which is modelled by the equations
of linearised elasticity with unilateral contact boundary conditions and friction conditions. From an
industrial point of view, these kinds of boundary conditions are of great interest, as they enable
a more detailed and accurate modelling of boundary conditions, compared to clamped or Dirichlet
boundary conditions. From a mathematical point of view, they tend to make the whole optimisation
more intricate. Indeed the mechanical problem takes the form of a variational inequality and, thus, is
highly non-linear. The study of the existence and uniqueness of a solution for frictionless contact and
its regularity were performed, for instance, in [15], [9], more recently in [4], [5] and, thanks to the use
of pseudo-differential operators, in [54]. Similar results on frictionless auto-contact and auto-contact
with Tresca friction can also be found in [40]. However, as soon as a more realistic friction model is
taken into consideration, results on existence and uniqueness become harder to obtain [16], [38].

On the other hand, the shape optimisation of such problems presents the same difficulties as en-
countered in control theory of variational inequalities. As pointed out in [44] and [58], the frictionless
contact solution can be written under the form of a projection onto a convex set, which is not differ-
entiable in the usual sense but merely admits a so-called conical derivative [44]. Nevertheless, Mignot
[44] managed to derive optimality conditions, thanks to this weak notion of differentiability. Using the
conical derivative and writing the problem under a discretised form, Kocvara and al. [50] used a bundle
algorithm to perform shape optimisation. Another way to get optimality conditions, see [6] and [3], is
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to introduce a regularised problem, depending on a small regularisation parameter, study its optimal-
ity conditions and pass to the limit when the regularisation parameter tends to zero. This approach,
called penalisation, was used in various numerical shape optimisation works: for example, with the
SIMP method in [13], or with parameterised shapes (using splines) in [52] and [35]. Its convergence to
the exact solution was proved in [14]. Another similar approach is the regularisation of the unilateral
boundary conditions which was used in [60] and [59] in the context of the SIMP method. Some authors,
as in [62] and [32], write a saddle point formulation of the problem and use the so-called Lagrangian
method, ignoring the non-differentiability of the Lagrange multipliers arising in this formulation. We
also point out the method which consists, first, to discretise the problem (without regularisation or
penalisation) and, then, to perform shape optimisation on the discretised formulation, as in [29] where
the contact boundary is optimised by moving the nodes of a finite element mesh. Of course, it is pos-
sible to perform optimisation without derivatives, as in [11] or [42], using genetic algorithms, but the
price to pay is the very large number of required iterations. As far as theoretical results are concerned,
we refer to [25], [26], [22], [24] and [27] where, for a particular optimisation problem, existence of an
optimum is proved under assumptions of uniform Lipschitz regularity of the boundary, first proving
the result for a discretisation, then passing to the continuous limit. Note that in [27], the penalised
problem is studied for frictionless contact and the solution of a particular shape optimisation problem
is proved to converge to the solution of the non-penalised problem. In these last articles, the contact
boundary is meant to be optimised and so is parametrised thanks to a Lipschitz function. Some nu-
merical experiments are provided where the contact boundary is optimised by moving the nodes of a
finite element mesh.

When friction comes into play, the shape differentiation becomes even more difficult. In [58], for
the Tresca model (also called the prescribed friction model), a conical derivative is computed, merely
in two-space dimensions and for specific directions of differentiation. Once again, penalised and regu-
larised formulations can be used as in [34], [3] and [61]. Theoretical results are also given for normal
compliance model in [38] and [39] and for Coulomb friction model in [23]. For this last model of fric-
tion, the uniqueness of the contact solution is not ensured for the continuous model and examples of
non-uniqueness can be built. Consequently, in [7] and [8], the authors analyse the derivation of the
discretised problem, which admits a unique solution for small friction coefficients, by using subgradient
calculus. Eventually, a thorough review of other results in shape optimisation for contact problems
can be found in [31].

The goal of this paper is to apply the level set method for shape and topology optimisation [2] to
contact problems, possibly including friction. To the best of our knowledge, this is the first time that
this method is used for shape optimisation of contact problems. We investigate four types of friction,
one of them being the Norton Hoff model which has not been previously used in shape optimisation.
To easily compute shape derivatives and avoid the intricate notion of conical derivatives we rely on
the classical idea of penalised and regularised formulations. We do not restrict ourselves to simple
objective functions like compliance but also consider more involved ones, depending on the normal
force. Examples of such criteria depending on the normal force can be found in [37] and [11] but
we choose to build different ones, more adapted to our needs. Objective functions depending on the
normal force are useful to design compliant mechanisms, for example. Note that, if the purpose of this
article is to apply the level set method to several different contact behaviours and different objective
functions, it is not to optimise the contact boundaries (as in many previous works) but rather the
other parts of the structural boundary.

Section 2 presents the frictionless contact model and gives four different friction conditions depend-
ing on the chosen model: Tresca, Coulomb, Norton Hoff and normal compliance model. For each of
them, we recall an existence result for its solution. Section 3 focuses on how to regularise these prob-
lems in order to easily compute derivatives of their solutions with respect to the shape. We choose to
penalise the normal condition and to regularise the tangential ones which will enable us to compute
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Figure 1. The open set Ω and its boundaries.

shape derivatives. The section ends with a short analysis of existence results of these new formulations.
In Section 4, a general shape optimisation problem is introduced and shape derivatives are calculated
using the adjoint method. Criteria used for the numerical examples are also proposed, especially crite-
ria depending on the normal force. Section 5 briefly recalls the main ideas of the level set method for
shape optimisation. Our numerical results are collected in Section 6. A large range of examples shows
the good performances of our approach. We did not observe a high sensitivity of the optimised solu-
tions to the regularisation and penalisation parameters. The 2D cases are performed with the Scilab
free software [55], while the 3D examples are computed using the finite element software SYSTUS
from ESI-Group [17]. Eventually we conclude and give some perspectives in Section 7.

2. Contact models in linearised elasticity

In this paper Ω denotes an open bounded subset of Rd where d = 2 or 3 and represents the shape of
the structure we want to optimise. Its boundary is divided into five disjoint parts, meaning that:

∂Ω = Γ0 ∪ ΓN ∪ Γc ∪ Γ ∪ S.

The structure Ω is full of a linear isotropic elastic material with a Hooke’s law characterised by A, for
any τ symmetric matrix, as:

Aτ = 2µτ + λTr(τ)Id

where µ and λ are the Lamé moduli. On Γ0, the structure is clamped and on ΓN a force is applied.
The free part of the boundary is Γ and the parts where contact conditions are enforced are S and Γc.
Γc models a contact with an undeformable body, whereas S is an auto-contact part (as for instance a
crack could be). So S lies in the interior of Ω, see Figure 1. We assume that Ω∪S is smooth, as well as
the partition of its boundary, and that Γ0 is of non-zero surface measure (so that Poincaré and Korn
inequalities hold true).

The displacement field u is then solution of the linearised elasticity system:
− div(Ae(u)) = f in Ω

u = 0 on Γ0

Ae(u)n = g on ΓN

Ae(u)n = 0 on Γ,

(2.1)

complemented with contact boundary conditions on Γc and S, which depend on the type of contact
model we use. In (2.1), n denotes the exterior unit normal, e(u) = (∇u+(∇u)T )/2 is the strain tensor
and Ae(u) is the stress tensor. To specify the contact boundary conditions, we first introduce some
notations. For a vector v ∈ Rd, we denote by vt its tangential part:

vt = v − (v · n)n.
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We also note the jump through S of v, noting S− and S+ the two sides of S:

[v] = v|S− − v|S+
.

2.1. Sliding Contact

Sliding contact assumes there is no friction, which means that (Ae(u)n)t = 0 on Γc and (Ae(u)n)t = 0
on S− and S+. For the normal part on Γc, three conditions are needed:

u · n ≤ 0 (2.2)

which prevents the penetration,
Ae(u)n · n ≤ 0 (2.3)

meaning that the normal force on the contact surface is always in the opposite sense to the outward
normal and the complementarity condition

(u · n)(Ae(u)n · n) = 0 (2.4)

imposes either a contact: (u ·n) = 0 or, when there is no contact, a no force condition on Γc: (Ae(u)n ·
n) = 0.

Concerning the normal part on S, the conditions are similar in terms of jumps:
[u] · n− ≤ 0

Ae(u|S−)n− · n− = Ae(u|S+
)n− · n− ≤ 0

([u] · n−)(Ae(u|S−)n− · n−) = 0,

(2.5)

where n− is the normal to S− pointing toward S+.
Coupling these boundary conditions with (2.1), the sliding contact problem can be written as:

−div(Ae(u)) = f in Ω
u = 0 on Γ0

Ae(u)n = g on ΓN
Ae(u)n = 0 on Γ
u · n ≤ 0 on Γc

Ae(u)n · n ≤ 0 on Γc
(u · n)(Ae(u)n · n) = 0 on Γc

[u] · n− ≤ 0 on S
Ae(u|S−)n− · n− = Ae(u|S+

)n− · n− ≤ 0 on S
([u] · n−)(Ae(u|S−)n− · n−) = 0 on S

(Ae(u)n)t = 0 on Γc ∪ S

(2.6)

Problem (2.6) can also be written as a variational inequality [15], where

K(Ω) =
{
v ∈ H1

Γ0
(Ω)d, v · n ≤ 0 on Γc, [v] · n− ≤ 0 on S

}
is a closed convex set and H1

Γ0
(Ω)d =

{
v ∈ (H1(Ω))d, v = 0 on Γ0

}
:

find u ∈ K(Ω) such that∫
Ω
Ae(u) : e(v − u) dx ≥

∫
Ω
f · (v − u) dx+

∫
ΓN

g · (v − u) ds ∀v ∈ K(Ω) (2.7)

with f ∈ L2(Ω)d and g ∈ L2(ΓN )d.
From (2.7) it follows that (2.6) is the Euler-Lagrange optimality condition of the minimisation

problem:

u = argmin
v∈K(Ω)

1

2

∫
Ω
Ae(v) : e(v) dx−

∫
Ω
f · v dx−

∫
ΓN

g · v ds (2.8)
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which will be useful in the next section to penalise the problem.
The proof of existence and uniqueness of the solution u to (2.8) or (2.6) is a direct consequence of

theorem 2.1 in [36] and Korn inequality (theorem 1.2.1 in [16] and theorem 3.1 in chapter 3 of [15]).
It relies on the convexity of both K(Ω) and the quadratic energy functional.

2.2. Contact with friction

To add some friction conditions, it is necessary to change the tangential condition (Ae(u)n)t = 0 on
Γc and S. The most popular friction model is the Coulomb one, but we first state a simpler model
derived from it and then present the different models which will be used in the shape optimisation
part.

2.2.1. Tresca model

The Tresca friction model, also known as the model of given friction, was introduced in [15]. Even if it
does not represent a realistic mechanical model, it can be used numerically to obtain the solution of
the Coulomb friction model in a fixed point method and is mathematically well-posed. For the normal
part (2.2), (2.3), (2.4) and (2.5) are kept. For the tangential part on Γc it is stated as:

‖(Ae(u)n)t‖ ≤ σtr on Γc

‖(Ae(u)n)t‖ < σtr ⇒ ut = 0 on Γc

‖(Ae(u)n)t‖ = σtr ⇒ ∃λ ≥ 0, ut = −λ(Ae(u)n)t on Γc

(2.9)

and on S:

(Ae(u)n)t = (Ae(u|S−)n−)t = −(Ae(u|S+
)n+)t on S

‖(Ae(u)n)t‖ ≤ σtr on S

‖(Ae(u)n)t‖ < σtr ⇒ [ut] = 0 on S

‖(Ae(u)n)t‖ = σtr ⇒ ∃λ ≥ 0, [ut] = −λ(Ae(u|S−)n−)t on S

where ‖ · ‖ denotes the classical euclidian norm on Rd and σtr is a smooth function representing the
coefficient of friction. When the tangential force is smaller than the coefficient of friction, there is no
sliding. If the tangential force reaches the threshold σtr, sliding can appear. This model is not well-
suited to represent real phenomena, since the tangential force does not take into account the normal
force. Yet, like the problem (2.6), (2.9) can be written as a variational inequality and a minimisation
problem of respectively the form: find u ∈ K(Ω) such that∫

Ω
Ae(u) : e(v − u) dx+ jtr(v)− jtr(u) ≥

∫
Ω
f · (v − u) dx+

∫
ΓN

g · (v − u) ds ∀v ∈ K(Ω) (2.10)

and

u = argmin
v∈K(Ω)

1

2

∫
Ω
Ae(v) : e(v) dx−

∫
Ω
f · v dx−

∫
ΓN

g · v ds+ jtr(v) (2.11)

with

jtr(v) =

∫
Γc

σtr ‖vt‖ ds+

∫
S
σtr ‖[v]t‖ ds.

The proof of existence and uniqueness of the solution u of (2.11) is given in theorem 1.5.2 of [16]. Once
again it relies on the convexity of the minimised functional.
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2.2.2. Coulomb friction

The model of Coulomb friction is similar to the Tresca one, changing σtr into µ, a friction coefficient,
times the norm of the normal force. For Γc:

‖(Ae(u)n)t‖ ≤ µ|(Ae(u)n · n)| on Γc

‖(Ae(u)n)t‖ < µ|(Ae(u)n · n)| ⇒ ut = 0 on Γc

‖(Ae(u)n)t‖ = µ|(Ae(u)n · n)| ⇒ ∃λ ≥ 0, ut = −λ(Ae(u)n)t on Γc

and for S:

(Ae(u)n)t = (Ae(u|S−)n−)t = −(Ae(u|S+
)n+)t on S

‖(Ae(u)n)t‖ ≤ µ|(Ae(u)n · n)| on S

‖(Ae(u)n)t‖ < µ|(Ae(u)n · n)| ⇒ [ut] = 0 on S

‖(Ae(u)n)t‖ = µ|(Ae(u)n · n)| ⇒ ∃λ ≥ 0, [ut] = −λ(Ae(u|S−)n−)t on S

For the normal part there is no change in the boundary conditions: (2.2), (2.3), (2.4) and (2.5). This
can be written as the following variational inequality: find u ∈ K(Ω) such that∫

Ω
Ae(u) : e(v−u) dx+ jco(u, v)− jco(u, u) ≥

∫
Ω
f · (v−u) dx+

∫
ΓN

g · (v−u) ds ∀v ∈ K(Ω) (2.12)

with

jco(u, v) =

∫
Γc

µ|(Ae(u)n · n)| ‖vt‖ ds+

∫
S
µ|(Ae(u)n · n)| ‖[v]t‖ ds.

which is a function of two variables.
This model is studied in chapters 1 and 3 of [16]. It is not equivalent to a minimisation problem.

To our knowledge, there is no uniqueness results for this problem and the existence is only ensured
for small friction coefficients. Yet the uniqueness was proven for the discretised problem in [21]. It is
interesting, both for numerical [41] and theoretical [16] reasons, to note that this problem can be seen
as the solution of a fixed point problem involving the solution of the Tresca model.

2.2.3. Norton-Hoff model

The Norton-Hoff model [45] is a variation of the previous friction model. The boundary condition is
now a one-to-one relation between the tangential force and the tangential jump of the displacement
(notwithstanding the normal force). It can be written as:

(Ae(u)n)t = µ|(Ae(u)n · n)| ‖ut‖ρ−1 ut on Γc

(Ae(u|S−)n)t = −(Ae(u|S+
)n)t = −µ|(Ae(u)n · n)| ‖[ut]‖ρ−1 [ut] on S

(2.13)

where 0 < ρ < 1. Adding the other boundary conditions (2.2), (2.3), (2.4) and (2.5), we obtain the
following variational inequality. Find u ∈ K(Ω) such that∫

Ω
Ae(u) : e(v − u) dx+ jnh(u, v − u) ≥

∫
Ω
f · (v − u) dx+

∫
ΓN

g · (v − u) ds ∀v ∈ K(Ω) (2.14)

where jnh is a function of two variables, defined by

jnh(u, v) =

∫
Γc

µ|(Ae(u)n · n)| ‖ut‖ρ−1 ut · vt ds+

∫
S
µ|(Ae(u)n · n)| ‖[u]t‖ρ−1 [u]t · [v]t ds.

The one-to-one relation mentioned in (2.13) makes the model numerically simpler to solve than the
Coulomb one. Let us remark that (2.14) is not equivalent to a minimisation problem.
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2.2.4. Normal compliance model

The last friction model considered is the normal compliance model presented in [47] and studied in
[38]. It is pretty similar to a problem where the normal inequality constraint is penalised with a small
penalisation coefficient. On Γc it takes the following form:

(Ae(u)n · n)n = −CN (u · n)mN
+ n on Γc

‖(Ae(u)n)t‖ ≤ CT (u · n)mT
+ on Γc

‖(Ae(u)n)t‖ < CT (u · n)mT
+ ⇒ ut = 0 on Γc

‖(Ae(u)n)t‖ = CT (u · n)mT
+ ⇒ ∃λ ≥ 0, ut = −λ(Ae(u)n)t on Γc

(2.15)

and on S:

(Ae(u|S−)n · n)n− = −(Ae(u|S+
)n · n)n− = −CN ([u] · n−)mN

+ n on S

(Ae(u)n)t = (Ae(u|S−)n−)t = −(Ae(u|S+
)n+)t on S

‖(Ae(u)n)t‖ ≤ CT ([u] · n−)mT
+ on S

‖(Ae(u)n)t‖ < CT ([u] · n−)mT
+ ⇒ [ut] = 0 on S

‖(Ae(u)n)t‖ = CT ([u] · n−)mT
+ ⇒ ∃λ ≥ 0, [ut] = −λ(Ae(u|S−)n−)t on S

where (·)+ = max(0, ·), CN and CT are material coefficients and mN and mT are typically equal to
1 or 2 (see [38] for the possible value depending on the dimension d). Contrary to the other friction
models, the normal part is different from the case of sliding contact. Again, it is possible to write a
variational inequality equivalent to (2.15). Find u ∈ K(Ω) such that, for any v ∈ H1

Γ0
(Ω)d,∫

Ω
Ae(u) : e(v−u) dx+jN,Nc(u, v−u)+jT,Nc(u, v)−jT,Nc(u, u) ≥

∫
Ω
f ·(v−u) dx+

∫
ΓN

g ·(v−u) ds ,

(2.16)
where

jN,nc(u, v) =

∫
Γc

CN (u · n)mN
+ v · nds+

∫
S
CN ([u] · n−)mN

+ [v] · nds ,

jT,nc(u, v) =

∫
Γc

CT (u · n)mT
+ ‖vt‖ ds+

∫
S
CT ([u] · n−)mT

+ ‖[v]t‖ ds.

This model allows interpenetration, which can represent a material loss at the surface of the material
in contact. Existence and uniqueness results are given and discussed in [38] and [30] under smallness
conditions on the coefficients CN and CT . Here again (2.16) is not equivalent to a minimisation
problem.

3. Penalised and regularised formulations

As our goal is to optimise, thanks to a gradient algorithm, and therefore to compute the derivative
of some cost functions depending on the displacement u, we need to investigate the differentiability
properties of u with respect to the shape. Based on the work of [44], the authors of [58] have shown
that the solution u of (2.7) admits at most a conical derivative because of the non-differentiability
of the projection map on closed convex sets in Hilbert spaces. We shall not define precisely what is
a conical derivative (a type of ”weak” multi-valued directional derivative). Let us simply say that it
is quite difficult to use it in numerical practice since it requires a subgradient optimisation algorithm
(see [50], for example, in finite dimension).

To avoid such intricate optimisation techniques, let us quickly investigate the different ways to
numerically compute the solutions of problems described in Section 2. According to [18], there exist
two main methods: the Lagrangian method and the penalisation method. The Lagrangian method

7
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Name Classical Equations Penalised and Regularised equations
Frictionless (2.7)-(2.8) (3.3)

Tresca (2.10)-(2.11) (3.4)
Coulomb (2.12) (3.5)

Norton-Hoff (2.14) (3.6)
Normal compliance (2.16) (3.7)

Table 1. Correspondences between the classical contact equations and their associated
penalised and regularised ones in the present paper.

introduces a Lagrange multiplier for the contact constraint, which will not be differentiable (basically
for the same reasons preventing the solution u from being differentiable). It leads to a forward problem
with complementarity constraints and hence to a shape optimisation problem which has to be solved
by a mathematical programming algorithm with complementarity constraints. On the other hand, the
penalisation method has the nice property to transform inequalities into equations and thus changes
projection on closed convex sets into projection on linear spaces (in our cases H1

Γ0
(Ω)). In particular,

for this penalisation approach, it is possible to differentiate these new equations. Consequently, we
choose to study and use these penalised formulations.

In the different contact problems presented, there are two kinds of reasons which trigger the ap-
pearance of inequalities. The first one, concerning the normal component of u on the boundary, is
that u belongs to a convex set. This constraint will be penalised. The second one is the singularity
in the tangential friction formulation due to the presence of the norm ‖ · ‖ which is not differentiable
at zero. This term will be regularised, thanks to a regularisation of the norm ‖ · ‖. Table 1 lists the
correspondences between the classical contact equations (presented in the previous section) and their
associated penalised and regularised ones which are established below.

3.1. Penalisation for the convex set

We now present the penalisation used to get rid of the constraint stating that the solution u is required
to belong to K(Ω). This penalisation will be used for every model but the normal compliance one, and
we explain how to add it to change the inequalities into equations or other inequalities. As a matter
of fact, for problems involving friction, to get equations we also need to regularise the friction term
(as said before). This is the reason why we only write the penalised equation associated with (2.11)
in this subsection. For other models, they can be found in the next one.

To add the penalisation, the procedure differs whether the initial problem can be written as a
minimisation problem, (2.11) and (2.8), or not, (2.12) and (2.14).

For (2.11) and (2.8), we change the functional to be minimised and the set of admissible solutions.
Instead of minimising on K(Ω), we minimise on H1

Γ0
(Ω)d. To approximate the condition v · n ≤ 0 on

Γc and [v] · n− ≤ 0 on S, we add to the functional a term of the form:

jN,ε(u) =
1

ε

(∫
Γc

∫ u.n

0
φη(t) dt ds+

∫
S

∫ [u].n

0
φη(t) dt ds

)
(3.1)

8
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where φη is a smooth function (at least C1) meant to regularise t → max(0, t) ≡ tH(t) with H the
Heaviside function. For instance, taking a small parameter η > 0, we choose:

φη(x) =


0 for x ∈ (−∞;−η]

1

4η
x2 +

1

2
x+

η

4
for x ∈ [−η; η]

x for x ∈ [η; +∞).

(3.2)

Note that the small parameter η is possibly different from ε since η is a regularisation parameter for
the non-smooth function max(0, t), while ε is a penalisation parameter for the constraint to belong to
K(Ω). We can then deduce a penalised variational formulation associated to (2.8):∫

Ω
Ae(u) : e(v) dx+ j′N,ε(u, v) =

∫
Ω
f · v dx+

∫
ΓN

g · v ds. ∀v ∈ H1
Γ0

(Ω)d, (3.3)

where the directional derivative of (3.1) is

j′N,ε(u, v) =
1

ε

∫
Γc

φη(u · n)v · nds+
1

ε

∫
S
φη([u] · n−)[v] · n− ds,

and an equivalent minimisation problem:

u = argmin
v∈H1

Γ0
(Ω)d

1

2

∫
Ω
Ae(v) : e(v) dx−

∫
Ω
f · v dx−

∫
ΓN

g · v ds+ jN,ε(v).

Problems (2.12) and (2.14) cannot be written as minimisation problems, therefore we need to work
directly on the variational inequality. The idea is to add a term j′N,ε(u, v−u) on the left hand side and

change the spaces of the solutions as done in [16], chapter 3, keeping in mind that to get an equation
we still need to regularise the friction term.

3.2. Regularisation of the friction term

In the friction models (2.10), (2.12), (2.14) and (2.16) we also need to regularise the norm ‖ · ‖ to
transform inequalities into equations. Let Nη be a smooth function (at least twice differentiable)
approximating the norm. For instance, following [16]:

Nη(x) =


‖x‖ for ‖x‖ ≥ η,

− 1

8η3
‖x‖4 +

3

4η
‖x‖2 +

3

8
η for ‖x‖ ≤ η.

The new penalised and regularised equations are then given as follows.

• For the Tresca model:∫
Ω
Ae(u) : e(v) dx+ j′tr,η(u, v) + j′N,ε(u, v) =

∫
Ω
f · v dx+

∫
ΓN

g · v ds ∀v ∈ H1
Γ0

(Ω)d, (3.4)

where j′tr,η(u, v) denotes the derivative of jtr,η at u in the direction v with

jtr,η(v) =

∫
Γc

σtrNη(vt) ds+

∫
S
σtrNη([v]t) ds.

The penalised and regularised Tresca problem can be written as a minimisation problem:

u = argmin
v∈H1

Γ0
(Ω)d

1

2

∫
Ω
Ae(v) : e(v) dx−

∫
Ω
f · v dx−

∫
ΓN

g · v ds+ jN,ε(v) + jtr,η(v).

It is not the case for the other friction models described in the sequel.

9
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• For the Coulomb model:∫
Ω
Ae(u) : e(v) dx+ j′co,ε,η(u, v) + j′N,ε(u, v) =

∫
Ω
f · u dx+

∫
ΓN

g · u ds ∀v ∈ H1
Γ0

(Ω)d, (3.5)

where

j′co,ε,η(u, v) =

∫
Γc

µ

ε
φη(u · n)N ′η(ut) · vt ds+

∫
S

µ

ε
φη([u] · n−)N ′η([u]t) · [v]t ds

and N ′η is the derivative of Nη.

• For the Norton-Hoff model:∫
Ω
Ae(u) : e(v) dx+ jnh,ε,η(u, v) + j′N,ε(u, v) =

∫
Ω
f · v dx+

∫
ΓN

g · v ds ∀v ∈ H1
Γ0

(Ω)d, (3.6)

where

jnh,ε,η(u, v) =

∫
Γc

µ

ε
φη(u · n)Nη(ut)ρ−1ut · vt ds+

∫
S

µ

ε
φη([u] · n−)Nη([u]t)

ρ−1[u]t · [v]t ds.

• For the normal compliance model:∫
Ω
Ae(u) : e(v) dx+ jN,r,Nc(u, v) + j′T,η,Nc(u, v) =

∫
Ω
f · v dx+

∫
ΓN

g · v ds ∀v ∈ H1
Γ0

(Ω)d, (3.7)

with

jN,nc,r(u, v) =

∫
Γc

CNφη(u · n)mN v · nds+

∫
S
CNφη([u] · n−)mN [v] · nds,

j′T,nc,η(u, v) =

∫
Γc

CTφη(u · n)mTN ′η(ut) · vt ds+

∫
S
CTφη([u] · n−)mTN ′η([u]t) · [v]t ds.

For this last model, both the normal and tangential terms were regularised but no penalisation
is needed as the original equation is already posed in the whole space H1

Γ0
(Ω)d.

We finally conclude that all regularised and penalised formulations (3.3), (3.4), (3.5), (3.6) and (3.7)
can be written in full generality as non-linear variational formulation: find u ∈ H1

Γ0
(Ω)d such that,∫

Ω
Ae(u) : e(u) dx+

∫
S∪Γc

j(u, v, n) ds =

∫
Ω
f · v dx+

∫
ΓN

g · v ds ∀v ∈ H1
Γ0

(Ω)d, (3.8)

where the integrand j(u, v, n) is non-linear with respect to the solution u but linear with respect to
the test function v.

3.3. Differentiability of the penalised and regularised terms

The fact that φη, defined by (3.2), is smooth does not imply it is Fréchet differentiable from L2(Γc)
to L2(Γc), see section 4.3 in [63]. It only implies the Gâteaux differentiability at each point x ∈ Γc.
Nevertheless we can state the following lemma.

Lemma 3.1. The functional u → φη(u) is differentiable from H
1
2 (Γc) into L2(Γc), and from H

1
2 (S)

into L2(S).

Proof. This is an application of theorem 7 in [19]. We introduce the Nemytskij operator (associated
with φη) Φη : u → φη(u) where u ∈ Lp(Γc) ∩ Lp(S) with p fixed later on. This theorem ensures its
Fréchet differentiability from Lp(Γc)∩Lp(S) to L2(Γc)∩L2(S) if the following conditions are fulfilled:

• φη is a C1 function from R to R.

10
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• The Nemytskij operator associated with φ′η is continuous from Lp(Γc)∩Lp(S) to Lr(Γc)∩Lr(S)
with r = 2p/(p− 2).

As u ∈ H
1
2 (Γc)∩H

1
2 (S), by Sobolev embeddings we deduce u ∈ Lp(Γc)∩Lp(S) with p = 2(d−1)/(d−

3/2). This means that r = 4(d − 1). It is clear that y → φ′η(y) exists and is continuous (φ′η is also
globally Lipschitz continuous). Due to the choice of the penalisation, φ′η is bounded (depending on
the parameter of penalisation). Remark 4 in [19] then implies the continuity from Lp(Γc) ∩ Lp(S) to
Lr(Γc) ∩ Lr(S) with r = 2p/(p− 2).

Remark 3.2. As u ∈ H1
Γ0

(Ω)d, it follows that u · n ∈ H
1
2 (Γc) ∩H

1
2 (S) for Ω smooth enough. Then

u→ φη(u · n) is Fréchet differentiable from H1
Γ0

(Ω)d into L2(Γc) ∩ L2(S).

Remark 3.3. The regularisation term Nη is twice differentiable from Rd to Rd. Moreover its derivative
is bounded, so, thanks to theorem 8 in [19], it is Gâteaux differentiable from L2(Γc) ∩ L2(S) into
L2(Γc) ∩ L2(S). As its second derivative is bounded by a linear function, it is also twice Fréchet

differentiable from H
1
2 (Γc) ∩ H

1
2 (S) into L2(Γc) ∩ L2(S), thanks to theorem 7 in [19] applied two

times. The proof is the same as in Lemma 3.1.

3.4. Existence and uniqueness of the penalised/regularised formulation

For (3.3) and (3.4), existence and uniqueness results are easily proved by taking advantage of their
respective minimisation problem formulations.

Theorem 3.4. The problems (3.4) and (3.3) admit a unique solution u ∈ H1
Γ0

(Ω)d, when f ∈ L2(Ω)d,

g ∈ L2(ΓN )d, φη is positive increasing and Nη is convex positive.

Proof. We introduce the functional:

E(u) =
1

2
a(u, u) +

1

ε

(∫
Γc

∫ u.n

0
φη(t) dt ds+

∫
S

∫ [u].n

0
φη(t) dt ds

)
+ jη(u)−

∫
ΓN

g · u ds−
∫

Ω
f · u dx

with a(u, u) =
∫

ΩAe(u) : e(u) dx and jη(u) = 0 for (3.3) and jη(u) =
∫

Γc
σtrNη(ut) ds+

∫
S σtrNη([u]t) ds

for (3.4). Thanks to Korn inequality, u → a(u, u) is strictly convex. We now prove that ψ : u →∫
Γc

1
ε

∫ u.n
0 φη(t) dt ds is convex. We compute the Hessian of ψ:

D2ψ(u)(h, h′) =

∫
Γc

1

ε
φ′η(u · n)h′ · n h · nds

which is positive as φ′η is positive. Moreover, sinceNη is convex, jη is convex and lower semi-continuous.

So u → E(u) is strictly convex and lower semi-continuous on H1
Γ0

(Ω)d. It is also bounded below as
φη is non-negative and an approximation of x→ xH(x) (for instance φη([u] · n) vanishes when [u] · n
is smaller than −η). It ensures the existence of a unique minimiser of E on H1

Γ0
(Ω)d. To conclude we

just need to remark that the optimality criterion is exactly (3.3) or (3.4), therefore both admit one
and only one solution.

We now turn to the other models. For (3.5) the existence is proved in chapter 3 of [16]. A proof
similar to that for (3.5) can be done for (3.6). For these two cases, the uniqueness is not ensured. For
the normal compliance model we refer to [20] for existence and uniqueness.
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4. Optimisation problem

Our goal is to minimise a certain function J(Ω) depending on u, the displacement which solves one of
the contact formulations given in Section 2, under constraints also depending on u, denoted by I(Ω):

min J(Ω)

Ω ∈ Uad
u solution of (3.8)

I(Ω) ≤ 0

(4.1)

where Uad is the set of admissible shapes. Typically, admissible shapes Ω should be included into a
fixed domain D and the Dirichlet boundary Γ0 ⊂ ∂D is not allowed to change. In the following we
denote Γm the part of the boundary of Ω which is allowed to change.

4.1. Shape derivative

To minimise (4.1) we apply a gradient method, therefore we need to compute derivatives with respect
to Ω. We choose to use the notion introduced by Hadamard and then extensively studied, see for
instance [28], [46], [53], [57] or [58]. Starting from a smooth domain Ω0, the variation of the domain
takes the form:

Ωθ = (Id+ θ)(Ω0)

with θ ∈W 1,∞(Rd,Rd) and Id the identity map. When θ is sufficiently small, Id+θ is a diffeomorphism
in Rd, see [1]. Once the variation of the shape is defined, it is possible to define the notion of Gâteaux
derivative for a function J depending on the shape.

Definition 4.1. The shape derivative J ′(Ω)(θ) of J(Ω) at Ω in the direction θ is defined as the
derivative at 0 of the application t→ J((Id+ tθ)(Ω)) which means:

J((Id+ tθ)(Ω)) = J(Ω) + tJ ′(Ω)(θ) + o(t)

where J ′(Ω) is a continuous linear form on W 1,∞(Rd,Rd).

We recall the following classical theorem [1] which will be used in the next section.

Theorem 4.2. Let Ω ∈ Uad be a smooth open domain, φ a smooth function defined in Rd,

Jv(Ω) =

∫
Ω
φ(x) dx and Js(Ω) =

∫
∂Ω
φ(x) ds.

These two functions are shape differentiable at Ω in the direction θ ∈W 1,∞(R,R) and

J ′v(Ω)(θ) =

∫
∂Ω
θ · nφds and J ′s(Ω)(θ) =

∫
∂Ω
θ · n

(
∂φ

∂n
+Hφ

)
ds

where H = div(n) is the mean curvature of ∂Ω.

We also give the shape derivative of the normal (see proposition 5.4.14 in [28]).

Proposition 4.3. Let Ω be a C2 domain and n ∈ C1(Rd,Rd) an extension of the unit normal to ∂Ω.
Denote Ωtθ = Φ(t)Ω0 with Φ(t) = (Id+ tθ). Then:

t→ nt =
w(t)

‖w(t)‖
with w(t) = (∇TΦ(t)−1n) ◦ Φ(t)−1

is an extension to the normal of ∂Ωtθ, is differentiable in 0 and its derivative is:

n′(θ) = −∇t(θ · n) on ∂Ω

where ∇tζ = ∇ζ − (∇ζ · n)n is the tangential gradient of a function ζ.

12
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4.1.1. General case

We proceed to the computation of the gradient of a general criterion:

J(Ω) =

∫
Ω
m(u) dx+

∫
Γm

l(u) ds (4.2)

where Γm is the part of ∂Ω allowed to move during the optimisation process, m and l are smooth
functions from Rd into R, verifying

|m(u)| ≤ C
(
1 + |u|2

)
∣∣m′(u) · h

∣∣ ≤ C ′|u| |h|
and

|l(u)| ≤ C
(
1 + |u|2

)
∣∣l′(u) · h

∣∣ ≤ C ′|u| |h|
for every u, h ∈ Rd with C > 0 and C ′ > 0. Note that (4.2) is thus well defined for u ∈ H1(Ω)d.

In the next theorem, we shall consider the solution u of the non-linear variational equation (3.8)
which involves the function j(u, p, n) (the precise form of which differs according to the considered
penalised and regularised contact model). In order to distinguish the normal derivative ∂j/∂n from
the partial derivative of j(u, p, n) with respect to its third argument, we now consider j as a function
of three arguments (u, p, λ) ∈ Rd × Rd × Rd → R and the derivative with respect to n of j(u, p, n) is
denoted:

∂j

∂λ
(u, p, n).

Theorem 4.4. Assume that Γm ∩ Γ0 = ∅, f ∈ H1(Rd)d and g ∈ H2(Rd)d. Assume that (3.8) admits
a unique solution u ∈ H1

Γ0
(Ω)d, not only for Ω but also for all its admissible variations (Id + tθ)(Ω)

for t small enough and θ ∈W 1,∞(Rd,Rd). If we denote J ′(Ω)(θ) the Gâteaux derivative of J(Ω) with
respect to Ω in the direction θ ∈W 1,∞(Rd,Rd), we have:

J ′(Ω)(θ) =

∫
Γm

(θ · n)(m(u) +Ae(u) : e(p)− f · p) ds

+

∫
Γm

(θ · n)

(
Hl(u) +

∂l(u)

∂n

)
−
∫

ΓN∩Γm

(θ · n)

(
Hp · g +

∂(p · g)

∂n

)
ds

+

∫
S∪Γc

(θ · n)

(
Hj(u, p, n) +

∂j(u, p, n)

∂n

)
ds

+

∫
S∪Γc

∂j

∂λ
(u, p, n) · n′(θ) ds

(4.3)

where n′(θ) is the shape derivative of the normal (on S it is the shape derivative of n−) and p is
defined as the solution of the following adjoint problem:∫

Ω
Ae(p) : e(ψ) dx+

∫
Ω
m′(u) · ψ dx+

∫
Γm

l′(u) · ψ ds

+

∫
S∪Γc

∂j

∂u
(u, p, n) · ψ ds = 0 ∀ψ ∈ H1

Γ0
(Ω)d.

(4.4)
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Proof. The proof relies on Céa’s method [10] or [1]. A rigorous proof would require to prove that u
is Gâteaux differentiable with respect to the shape. This could be done by making in the non-linear
regularised formulation (3.8) a change of variable to transport integrals on the reference domain Ω0

such that Ω = (Id+ tθ)(Ω0). This leads to an equation of the type: F (u, t) = 0 with F differentiable
with respect to t, thanks to Remark 3.3 and Lemma 3.1. Applying the implicit function theorem at
t = 0 yields the desired result. Assuming this point proved, we give a (formal) proof of the theorem
by means of the Lagrangian method, noting u′(θ) the shape derivative of u. Let us introduce the
Lagrangian L with v and q in H1

Γ0
(Rd)d:

L(v, q, n(Ω),Ω) =

∫
Ω
m(v) dx+

∫
Γm

l(v) ds+

∫
Ω
Ae(v) : e(q) dx

+

∫
S∪Γc

j(v, q, n) ds−
∫

Ω
f · q dx−

∫
ΓN

g · q ds.

Recall that j(v, q, n), defined in (3.8), is a linear function of q. Thus, the Lagrangian L is linear with
respect to the adjoint variable q too, as it should be. Since Γ0 is fixed, there is no need of a Lagrange
multiplier for the Dirichlet condition in the Lagrangian: Γ0 ⊂ ∂Ω for every Ω ∈ Uad. Moreover the
functions q and v are in spaces independent of Ω ∈ Uad. We note (u, p) a stationarity point of L.
The state equation (3.8) can be retrieved by differentiating L with respect to q in the direction
ψ ∈ H1

Γ0
(Rd)d:

〈∂L
∂q

(u, q, n,Ω), ψ〉 = 0 ∀ψ ∈ H1
Γ0

(Rd)d .

Similarly, the adjoint equation (4.4), solved by p, is found by differentiating L with respect to v in the
direction ψ ∈ H1

Γ0
(Rd)d:

〈∂L
∂v

(u, p, n,Ω), ψ〉 =

∫
Ω
Ae(v) : e(ψ) dx+

∫
Ω
m′(u) · ψ dx+

∫
Γm

l′(u) · ψ ds +

∫
S∪Γc

∂j

∂u
(u, p, n) · ψ ds

and the adjoint variational formulation is deduced by making the above term zero.
To find the shape derivative of J(Ω), we remark that:

J(Ω) = L(u(Ω), q, n(Ω),Ω)

and differentiate L with respect to the shape in the direction θ which gives:

J ′(Ω, θ) = L′(Ω, uΩ, q, nΩ; θ)

= ∂ΩL(Ω, uΩ, q, nΩ; θ) + 〈∂L
∂v

(Ω, uΩ, q, nΩ), u′(θ)〉+ 〈∂L
∂λ

(Ω, uΩ, q, nΩ), n′(θ)〉.

But, as u′(θ) ∈ H1
Γ0

(Ω)d, taking q = p(Ω) leads to:

〈∂L
∂v

(Ω, uΩ, p(Ω), nΩ), u′(θ)〉 = 0.

Consequently:

J ′(Ω, θ) = L′(Ω, uΩ, pΩ, nΩ; θ) = ∂ΩL(Ω, uΩ, pΩ, nΩ; θ) + 〈∂L
∂λ

(Ω, uΩ, pΩ, nΩ), n′(θ)〉.

By using the formulae of Theorem 4.2, we recover (4.3).

Remark 4.5. The derivative found in Theorem 4.4 is correct only if the solution u exists and is
unique for all admissible domains. Nevertheless, in numerical practice we will use Theorem 4.4 even
for models where no uniqueness results are known.
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4.2. Criteria

4.2.1. Compliance and volume

In some numerical examples we will use these two classical criteria which can be written under the
form of (4.2). For the compliance:

mComp(u) = f · u

lComp(u) = g · u
For the volume:

mvol(u) = 1

lvol(u) = 0

4.2.2. Normal force

The normal force, which is always non-positive (see (2.6)), is the force which is applied on the structure
at the contact surface. It takes the following form: Ae(u)n · n on Γc and Ae(u|S−)n− · n− on S. In the
penalised and regularised formulations the normal force PN is now given by a different formula:

PN =


− 1

ε
φη(u · n) on Γc

− 1

ε
φη([u] · n−) on S

(4.5)

where φη(x) was defined in (3.2) as a smooth approximation of max(0, x) and ε is the penalisation
parameter defined in (3.1).

The various criteria we consider, depending on the normal force, are of the form:

l(u) = li(PN (u), c)1S∪Γc

where 1S∪Γc is the characteristic function of S ∪ Γc, c is a constant and li is defined according to how
we want to control the normal force.

Uniformisation: If we want to make the normal force PN uniform around a constant c < 0 on the
contact zone, we introduce the following function:

l1(PN , c) = (PN − c)2 . (4.6)

Minimising the maximum of the normal force: If we want to force the normal force PN to be
under a certain threshold c < 0, we define:

l2(PN , c) = max(PN − c, 0)2.

However, this could lead to a null gradient during the optimisation process due, for example, to a
null adjoint p when there is no point in contact. This could be a big hurdle when the initial shape in
the optimisation process is such that there is no contact. Indeed the gradient does not indicate that
contact is possible and how to reach a shape where there is an effective contact. So we change the
definition (4.5) of PN by introducing the following function:

φthη (x) =

{
φη(x)− φη(0) if x ≥ 0

φ′η(0)x otherwise.
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We plot the corresponding functions φη and φthη on Figure 2. Then we define:

P thN =


− 1

ε
φthη (u · n) on Γc

− 1

ε
φthη ([u] · n−) on S

Now when u · n = 0, the normal force is set to 0 and when u · n < 0, the force is non-negative and

Figure 2. The functions φη (continuous curve) and φthη (dashed curve).

decreases linearly, giving a sense to an opposite normal force when there is no contact. Making the
most of this new normal force formulation, we define the following criterion:

l3(P thN , c) =


1−

P thN
c

if P thN ≤ 0

e−
Pth
N
c if P thN > 0.

(4.7)

The bigger
P th
N
c , the smaller is l3(P thN , c). Other formulas for l3 are also possible and give similar results

to those obtained with (4.7).

5. Numerical implementation

5.1. The level set method

As we choose to define the shape thanks to a level set, we recall the framework of this method
introduced by Osher and Sethian in [49], [48] and [56]. Let D ⊂ Rd be a bounded domain in which
all admissible shapes Ω are included. The boundary of Ω is located thanks to the level set function ψ,
defined in D by 

ψ(x) = 0 if x ∈ ∂Ω ∩D
ψ(x) < 0 if x ∈ Ω

ψ(x) > 0 otherwise

The normal n and the mean curvature H of the shape Ω are respectively given by ∇ψ‖ψ‖ and div
(
∇ψ
‖ψ‖

)
.

These quantities are computed throughout the whole domain D which naturally defines extensions of
their first definition on ∂Ω.
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5.2. Optimisation algorithm

The optimisation process produces a sequence (Ωi)i∈N of shapes. We start with an initial shape Ω0

and compute iteratively the sequence. To make the level set evolve from Ωi to Ωi+1, the Hamilton
Jacobi transport equation [49] is solved for t ∈ [0, tf ]:

∂ψ

∂t
+ V ‖∇ψ‖ = 0 in D (5.1)

where V (x) is the normal velocity of the shape’s boundary. The equation (5.1) is obtained by differ-
entiating: ψ(t, x(t)) = const and replacing ẋ(t) by V n. Thanks to ψ(x, t) we can define Ωi(t) for every
t ∈ [0, tf ] and choose Ωi+1 = Ωi(tf ) for an appropriate tf which corresponds to the descent step. The
speed V , defined everywhere in D to be able to solve (5.1), is chosen, through a SLP (Successive Linear
Programming, or Sequential Linear Programming) type algorithm, thanks to the criteria’s gradients
calculated on Ωi using theorem 4.4 and plays the role of a descent direction. The time step size tf is
at first chosen equal to an arbitrary tmax and then decreases until an admissible shape is found (if not
the algorithm stops). When an admissible shape is reached, the time step tf is allowed to grow. We
distinguish two phases in the algorithm: first, if the current shape does not fulfil the constraints: we
authorise the objective to slowly increase as long as the constraints improve. Then, once an admissible
shape is reached, we reject every future shape which, either makes the objective increase or is not
admissible.

The Hamilton Jacobi equation (5.1) is solved by an explicit second order upwind scheme on a
cartesian grid meshing D with Neumann boundary conditions. Since the scheme is explicit in time,
the time stepping has to satisfy a CFL condition and, in order to regularise the level set which can
become too flat or too steep during the successive optimisation iterations, periodic reinitialisations,
thanks to an Hamilton Jacobi equation admitting the signed distance to the shape as stationary
solution, are performed. We refer to [2] for numerical implementation details.

5.3. Finite element method

Using the same cartesian grid, we choose to solve the contact and adjoint equations on the whole
domain D using the ”ersatz material” approach, thanks to the quadrangular finite elements. It is
tantamount to fill D \Ω with a weak material mimicking void but preventing the stiffness matrix from
being singular. This technique is commonly used in topology optimisation with level sets [2], [64].

Concerning the non-linear penalised equations, they are usually solved by a damped Newton method,
see [12] chapter 6, or a fixed point method. The Newton method has the advantage to be faster but it
needs a good choice for the damping. On the other hand, the fixed point method, despite its relative
slowness, is easier to implement. The robustness of the algorithm which solves the contact equations is
crucial in the optimisation process. First because the optimisation can produce structures for which the
finite element matrices are nearly singular. Secondly because we are solving problems whose solution
is not always unique. This leads to difficulties which can be seen in Examples 11 and 12 below. The
contact problems are solved (thanks to the finite element method) by discretising the contact region
and applying node to node contact conditions for the auto-contact part. We choose to use a fixed
point method for the computation of the non-linear problems solutions considered, which converges
in, at most, 300 iterations with an average of 100.

6. Numerical examples

This section is divided into three subsections. The first one is a study of the sensitivity of the shape
optimisation with respect to the penalisation parameter in the case of frictionless contact. The two
next ones correspond respectively to 2D and 3D examples in which the parameters are fixed. In all
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Pena. param. ε Volume Compliance Compliance Constraint Iterations Evaluations
ε = 10−2 1.86605 19.9999 20 33 49
ε = 10−3 1.86508 19.9975 20 39 54
ε = 10−4 1.86421 19.9991 20 32 47
ε = 10−5 1.86412 19.9997 20 31 46
ε = 10−6 1.86405 19.9998 20 29 44
ε = 10−7 1.86357 19.9956 20 36 51
ε = 10−8 1.86357 19.9956 20 36 51
ε = 10−9 1.86358 19.9955 20 36 51
ε = 10−10 1.86349 19.9964 20 36 51

Table 2. Results for different penalisation parameters for example 0.

the examples of this section, the contact zone is fixed (non-optimisable) but the structure can choose
to use it or not. In each subsection, different models are used depending on the mechanical case. In
2D, the computational domain D is always a square of size 2 × 2. Except for Examples 5, 11 and
12, where D is discretised with 2500 square elements, for all other examples, D is discretised with
6400 square elements. For the 3D examples, only the sliding contact model and Tresca friction contact
model are tested. Except in Example 14 where D is a cylinder of radius 1 and height 1, the domain
D is a rectangular parallelepiped of dimension 1× 2× 1 meshed with tetrahedra. In all 2D examples,
except Example 3, there is no volume force and only unit point surface forces are applied. In 2D the
Young modulus is set to E = 1 and the Poisson coefficient is ν = 0.3. In 3D, we take E = 210000
and ν = 0.3. In 2D and 3D, the penalisation coefficient ε is set to 10−7. During the optimisation
process, some shapes are rejected either because they do not fullfil the constraints or because they do
not decrease the objective function. Due to this fact, for each example, both the number of iterations
(shapes which were accepted) and the number of evaluations (all the shapes which were evaluated)
are given.

6.1. Study of the sensitivity to the penalisation

For two examples, we vary the penalisation parameter ε in (3.1) from 10−2 to 10−10 and look at the
sensitivity of the shape optimisation problem with respect to this parameter ε. For each example we
minimise the volume under a compliance constraint. The potential contact zone is drawn in green, the
arrows represent the forces and black zones the part of the boundary where Dirichlet conditions are
prescribed, in all the directions (otherwise mentioned).

• Example 0, a unit force (ΓN ) is applied at the point (2, 1), the left side of the structure (Γ0)
is fixed and Γc = ∅. We show the different final designs found in Figure 3. The Results are
shown in Table 2.

This example is interesting as it provides both a contact zone which opens and a contact zone
which is in actual contact. There is almost no (or very tiny) dependence on the penalisation
parameter, as far as final designs, final values of objective and constraints and numbers of
iterations and evaluations are concerned. This shows that the shape optimisation problem is
almost insensitive to the value of the penalisation.

• Example 1, Dirichlet conditions (Γ0) are enforced on the whole left side, Γc = ∅ and a downward
unit force (ΓN ) is applied at the point (2, 1.5). This example is almost trivial for our sensitivity
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(a) Load case for Example
0

(b) Final design for ε =
10−2

(c) Final design for ε =
10−3

(d) Final design for ε =
10−4

(e) Final design for ε =
10−5

(f) Final design for ε =
10−6

(g) Final design for ε =
10−7

(h) Final design for ε =
10−8

(i) Final design for ε =
10−9

(j) Final design for ε =
10−10

Figure 3. Example 0

study since it turns out that the only possible contact zone is never in contact and, so, the
penalisation parameter should not play any role. Therefore, as can be expected for this example,
the penalisation parameter has indeed no impact on the shape optimisation. The final designs
are the same (one is shown in Figure 4 next to the load case representation). The number of
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iterations is always 30 and the number of evaluations 46. The final volume value is 1.6375 and
the compliance constraint is 19.9999 for a possible maximum of 20.

(a) Load case for Example
1

(b) Final design for Exam-
ple 1

Figure 4. Example 1

6.2. Examples in 2D

6.2.1. Sliding contact

We present five examples (labeled from 2 to 5) where the volume is minimised under a compli-
ance constraint (the value of this constraint is given in Table 3). The potential contact zone is
drawn in green, the arrows represent the forces and black zones the part of the boundary where
Dirichlet conditions are prescribed, in all the directions (otherwise mentioned). The results are
collected in Table 3.

• Example 2, Dirichlet conditions (Γ0) are enforced on the whole left side, Γc = ∅ and a unit
downward force (ΓN ) is applied at the point (2, 1.5). Example 1-2bis is the same example as 1
and 2 without the contact zone. Results are presented in Figures 5 and 6.

(a) Load case for Example
2

(b) Final design for Exam-
ple 2

Figure 5. Example 2

• Example 3, Dirichlet conditions (Γ0) are enforced on the whole left side, Γc = ∅ and a rightward
force (ΓN ) is applied on the segment from (2, 0.8) to (2, 1.2). Example 3bis is similar without
the contact area. Results are given in Figures 7 and 8.
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Figure 6. Final design for Example 1-2bis

(a) Load case for Example 3 (b) Final design for Exam-
ple 3

Figure 7. Example 3

Figure 8. Final design for Example 3bis

• Example 4, Dirichlet conditions (Γ0) are enforced on the whole left side, Γc = ∅ and a unit
upward force (ΓN ) is applied at (2, 1.5). Example 4bis is similar without the contact boundary
conditions. Results can be seen in Figures 9 and 10.

• Example 5, Dirichlet conditions (Γ0) are enforced on the top boundary of the L-shape, S = ∅
and a unit downward force (ΓN ) is applied at (2, 1.6). Example 5bis corresponds to the same
problem without the contact part. Results are shown in Figures 11 and 12.

In Examples 1, 2, and 3, the optimisation algorithm tends to avoid the contact zone which is not the
case when this zone is removed. Indeed, due to the direction of the forces, this zone opens and no point
is in contact. Including it in the structure would increase the compliance, which is not possible by
virtue of the constraint on the compliance. In Example 4, the points of the contact zone are in contact
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(a) Load case for Example
4

(b) Final design for Exam-
ple 4

Figure 9. Example 4

Figure 10. Final design for Example 4bis

(a) Load case for Example 5 (b) Final design for Exam-
ple 5

Figure 11. Example 5

and including them in the structure does not imply a too big increase of the compliance, despite the
sliding occurence. In Example 5, the contribution of the contact boundary conditions is underlined by
the fact that, for the same optimisation problem without contact (Example 5bis), even the full-domain
solution is not admissible (its compliance is about 118). We need to weaken the compliance constraint
to have a feasible starting solution for the optimisation algorithm in the case of Example 5bis.

In the next four examples (labeled from 6 to 9), the normal force criteria (4.6) and (4.7) are used to
obtain different kinds of clamps or gripping mechanisms. Apart from Example 6, in which the normal
force criterion is minimised under volume and compliance constraints, we minimise the volume under
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Figure 12. Final design for Example 5bis

Cases Volume Compliance Compliance Constraint Iterations Evaluations
2 1.45211 19.9998 20 67 95

1-2bis 1.41650 19.9997 20 22 38
3 0.35078 0.499995 0.5 82 110

3bis 0.248584 0.499993 0.5 31 47
4 1.69044 29.9999 30 64 95

4bis 0.928932 29.9841 30 28 46
5 1.15278 94.9829 95 18 36

5bis 1.64209 139.906 140 18 35

Table 3. Results for sliding contact examples and Examples 1-2bis, 3bis, 4bis and 5bis.

compliance and normal force constraints (the precise values of these constraints are given in Tables 4
and 5). The results are presented in Tables 4 and 5.

• Example 6, here the Dirichlet conditions (Γ0) at (1.9, 0) and (1.9, 2) are put only for the x
(horizontal) part of the displacement, Γc = ∅ and two unit forces (ΓN ) are applied at (1.8, 2)
and (1.8, 0). The normal force criterion used is l3 with c = −1.5. See Figure 13 for the results.

(a) Load case for Exam-
ple 6

(b) Final design for Exam-
ple 6

(c) Final normal force (in blue) for Example 6

Figure 13. Example 6

The shape of a clamp is found, which manages to bring the forces from the right side to the
left side, keeping their direction. We remark that we do not manage to reach the value of the
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threshold c. In the next example, we will use the same criterion as a constraint and see that
the results are far better on this particular issue.

• Example 7, two unit forces (ΓN ) are applied at (1.8, 2) and (1.8, 0), Γc = ∅ and the structure
is fixed (Γ0) from (2, 0.9) to (2, 1.1). The normal force criterion used is l3 with c = −1.1. We
refer to Figure 14 for the results.

(a) Load case for Example
7

(b) Final design for Exam-
ple 7

(c) Final normal force (in blue) and the threshold
c (in red) for Example 7

Figure 14. Example 7

The Dirichlet part on the right side is used at the beginning of the optimisation process and
is finally found to be useless.

• Example 8, two unit forces (ΓN ) are applied at (1.5, 2) and (1.5, 0) and Γc = ∅. Dirichlet
conditions (Γ0) are enforced on the whole left side. The normal force criterion used is l3 with
c = −0.9. Figure 15 presents the results.

(a) Load case for Ex-
ample 8

(b) Final design for Exam-
ple 8

(c) Final normal force (in blue) and the threshold
c (in red) for Example 8

Figure 15. Example 8

On the contrary, this example shows a mechanism which transforms the vertical forces into
horizontal ones.

• Example 9, the downside (Γ0) is fixed, Γc = ∅ and two unit forces (ΓN ) are applied at (0.2, 0)
and (1.8, 0). The normal force criterion used is l1 with c = −2. Figure 16 gives the results.

Finally Example 9 produces pillars that are perpendicular to the Dirichlet zone, linked to the
contact zone by oblique bars, to distribute the force between the two zones in order to both
try to reach the constraint l1 and stabilise the structure.
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(a) Load case for
Example 9

(b) Final design for Ex-
ample 9

(c) Final normal force (in blue) and the threshold
c (in red) for Example 9

Figure 16. Example 9

Cases Norm. force Compl. Compl. Constr. Vol. Vol. constr. Iterations Evaluations
6 3.03302 8.32621 8.4 2.27271 2.7 16 23

Table 4. Results for Example 6.

Cases Vol. Compl. C. Constr. Norm. force N.f. Constr. Iter. Eval.
7 1.34868 10.9603 11 1.99976 2 251 275
8 0.971308 5.99801 6 1.49998 1.5 178 206
9 1.62217 14.9941 15 0.148007 0.15 24 40

Table 5. Results for Examples 7, 8 and 9

For theses examples (6 to 9), it has to be noted that the computation of the normal force, thanks
to the penalisation formula (4.5), is not very accurate since the displacement u is multiplied by the
large penalisation factor 1/ε. Therefore, if one requires a precision of the order of unity for the normal
force, the displacement u should be solved with a precision smaller than ε, which is not the case here.
Moreover, it appears that the criteria used are quite sensitive to small changes in the shape. This
forbids the use of too tight normal force constraints, which explains that pointwise constraints are
most of the time not exactly fulfilled. These examples are however interesting as they give a good hint
of the possible optimal shape for pointwise constraints.

6.2.2. Contact with friction

We give four examples (labeled from 10 to 13) of contact optimisation with friction. For each of these
examples, the results are displayed for all contact models: sliding (no friction), Tresca, Norton Hoff,
normal compliance and Coulomb. The friction coefficient is σtr for the Tresca model and µ for all
other models. For the normal compliance model, we have CN = 1, mN = 1 and mT = 1. For the
Norton Hoff model, we recall that ρ denotes the exponent parameter defined in (2.13). We minimise
the volume under a compliance constraint.

• Example 10, a unit force (ΓN ) is applied at (2, 1), the left side of the structure (Γ0) is fixed
and Γc = ∅. The friction coefficient is 0.5 and for the Norton Hoff model ρ = 0.1. Example
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10bis corresponds to the same problem without the two contact areas. Results can be found
in Table 6 and Figures 17 and 18.

(a) Load case for Example
10

(b) Final design for fric-
tionless contact

(c) Final design for the
Tresca model

(d) Final design for the
Norton-Hoff model

(e) Final design for
the normal compliance
model

(f) Final design for the
Coulomb model

Figure 17. Example 10

Figure 18. Final design for Example 10bis (without contact).
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Cases Volume Compliance Compliance Constraint Iterations Evaluations
Sliding contact 1.86357 19.9956 20 36 51

Tresca 1.76836 19.9999 20 47 73
Norton Hoff 1.76906 19.9999 20 41 67

Normal compliance 1.97197 19.9999 20 49 65
Coulomb 1.76948 19.9998 20 45 70

10bis 1.34787 19.9978 20 33 50

Table 6. Comparison results of friction models for Examples 10 and 10bis.

Cases Volume Compliance Compliance Constraint Iterations Evaluations
Sliding contact 0.422235 21.9991 22 44 71

Tresca 0.302352 21.9957 22 45 71
Norton Hoff 0.309498 21.9995 22 44 65

Normal compliance 0.336178 21.9996 22 37 63
Coulomb 0.286532 21.9995 22 35 61

Table 7. Comparison results of friction models for Example 11.

Cases Volume Compliance Compliance Constraint Iterations Evaluations
Sliding contact 0.593907 94.9994 95 22 40

Tresca 0.59725 94.9014 95 18 34
Norton Hoff 0.550918 94.5404 95 18 34

Normal compliance 0.917105 94.1346 95 13 30
Coulomb 0.907396 94.9978 95 48 67

Table 8. Comparison results of friction models for Example 12.

In all cases, the algorithm tends to avoid the upper contact zone which opens and keep the
lower one. However, in sliding contact, the lower leg has to be hooked up to a part of the
structure which is not in the contact zone. It is not the case in the friction cases as the friction
keeps the lower leg connected to the structure (see the zone circled in red on the final design
for frictionless contact and the equivalent zone on the models with friction). Example 9bis is
meant to underline the impact of the contact on the optimised structure.

• Example 11, a unit force (ΓN ) is applied at (1, 2) and S = ∅. The friction coefficient is 1.3 and
for the Norton Hoff model ρ = 0.5. The results are delivered in Table 7 and in Figure 19.

In sliding contact the legs of the bridge have to be vertical to the contact zone to prevent
sliding. Whereas in other cases, the friction stabilises the structure and enables the legs to
incline.

• Example 12, Dirichlet conditions (Γ0) are enforced on the left up part of the L-shape, S = ∅
and a downward unit force (ΓN ) is applied at (2, 1.6). The friction coefficient is 1.2 and for the
Norton Hoff model ρ = 0.6. Results are given in Table 8 and Figure 20.
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(a) Load case for Exam-
ple 11

(b) Final design for friction-
less contact

(c) Final design for the
Tresca model

(d) Final design for the
Norton-Hoff model

(e) Final design for the nor-
mal compliance model

(f) Final design for the
Coulomb model

Figure 19. Example 11

The result in sliding contact can be compared with Example 5. Here the algorithm makes use
of the second contact zone and, for the Norton-Hoff model, manages to use it to stabilise the
structure without being connected to the Dirichlet boundary. In the case of Coulomb model,
there is trouble in solving the contact problem (for several shapes, the non-linear algorithm
does not converge and the displacement used for computing the shape gradients and the criteria
are not accurate enough) which leads to a bad optimised result in terms of volume compared
to the other models.

• Example 13, Dirichlet conditions (Γ0) are enforced from (1.2, 0) to (2, 0), S = ∅ and a downward
unit force (ΓN ) is applied at (2, 1.6). The friction coefficient is 0.8 and, for the Norton Hoff
model, ρ = 0.6. For Example 13bis, we only remove the contact zone. Results are shown in
Table 9 and Figures 21 and 22.
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(a) Load case for Example
12

(b) Final design for friction-
less contact

(c) Final design for the
Tresca model

(d) Final design for the
Norton-Hoff model

(e) Final design for the nor-
mal compliance model

(f) Final design for the
Coulomb model

Figure 20. Example 12

The contact area enables the structure to be only connected with the Dirichlet part by its left
edge and to use less material. The friction allows to slightly decrease the volume.

6.3. Examples in 3D

The following examples (labeled from 14 to 18) were computed thanks to the finite element software
SYSTUS of ESI-Group [17]. The non-linear problems are solved thanks to a Newton algorithm. In all
cases, the volume is minimised under a compliance constraint. The friction coefficient is set to 0.01. In
Examples 15 to 18 we force a small amount of material to remain near the Dirichlet and force zones.
In Example 14 this is done only for the force zone. To be sure that the models of sliding contact and
Tresca were the same as in 2D, we choose to use node to node elements (string elements) for which
we implement the penalisations adapted to the frictionless contact and the Tresca model.
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(a) Load case for Example
13

(b) Final design for friction-
less contact

(c) Final design for the
Tresca model

(d) Final design for the
Norton-Hoff model

(e) Final design for the nor-
mal compliance model

(f) Final design for the
Coulomb model

Figure 21. Example 13

Figure 22. Final design for Example 13bis
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Cases Volume Compliance Compliance Constraint Iterations Evaluations
Sliding contact 2.15435 149.999 150 16 32

Tresca 1.95836 149.989 150 14 29
Norton Hoff 1.87089 149.881 150 25 40

Normal compliance 1.94898 149.994 150 13 28
Coulomb 1.83706 149.997 150 20 39

13bis 2.39942 149.962 150 20 36

Table 9. Comparison results of friction models for Examples 13 and 13bis.

Cases Volume Compliance Compliance Constraint Iterations Evaluations
Sliding contact 2.521889e-01 9.994017e+03 10000 15 23

Tresca 2.555368e-01 9.999298e+03 10000 17 25

Table 10. Comparison results of friction models for Example 14.

• Example 14 features 97289 elements and 17290 nodes. A downward surface force (ΓN ) equal
to 10000 is applied on a square of side 0.2 in the middle of the right face. Dirichlet conditions
(Γ0) are enforced on the left face (see Figure 23) and Γc = ∅. The results are gathered in Table
10 and in Figures 23, 24 and 25.

Figure 23. Load case for Example 14.

This example is the equivalent of 2D Example 10, but in 3D. We can make the same remark
as in frictionless contact: the lower leg needs to be hooked up to a part of the structure not
containing the contact. This is not the case when friction is possible.

• Example 15 features 156417 elements and 27312 nodes. See Table 11 and Figures 26, 27 and
28 for the results.
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(a) Final design for frictionless contact

(b) Final design for the Tresca model

Figure 24. Example 14

Here there are three circular potential contact zones (Γc) and the forces (ΓN ) are applied
on two small cylinders in the middle. Two downward surface forces of 200000 magnitude are
applied on a disk of radius 0.1 at the center of each circular face. Dirichlet conditions (Γ0) are
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Figure 25. Comparison between the final designs without (left) and with (right) fric-
tion for Example 14. Remark the small amount of material needed only in the sliding
case.

Figure 26. Load case for Example 15.

enforced on the bottom face on a ring of length 0.1 surrounding the structure (see Figure 26).
In both cases the contact zones are enough to stabilise the structure and the Dirichlet zone is
not used. Between frictionless and friction contact, slight changes appear in the shape of the
three feet of the structure.

• Example 16 features 89475 elements and 15895 nodes. Table 12 and Figures 29 and 30 show
the results.
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(a) Final design for frictionless contact

(b) Final design for the Tresca model

Figure 27. Example 15

The cylinder in the center and the bottom left side (Γ0) are completely fixed and S = ∅. A
downward 50000 force (ΓN ) is applied on a rectangular part of the bottom face of dimension
0.1 × 1 on the far right (see Figure 29). As the cylinder in the center is fixed, the algorithm
uses it to stabilise the structure. In the frictionless case it needs to turn around the cylinder
as sliding is possible. In the friction case this is not needed anymore, but we remark that a
small part of matter remains under the cylinder, going to it from the base. This part is not
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Figure 28. Comparison between the final designs without (left) and with (right) fric-
tion for Example 15. Remark that the shape of the foot is larger when friction is present.

Cases Volume Compliance Compliance Constraint Iterations Evaluations
Sliding contact 2.078838e-01 9.987082e+03 10000 29 40

Tresca 1.920865e-01 9.987843e+03 10000 36 45

Table 11. Comparison results of friction models for Example 15.

Figure 29. Load case for Example 16.

Cases Volume Compliance Compliance Constraint Iterations Evaluations
Sliding contact 7.082515e-01 9.990895e+03 10000 14 23

Tresca 6.915364e-01 9.979266e+03 10000 14 22

Table 12. Comparison results of friction models for Example 16.

in contact but the tangential displacements are such that friction occurs (which is one of the
problems of the Tresca model making it non-mechanically correct).
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(a) Final design for frictionless contact

(b) Final design for the Tresca model

Figure 30. Example 16

• Example 17 features 89475 elements and 15895 nodes. Table 13 and Figures 31, 32 and 33
gather the results.

A downward force (ΓN ) of 50000 magnitude is applied on the whole cylinder axis and on the
left and right bottom parts, a rectangular part of dimension 0.1 × 1 (Γ0) is fixed and S = ∅.
The cylinder is encircled by matter to be supported (see Figure 31). The differences between
the sliding and the friction case come from the fact that in the friction case the optimisation
algorithm stopped prematurely due to convergence problems in the contact solver.
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Figure 31. Load case for Example 17.

Cases Volume Compliance Compliance Constraint Iterations Evaluations
Sliding contact 3.293794e-01 9.997417e+03 10000 78 87

Tresca 3.322390e-01 9.860692e+03 10000 22 33

Table 13. Comparison results of friction models for Example 17.

Cases Volume Compliance Compliance Constraint Iterations Evaluations
Sliding contact 2.349350e-01 1.981722e+04 20000 81 89

Tresca 2.299134e-01 1.986286e+04 10000 100 111

Table 14. Comparison results of friction models for Example 18.

• Example 18 features 90205 elements and 16010 nodes. Table 14 and Figures 34 and 35 present
the results.

The cylinder (Γ0) is fixed only in the y and x directions and S = ∅. A downward force (ΓN )
of 20000 magnitude is applied on the whole cylinder axis and two downward forces (ΓN ) of
50000 magnitude are applied on two rectangular parts of the downside face of dimension 0.1×1
on the far right and the far left. Finally we fix two parts on the bottom (Γ0). The structure
only needs to support the cylinder and the forces on the left and right side (see Figure 34
for details). To perform that, it uses archways in order to lead to the middle of the structure
forces on the sides, changing their direction in the opposite one and, this way, using them to
support the force of the cylinder. Due to the Dirichlet conditions put on the cylinder, the fact
that the results are the same with or without friction is not a surprise.
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(a) Final design for frictionless contact

(b) Final design for the Tresca model

Figure 32. Example 17

7. Conclusion

Through all the numerical examples shown in this article, the regularised and penalised formulations
are proved to be good ways to cope with the non-differentiability of problems having a unique solu-
tion. Despite the possible non-uniqueness of its solution, the Norton Hoff model behaves well in this
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Figure 33. Comparison between the final designs without (left) and with (right) fric-
tion viewed from below for Example 17

Figure 34. Load case for Example 18.

framework. On the contrary, the Coulomb model presents some difficulties due to a bad convergence in
the contact solver. It then appears that the crucial point is the robustness of the contact solver which
has to converge in every situation for the optimisation process to succeed. In 3D we used a Newton
method to solve the contact problem. It is a good practice (compared to a fixed point algorithm)
since it furnishes the tangent matrix M which is precisely the transpose of the stiffness matrix for the
adjoint problem. This was of great help for our implementation in the ESI group software.

Concerning the criteria depending on the normal force, we have to be cautious with our numeri-
cal results, as the approximations made (finite element method with penalisation) may not allow a
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(a) Final design for frictionless contact

(b) Final design for the Tresca model

Figure 35. Example 18

sufficient accuracy on the computed force. However, these criteria can be used to create compliant
mechanisms such as in Examples 6, 7 and 8 or in [43], or, as in Example 8, to get a shape which tends
to uniformise the normal force.

To go one step beyond our approach, we could eliminate the regularisation and work in the context
of non-smooth optimisation. In such a case, one has to use subgradients algorithms. Subgradients
were computed for the problems written as variational inequalities in [33] and [51]. It yields a better
accuracy on the normal force and gives good results for optimisation with Coulomb friction [7]. Note
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that [7], [33] and [51], focus on the optimisation of the discrete problem. Finally contact time-dependent
problems could also be studied.
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[26] J. Haslinger and P. Neittaanmäki. Shape optimization in contact problems. Approximation and
numerical realization. RAIRO Modél. Math. Anal. Numér., 21(2):269–291, 1987.
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[63] F. Tröltzsch. Optimal control of partial differential equations, Theory, methods and applications,
volume 112 of Graduate Studies in Mathematics. American Mathematical Society, Providence,
RI, 2010.

[64] M.Y. Wang, X. Wang, and D. Guo. A level set method for structural topology optimization.
Comput. Methods Appl. Mech. Engrg., 192(1-2):227–246, 2003.

45


	1. Introduction
	2. Contact models in linearised elasticity
	2.1. Sliding Contact
	2.2. Contact with friction
	2.2.1. Tresca model
	2.2.2. Coulomb friction
	2.2.3. Norton-Hoff model
	2.2.4. Normal compliance model


	3. Penalised and regularised formulations
	3.1. Penalisation for the convex set
	3.2. Regularisation of the friction term
	3.3. Differentiability of the penalised and regularised terms
	3.4. Existence and uniqueness of the penalised/regularised formulation

	4. Optimisation problem
	4.1. Shape derivative
	4.1.1. General case

	4.2. Criteria
	4.2.1. Compliance and volume
	4.2.2. Normal force


	5. Numerical implementation
	5.1. The level set method
	5.2. Optimisation algorithm
	5.3. Finite element method

	6. Numerical examples
	6.1. Study of the sensitivity to the penalisation
	6.2. Examples in 2D
	6.2.1. Sliding contact
	6.2.2. Contact with friction

	6.3. Examples in 3D

	7. Conclusion
	Bibliography

