Detecting Low-Quality Reference Time Series in Stream Recognition

Marc Dupont 1 Pierre-François Marteau 1 Nehla Ghouaiel 2
1 EXPRESSION - Expressiveness in Human Centered Data/Media
UBS - Université de Bretagne Sud, IRISA-D6 - MEDIA ET INTERACTIONS
2 OBELIX - Environment observation with complex imagery
UBS - Université de Bretagne Sud, IRISA-D5 - SIGNAUX ET IMAGES NUMÉRIQUES, ROBOTIQUE
Abstract : On-line supervised spotting and classification of subsequences can be performed by comparing some distance between the stream and previously learnt time series. However, learning a few incorrect time series can trigger disproportionately many false alarms. In this paper, we propose a fast technique to prune bad instances away and automatically select appropriate distance thresholds. Our main contribution is to turn the ill-defined spotting problem into a collection of single well-defined binary classification problems, by segmenting the stream and by ranking subsets of instances on those segments very quickly. We further demonstrate our technique's effectiveness on a gesture recognition application.
Type de document :
Communication dans un congrès
IAPR. International Conference on Pattern Recognition (ICPR), Dec 2016, Cancun, Mexico. IEEE, 2016, 〈http://www.icpr2016.org/site/〉
Liste complète des métadonnées

Littérature citée [8 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-01435197
Contributeur : Pierre-François Marteau <>
Soumis le : vendredi 13 janvier 2017 - 16:32:56
Dernière modification le : vendredi 16 novembre 2018 - 01:39:22
Document(s) archivé(s) le : vendredi 14 avril 2017 - 19:54:48

Fichier

ICPR16_1388_FI.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01435197, version 1

Citation

Marc Dupont, Pierre-François Marteau, Nehla Ghouaiel. Detecting Low-Quality Reference Time Series in Stream Recognition. IAPR. International Conference on Pattern Recognition (ICPR), Dec 2016, Cancun, Mexico. IEEE, 2016, 〈http://www.icpr2016.org/site/〉. 〈hal-01435197〉

Partager

Métriques

Consultations de la notice

322

Téléchargements de fichiers

117