P. G. Tucker and J. R. Debonis, Aerodynamics, computers and the environment, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol.372, issue.2022, 2014.
DOI : 10.1098/rsta.2013.0320

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4095904

S. Chen and G. D. Doolen, LATTICE BOLTZMANN METHOD FOR FLUID FLOWS, Annual Review of Fluid Mechanics, vol.30, issue.1, pp.329-364, 1998.
DOI : 10.1146/annurev.fluid.30.1.329

S. Succi, The Lattice Boltzmann Equation: For Fluid Dynamics and Beyond, Numer. Math. Sci. Comput, 2001.

P. Lallemand and L. Luo, Theory of the lattice Boltzmann method: Dispersion, dissipation, isotropy, Galilean invariance, and stability, Physical Review E, vol.61, issue.6, pp.61-6546, 2000.
DOI : 10.1103/PhysRevE.61.6546

J. M. Buick, C. A. Greated, and D. M. Campbell, Lattice BGK simulation of sound waves, Europhysics Letters (EPL), vol.43, issue.3, 1998.
DOI : 10.1209/epl/i1998-00346-7

URL : https://hal.archives-ouvertes.fr/hal-00475067

S. Marié, D. Ricot, and P. Sagaut, Comparison between lattice Boltzmann method and Navier???Stokes high order schemes for computational aeroacoustics, Journal of Computational Physics, vol.228, issue.4, pp.1056-1070, 2009.
DOI : 10.1016/j.jcp.2008.10.021

V. Heuveline, M. J. Krause, and J. Latt, Towards a hybrid parallelization of lattice Boltzmann methods, Mesoscopic methods in engineering and science, pp.1071-1080, 2009.
DOI : 10.1016/j.camwa.2009.04.001

D. J. Bodony, Analysis of sponge zones for computational fluid mechanics, Journal of Computational Physics, vol.212, issue.2, pp.681-702, 2006.
DOI : 10.1016/j.jcp.2005.07.014

M. Israeli and S. A. Orszag, Approximation of radiation boundary conditions, Journal of Computational Physics, vol.41, issue.1, pp.115-135, 1981.
DOI : 10.1016/0021-9991(81)90082-6

T. Poinsot and S. Lele, Boundary conditions for direct simulations of compressible viscous flows, Journal of Computational Physics, vol.101, issue.1, pp.104-129, 1992.
DOI : 10.1016/0021-9991(92)90046-2

C. S. Yoo, Y. Wang, A. Trouvé, and H. G. Im, Characteristic boundary conditions for direct simulations of turbulent counterflow flames, Combustion Theory and Modelling, vol.27, issue.4, pp.617-646, 2005.
DOI : 10.1016/S0010-2180(01)00261-9

G. Lodato, P. Domingo, and L. Vervisch, Three-dimensional boundary conditions for direct and large-eddy simulation of compressible viscous flows, Journal of Computational Physics, vol.227, issue.10, pp.5105-5143, 2008.
DOI : 10.1016/j.jcp.2008.01.038

S. Izquierdo and N. Fueyo, Characteristic nonreflecting boundary conditions for open boundaries in lattice Boltzmann methods, Physical Review E, vol.78, issue.4, p.46707, 2008.
DOI : 10.1103/PhysRevE.78.046707

URL : http://hdl.handle.net/10261/47273

I. Ginzburg, F. Verhaeghe, and D. , Humieres, Two-relaxation-time lattice Boltzmann scheme: about parametrization, velocity, pressure and mixed boundary conditions, Commun. Comput. Phys, vol.3, pp.427-478, 2008.

N. Jung, H. W. Seo, and C. S. Yoo, Two-dimensional characteristic boundary conditions for open boundaries in the lattice Boltzmann methods, Journal of Computational Physics, vol.302, pp.191-199, 2015.
DOI : 10.1016/j.jcp.2015.08.044

D. Heubes, A. Bartel, and M. Ehrhardt, Characteristic boundary conditions in the lattice Boltzmann method for fluid and gas dynamics, Journal of Computational and Applied Mathematics, vol.262, pp.51-61, 2014.
DOI : 10.1016/j.cam.2013.09.019

M. B. Schlaffer, J. Latt, B. Chopard, O. Malaspinas, M. Deville et al., He, On pressure and velocity boundary conditions for the lattice Boltzmann BGK model Straight velocity boundaries in the lattice Boltzmann method Lattice Boltzmann method with regularized pre-collision distribution functions, Non-reflecting boundary conditions for the lattice Boltzmann method Malaspinas, Increasing stability and accuracy of the lattice Boltzmann scheme: recursivity and regularization24] P.L. Bhatnagar, E.P. Gross, M. Krook, A model for collision processes in gases. I. Small amplitude processes in charged and neutral one-component systems, pp.1591-1598, 1954.

Y. H. Qian, D. D-'humières, and P. Lallemand, Lattice BGK Models for Navier-Stokes Equation, Lattice BGK models for Navier?Stokes equation, p.479, 1992.
DOI : 10.1209/0295-5075/17/6/001

S. Chapman and T. Cowling, The Mathematical Theory of Non-Uniform Gases, Thermal Conduction, and Diffusion in Gases, 1952.
DOI : 10.1119/1.1942035

O. Malaspinas, B. Chopard, and J. Latt, General regularized boundary condition for multi-speed lattice Boltzmann models, Computers & Fluids, vol.49, issue.1, pp.29-35, 2011.
DOI : 10.1016/j.compfluid.2011.04.010

C. S. Yoo and H. G. Im, Characteristic boundary conditions for simulations of compressible reacting flows with multi-dimensional, viscous and reaction effects, Combustion Theory and Modelling, vol.2, issue.2, pp.259-286, 2007.
DOI : 10.1146/annurev.fluid.36.050802.121930

E. Albin, Y. D. Angelo, and L. Vervisch, Flow streamline based Navier???Stokes Characteristic Boundary Conditions: Modeling for transverse and corner outflows, Computers & Fluids, vol.51, issue.1, pp.115-126, 2011.
DOI : 10.1016/j.compfluid.2011.08.005

URL : https://hal.archives-ouvertes.fr/hal-00967141

P. C. Philippi, L. A. Hegele, L. O. Santos, and R. Surmas, From the continuous to the lattice Boltzmann equation: The discretization problem and thermal models, Physical Review E, vol.73, issue.5, p.56702, 2006.
DOI : 10.1103/PhysRevE.73.056702

Z. Guo, C. Zheng, B. Shi, and T. S. Zhao, Thermal lattice Boltzmann equation for low Mach number flows: Decoupling model, Physical Review E, vol.75, issue.3, 2007.
DOI : 10.1103/PhysRevE.75.036704

C. S. Yoo and H. G. Im, Characteristic boundary conditions for simulations of compressible reacting flows with multi-dimensional, viscous and reaction effects, Combustion Theory and Modelling, vol.2, issue.2, pp.259-286, 2007.
DOI : 10.1146/annurev.fluid.36.050802.121930