Skip to Main content Skip to Navigation
Journal articles

Regularized characteristic boundary condition for the Lattice Boltzmann methods at high Reynolds number flows

Abstract : This paper reports the investigations done to adapt the Characteristic Boundary Conditions (CBC) to the Lattice-Boltzmann formalism for high Reynolds number applications. Three CBC formalisms are implemented and tested in an open source LBM code: the baseline one-dimension inviscid (BL-LODI) approach, its extension including the effects of the transverse terms (CBC-2D) and a local streamline approach in which the problem is reformulated in the incident wave framework (LS-LODI). Then all implementations of the CBC methods are tested for a variety of test cases, ranging from canonical problems (such as 2D plane and spherical waves and 2D vortices) to a 2D NACA profile at high Reynolds number (Re = 100,000), representative of aeronautic applications. The LS-LODI approach provides the best results for pure acoustics waves (plane and spherical waves). However, it is not well suited to the outflow of a convected vortex for which the CBC-2D associated with a relaxation on density and transverse waves provides the best results. As regards numerical stability, a regularized adaptation is necessary to increase the Reynolds number. The so-called regularized FD adaptation, a modified regularized approach where the off-equilibrium part of the stress tensor is computed thanks to a finite difference scheme, is the only tested adaptation that can handle the high Reynolds computation.
Complete list of metadatas

Cited literature [25 references]  Display  Hide  Download
Contributor : Open Archive Toulouse Archive Ouverte (oatao) <>
Submitted on : Friday, January 13, 2017 - 1:56:54 PM
Last modification on : Thursday, February 7, 2019 - 4:52:10 PM
Document(s) archivé(s) le : Friday, April 14, 2017 - 8:16:50 PM


Files produced by the author(s)




Gauthier Wissocq, Nicolas Gourdain, Orestis Malaspinas, Alexandre Eyssartier. Regularized characteristic boundary condition for the Lattice Boltzmann methods at high Reynolds number flows. Journal of Computational Physics, Elsevier, 2017, vol. 331, pp. 1-18. ⟨10.1016/⟩. ⟨hal-01434788⟩



Record views


Files downloads