
HAL Id: hal-01434027
https://hal.science/hal-01434027

Submitted on 13 Jan 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

The QAT: A Qualitative Algebra Toolkit
Jean-François Condotta, Gérard Ligozat, Mahmoud Saade

To cite this version:
Jean-François Condotta, Gérard Ligozat, Mahmoud Saade. The QAT: A Qualitative Algebra Toolkit.
2nd IEEE International Conference on Information Technologies , Apr 2006, Damascus, Syria. pp.3433
- 3438, �10.1109/ICTTA.2006.1684969�. �hal-01434027�

https://hal.science/hal-01434027
https://hal.archives-ouvertes.fr

The QAT: A Qualitative Algebra Toolkit

Jean-François Condotta1 Gérard Ligozat2 Mahmoud Saade1

1 CRIL-CNRS, Université d’Artois, 62307 Lens Cedex, France
2 LIMSI-CNRS, Université d’Orsay, 91403 Orsay, France

ligozat@limsi.fr, {condotta, saade}@cril.univ-artois.fr

Abstract

Representing and reasoning about spatial and tem-
poral information is an important task in many ap-
plications of Artificial Intelligence. In the past two
decades numerous formalisms have been proposed for
representing and reasoning about time and space us-
ing qualitative constraints. In the first part of this
paper we propose and study a general definition of
such formalisms by considering calculi based on ba-
sic relations of an arbitrary arity. In a second part
we describe the QAT (Qualitative Algebra Toolkit),
a JAVA constraint programming library allowing to
handle constraint networks based on those qualitative
calculi. The main motivation of this work stems from
the fact that most software tools dealing with qualita-
tive calculi have only been implemented for specific
qualitative calculi.

1. Introduction

A number of qualitative constraint calculi have
been developed in the past two decades or so in order
to represent and reason about temporal and spatial
configurations. Representing and reasoning about
spatial and temporal information is an important
task in many applications, such as geographic infor-
mation systems (GIS), natural language understand-
ing, robot navigation, temporal and spatial planning.
Qualitative spatial and temporal reasoning aims to
describe non-numerical relationships between spatial
or temporal entities. Typically a qualitative calculus
[1], [19], [14], [18], [11] uses some particular kind of
spatial or temporal objects (subsets in a topological
space, points on the rational line, intervals on the ra-
tional line,...) to represent the spatial or temporal
entities of the system, and focuses on a limited range
of relations between these objects (such as topological
relations between regions or precedence between time
points). Each of these relations refers to a particu-
lar temporal or spatial configuration. For instance,
consider the well-known temporal qualitative formal-
ism called Allen’s calculus [1]. It uses intervals of the
rational line for representing temporal entities. Thir-
teen basic relations between these intervals are used
to represent the qualitative situation between tem-
poral entities (see Figure 1). For example, the basic
relation overlaps can be used to represent the situ-
ation where a first temporal activity starts before a
second activity and terminates while the latter is still
active. The thirteen basic relations are JEPD (jointly
exhaustive and pairwise disjoint), which means that
each pair of intervals satisfies exactly one basic rela-
tion.

Now the temporal or spatial information about the
configuration of a specific set of entities can be repre-
sented using a particular kind of constraint networks
called qualitative constraint networks (QCNs). Each
constraint of a QCN represents a set of acceptable
qualitative configurations between some temporal or
spatial entities and is defined by a set of basic rela-
tions. The consistency problem for QCNs consists in
deciding whether a given network has instantiations
satisfying the constraints. In order to solve it, meth-
ods based on local constraint propagation algorithms
have been defined, in particular methods based on
various versions of the path consistency algorithm
[17], [16].
All existing qualitative calculi share the same struc-
ture, but, to our knowledge, implementations and
software tools have only been developed for individual
calculi. The QAT (Qualitative Algebra Toolkit) has
been conceived as a remedy to this situation. Specifi-
cally, the QAT is a JAVA constraint programming li-
brary developed at CRIL-CNRS at the University of
Artois. It aims to provide open and generic tools for
defining and manipulating qualitative algebras and
qualitative networks based on these algebras.
This paper is organized as follows. In Section 2,
we propose a formal definition of a qualitative cal-
culus. This definition is very general and it covers
formalisms based on basic relations of an arbitrary
arity. Section 3 is devoted to qualitative constraint
networks. Section 4 discusses the ◦-closure method.
After introducing the QAT library in Section 5, we
conclude in Section 6.

2.What is a Qualitative Calculus ?

2.1.Relations

In this section, we give a general definition of a
qualitative calculus. A qualitative calculus of arity n

(with n > 1) considers a finite set B of k relations
of arity n defined on a domain D (generally infinite).
These relations are called basic relations. The ele-
ments of D are the possible values to represent the
temporal or spatial entities. The basic relations of
B correspond to all possible configurations between
n temporal or spatial entities. The relations of B
are JEPD (jointly exhaustive and pairwise distinct),
which means that any n-tuple of elements of D be-
longs to exactly one basic relation in B. More for-
mally, we have Bi ∩ Bj = ∅, for all i, j ∈ {1, . . . , k}
such that i 6= j and U =

⋃
i∈{1,...,k} Bi, with U the set

of elements of Dn. Given an element x belonging to
U and an integer i ∈ {1, . . . , n}, xi will denote the el-
ement of D corresponding to the ith component of x.

The setA is defined as the set of relations correspond-
ing to all unions of the basic relations. Formally, it
is defined by A = {

⋃
B : B ⊆ B}. It is customary to

represent an element B1 ∪ . . . ∪Bm (with 0 ≤ m ≤ k

and Bi ∈ B for each i such that 1 ≤ i ≤ m) of A
by the set {B1, . . . , Bm} belonging to 2B. In view
of this fact, we make no distinction between A and
2B in the sequel of this paper. Moreover, we assume
that for all i, j ∈ {1, . . . , n} such that i < j, there
exists some relation in A, denoted by ∆ij , such that
∆ij = {x ∈ U : xi = xj}. Note that in the binary
case ∆12 is the identity relation on D, which in many
cases is a basic relation in B.
As an example, consider the well known temporal
qualitative formalism called Allen’s calculus [1]. It
uses intervals of the rational line for representing
temporal entities. Hence D is the set {(x−, x+) ∈
Q×Q : x− < x+}. The set of basic relations con-
sists in a set of thirteen binary relations correspond-
ing to all possible configurations of two intervals.
These basic relations are depicted in Figure 1. Here
we have B = {eq, b, bi, m, mi, o, oi, s, si, d, di, f, fi}.
Each basic relation can be formally defined in terms
of the endpoints of the intervals involved; for instance,
m = {((x−, x+), (y−, y+)) ∈ D × D : x+ = y−}. The
set {b, m} ∈ 2B corresponds to the relation b ∪ m

of A. Moreover, we have ∆1,2 = {eq}. As a sec-

Relation

precedes

meets

overlaps

starts

during

finishes

equals

Meaning

b

m

o

s

d

f

eq

Inverse

bi

mi

oi

si

di

fi

eq

X

X
Y

X

X

X

X

Y

Y

Y

Y

Y

X

Y

Symbol

Figure 1.The basic relations of the Allen’s calculus.

ond example, consider a qualitative calculus based
on ternary basic relations, namely the cyclic point
algebra [11], [5]. The entities considered by this cal-
culus are the points on an oriented circle C. We call
these points cyclic points. Each cyclic point can be
characterised by a rational number in the interval
[0, 360[. This number corresponds to the measure of
the arc from a fixed origin to the point considered.
Hence, for this calculus D is the set of the rational
numbers {q ∈ Q : 0 ≤ q < 360}. In the sequel
we assimilate a cyclic point to the rational number
representing it. Given two cyclic points x, y ∈ D,
[[x, y]] will denote the set of values of D correspond-
ing to the cyclic points encountered between x and

"!

xqyq
z q

	+

"!

xqyq zq	+

"!

xqyz q 	+

Babc(x,y,z) Bacb(x,y,z) Baab(x,y,z)

"!

xq yq
z

	+

"!

xqyq
z

	+

"!

x q yz
	+

Bbaa(x, y, z) Baba(x, y, z) Baaa(x, y, z)

Figure 2.The basic relations of the cyclic point algebra.

y when moving on the circle counter-clockwise. The
basic relations of this algebra are the 6 ternary re-
lations {Babc, Bacb, Baab, Bbaa, Baba, Baaa} defined as
follows: Babc = {(x, y, z) ∈ D3 : x 6= y, x 6= z, y 6= z

and y ∈ [[x, z]]}, Bacb = {(x, y, z) ∈ D3 : x 6=
y, x 6= z, y 6= z and z ∈ [[x, y]]}, Baab = {(x, x, y) ∈
D3 : x 6= y}, Bbaa = {(y, x, x) ∈ D3 : x 6= y},
Baba = {(x, y, x) ∈ D3 : x 6= y}, Baaa = {(x, x, x) ∈
D3}. These relations are depicted in Figure 2. We
have ∆12 = {Baaa, Baab}, ∆13 = {Baaa, Baba} and
∆23 = {Baaa, Bbaa}.

2.2. Fundamental operations

As a set of subsets, A is equipped with the usual
set-theoretic operations including intersection (∩)
and union (∪). As a set of relations, it is also
equipped with the permutation operation (#), the
rotation operation (y) and an operation of composi-
tion (◦). Specifically, given two relations r, s of arity
n, we define the permutation operation and the op-
eration of rotation in the following way :
• ∀x1, ..., xn, (x1, ..., xn, xn−1) ∈ r# iff (x1, ..., xn−1,

xn) ∈ r.
• ∀x1, ..., xn, (x2, ..., xn, x1) ∈ ry iff (x1, x2, ..., xn) ∈
r.
We assume that for each basic relation B ∈ B,
B# ∈ B and By ∈ B. Given a relation R ∈ 2B, we
have R# = {B# : B ∈ R} and Ry = {By : B ∈ R}.
Note that in the binary case the rotation operation
and the permutation operation are the same opera-
tion, namely, the transpose operation. Given n basic
relations B1, . . . , Bn ∈ B, their qualitative composi-
tion, denoted by ◦(B1, . . . , Bn) is the element of 2B

defined in the following way :
Let A ∈ B. Then A ∈ ◦(B1, . . . , Bn) iff ∃(x1, ..., xn) ∈
A and ∃u ∈ D such that (x1, . . . , xn−1, u) ∈ B1,

(x1, . . . , xn−2, u, xn) ∈ B2, . . . , (u, x2, . . . , xn) ∈ Bn.

Now if R1, . . . , Rn are n relations in 2B , we define
◦(R1, . . . , Rn) as {A : A ∈ ◦(B1, . . . , Bn) with B1 ∈
R1, . . . , Bn ∈ Rn. Computing the results of these
various operations for relations of 2B can be done ef-
ficiently by using tables giving the results of these
operations for the basic relations of B. For in-
stance, consider the relations R = {eq, b, o, si}
and S = {d, f, s} of Allen’s calculus, we have
Ry = R# = {eq, bi, oi, s}. The relation ◦(R, S)
is {d, f, s, b, o, m, eq, si, oi}. As an example for
the relations of the cyclic point calculus, if R =

{Babc, Baab, Baaa} we have Ry = {Babc, Baba, Baaa}
and R# = {Bacb, Baba, Baaa}.

3.Qualitative Constraint Networks

Qualitative constraint networks (QCNs in short)
are used to express information on a spatial or tem-
poral configuration between entities. A qualitative
constraint network consists of a set of variables and
a set of constraints. The set of variables represents
spatial or temporal entities of the system. A con-
straint consists of a set of acceptable basic relations
(the possible configurations) between some variables.
Formally, a qualitative constraint network is defined
in the following way:

Definition A QCN is a pair N = (V, C) where:
• V is a finite set of m variables where m is a positive
integer;
• C is a map which to each n-tuple (v1, . . . , vn) of V n

associates a subset C(v1, . . . , vn) of the set of basic
relations: C(v1, . . . , vn) ∈ 2B.

C(v1, . . . , vn) are the set of those basic relations
which are allowed for the relative locations between
the entities represented by the variables v1, . . . , vn.
Moreover, we assume that for all (v1, . . . , vn) ∈ V n

we have C(v1, . . . , vn−1, vn) = C(v1, . . . , vn, vn−1)
#,

C(v1, . . . , vn−1, vn) = C(vn, v1, . . . , vn−1)
y and, for

all 0 < i < j ≤ n, if vi = vj then C(v1, . . . , vn) ⊆
∆i,j . With regard to a QCN N = (V, C) we have the
following definitions :
• A partial solution of N on V ′ ⊆ V is a map
σ of V ′ to D such that (σ(v1), . . . , σ(vn)) satisfies
C(v1, . . . , vn), for all v1, . . . , vn ∈ V ′.
• A solution of N is a partial solution on V . N is
consistent if and only if it has a solution.
• A QCNN ′ = (V, C′) is a sub-QCN ofN (denoted by
N ′ ⊆ N) if and only if C′(v1, . . . , vn) ⊆ C(v1, . . . , vn)
for all v1, . . . , vn ∈ V .
• The restriction of N to V ′ ⊆ V is the QCN N ′ =
(V ′, C′) where C′(v1, . . . , vn) = C(v1, . . . , vn) for all
v1, . . . , vn ∈ V ′.
• A QCN N ′ = (V ′, C′) is equivalent to N if and
only if V = V ′ and both networks N and N ′ have
the same solutions.
• The minimal QCN of N is the smallest (for ⊆) sub-
QCN of N equivalent to N .
• An atomic QCN is a QCN such that each
C(v1, . . . , vn) contains just one basic relation.
• A consistent scenario of N is a consistent atomic
sub-QCN of N .

Given a QCN N , the main problems to be considered
are the following:
• decide whether there exists a solution of N ;
• find one or several solutions of N ;
• find one or several consistent scenarios of N ;
• determine the minimal QCN of N .
Most of the algorithms used for solving these prob-
lems are based on a method which we call the ◦-
closure method. The next section is devoted to this
method.

4.The ◦-closure method

The ◦-closure method is a constraint propaga-
tion method allowing to enforce the (0, (n + 1))-
consistency of a QCN N = (V, C), which means
that all restrictions of N to (n + 1)-variables
are consistent. Note that we do not always
obtain the (n + 1)-consistency. The ◦-closure
method consists in iteratively performing the fol-
lowing operation: C(v1, . . . , vn) := C(v1, . . . , vn) ∩
◦(C(v1, . . . , vn−1, vn+1), C(v1, . . . , vn−2, vn+1, vn), . . . ,
C(vn+1, v2, . . . , vn)), for all (n+1) variables v1, . . . , vn+1

of V , until a fixed point is reached. The
QCN obtained in this way is a sub-QCN of
N which is equivalent to it, and such that
C(v1, . . . , vn) ⊆ ◦(C(v1, . . . , vn−1, vn+1), C(v1, . . . ,

vn−2, vn+1, vn), . . . , C(vn+1, v2, . . . , vn)) for all v1, . . . ,

vn+1 of V . This latter property is expressed by saying
that this sub-network is ◦-closed. For some particular
qualitative calculi this property is equivalent to the
path-consistency property [15]. In the case where the
QCN obtained in this way contains the empty relation
as a constraint, we can assert that the initial QCN is
not consistent. However, if it does not, we cannot in
the general case infer the consistency of the network.
There are two well known algorithms in the literature
for enforcing the path-consistency of discrete CSPs
[15], [17], namely the PC1 and the PC2 algorithms.
These algorithms have been adapted on several occa-
sions to the binary qualitative case in order to enforce
◦-closure [2], [21], [13], [8], [10]. A possible adapta-
tion of PC1 to the n-airy case is the function PC1n

defined in Algorithm 1. As for the function PC2n

defined in Algorithm 2, it is inspired by PC2. The
time complexity of PC1n is O(m2n+1), whereas the
time complexity of PC2n is O(mn+1). Despite this
fact, PC2n can perform worse than PC1n. This is
mainly due to the fact that PC2n must make an ex-
pensive initialization of the queue Q (line 2). This
step can take more time than the subsequent pro-
cessing of the elements of the queue, in particular
for inconsistent QCNs. This is why we introduce the
function PCMixed (see Algorithm 3) to remedy this
drawback. Roughly, PCMixed realizes a first step cor-
responding to a first loop of PC1n and then continues
in the manner of PC2n. To close this section, re-
mark that PC2n and PCMixed can be dramatically
improved by using heuristics for the selection of the
path to be treated (line 3 and line 10). For instance,
we can select first the paths containing constraints
with the smallest cardinalities (see [9]).

5.The Qualitative Algebra Toolkit
(QAT)

Clearly, all existing qualitative calculi share the
same structure, but, at least to our knowledge, im-
plementations and software tools have only been de-
veloped for individual calculi. The QAT (Qualita-
tive Algebra Toolkit) has been conceived as a remedy
to this situation. Specifically, the QAT is a JAVA
constraint programming library developed at CRIL-
CNRS at the University of Artois. It aims to pro-

Algorithm 1

Function PC1n(N), with N = ({v1, . . . , vm}, C).
1: repeat

2: change← false

3: for j ← 1 to m do

4: for i1 ← 1 to m do

5: . . .
6: for in ← 1 to m do

7: if revise(i1, ..., in, j) then

8: if C(vi1 , ..., vin
) = ∅ then return false

9: else change← true

10: until not change

11: return true

Function revise(i1, ..., in, j).
1: R← C(vi1 , . . . , vin

) ∩ ◦(C(vi1 , . . . , vin−1
, vj),

2: C(vi1 , . . . , vin−2
, vj , in), . . . , C(vj , vi2 , . . . , vin

))
3: if C(vi1 , ..., vin

) ⊆ R then return false

4: C(vi1 , ..., vin
)← R

5: updateRelations(C(vi1 , ..., vin
))

6: return true

Algorithm 2

Function PC2n(N), with N = ({v1, . . . , vm}, C).
1: Q←

⋃
0<i1,...,in≤m relatedPaths(i1, ..., in)

2: while Q 6= ∅ do

3: select and delete a path (i1, ..., in+1) from Q

4: if revise(i1, ..., in+1) then

5: if C(vi1 , ..., vin
) = ∅ then return false

6: else Q← Q
⋃

relatedPaths(i1, ..., in)
7: return true

Function relatedPaths(i1, ..., in).
1: Q← ∅
2: for j ← 1 to n do

3: for k ← 1 to m do

4: Q← Q
⋃
{(i1, ..., ij−1, k, ij+1, ..., in, ij)}

5: return Q

vide open and generic tools for defining and manipu-
lating qualitative algebras and qualitative constraint
networks based on these algebras. The core of the
QAT contains three main packages. In the sequel of
this section we are going to present each one of those
packages.

5.1. The Algebra package

The first package deals with the algebraic aspects
of the qualitative calculi. While programs proposed
in the literature for using qualitative formalisms are
ad hoc implementations for specific algebras and for
specific solving methods, the QAT allows the user to
define arbitrary qualitative algebras (including non-
binary algebras) using a simple XML file. This XML
file, which respects a specific DTD, contains the defi-
nitions of the different elements forming the algebraic
structure of the qualitative calculus: the set of basic
relations, the diagonal elements, the table of rotation,
the table of permutation and the table of qualitative
composition. We defined this XML file for many qual-
itative calculi of the literature: the interval algebra

Algorithm 3

Function PCMixed(N), with N = ({v1, . . . , vm}, C).
1: Q← ∅
2: for j ← 1 to m do

3: for i1 ← 1 to m do

4: . . .
5: for in ← 1 to m do

6: if revise(i1, ..., in, j) then

7: if C(vi1 , ..., vin
, vj) = ∅ then return false

8: else Q← Q
⋃

relatedPaths(i1, ..., in)
9: while Q 6= ∅ do

10: select and delete a path (i1, ..., in, j) from Q

11: if revise(i1, ..., in, j) then

12: if C(vi1 , ..., vin
) = ∅ then return false

13: else Q← Q
⋃

relatedPaths(i1, ..., in)
14: return true

minimality methods
found solution methods

...

qualitative algebras

relationsAlgebra

QCN

Solver

heuristics
...

network iterators

constraint iterators

QCN generation

constraints

constraints networks

...

propagation methods (PC1n,PC2n)

consistency methods

Figure 3.The three main packages of QAT.

[1], the point algebra [21], the cyclic point algebra [5],
the cyclic interval algebra [4], the rectangle algebra
[6], the INDU algebra [18], the multidimensional al-
gebra [7], the RCC-5 algebra [19], the RCC-8 algebra
[19], the cardinal direction algebra [14]). Tools allow-
ing to define a qualitative algebra as the Cartesian
product of other qualitative algebras are also avail-
able. This package also contains a class allowing to
define and to manipulate relations of qualitative al-
gebras. Since most of the qualitative algebras used
in the literature are based on relations of arity 2, we
have particularized this class to a class allowing a spe-
cific treatment of relations of arity 2. More generally,
a number of generic classes defined in the QAT have
been specialized for relations of arity 2, in order to
provide more efficient methods for calculi of arity 2.

5.2. The QCN package

This package contains tools for defining and manip-
ulating qualitative constraint networks on arbitrary
qualitative algebras. As for the algebraic structure,
a specific DTD allows the use of XML files for spec-
ifying QCNs. The XML file lists the variables and
relations defining the qualitative constraints. Func-
tionalities are provided for accessing and modifying
the variables of a QCN, its constraints and the ba-
sic relations they contain. For instance, we define
classes corresponding to iterators for accessing the
constraints of a QCN, or for accessing the basic re-
lations of a constraint meeting specific criteria. Part
of the QCN package is devoted to the generation of
random instances of QCNs. A large amount of the re-
search about qualitative calculi consists in the elab-
oration of new algorithms to solve QCNs. The effi-
ciency of these algorithms must be validated by ex-
perimentations on instances of QCNs. Unfortunately,
in the general case there does not exist instances pro-
vided by real world problems. Hence, the generation
of random instances is a necessary task [9]. The QCN

package of the QAT provides generic models allowing
to generate random instances of QCNs for any quali-
tative calculus.

5.3. The Solver package

This package contains numerous methods to solve
the main problems of interest when dealing with qual-
itative constraint networks, namely the consistency
problem, the problem of finding one or all solutions,
and the minimal network problem. All these meth-
ods are generic and can be applied to QCNs based
on arbitrary qualitative calculi. They make use of
the algebraic aspect of the calculus without consid-
ering the semantics of the basic relations. In other
words, they make abstraction of the definitions of the
basic relations and only manipulate the symbols cor-
responding to these relations. Nevertheless, by using
the object-oriented concept, it is very easy to par-
ticularize a solving method to a specific qualitative
algebra or a particular kind of relations. We imple-
mented most of the usual solving methods, such as the
standard generate and test methods, search methods
based on backtrack and forward checking, and local
constraint propagation methods. The user can con-
figure these different methods by choosing among a
range of heuristics. These heuristics are related to
the choice of the variables or the constraints to be
scanned, and of the basic relations to be considered
in a constraint during a search. The order in which
the constraints are selected and the order in which the
basic relations of the selected constraint are examined
can greatly affect the performance of a backtracking
algorithm [9]. The idea behind constraint ordering
heuristics is to instantiate the more restrictive con-
straints first. The idea behind the value ordering of
basic relations is to order the basic relations of the
constraints so that the value that most likely leads to
a solution is the first one to be selected. The QAT
allows the user to implement new heuristics based

on existing heuristics. As for local constraint prop-
agation methods, whereas in discrete CSPs arc con-
sistency is widely used [3], the ◦-closure method is
the most efficient and most frequently used of con-
straint propagation methods in the domain of qual-
itative constraints. More exactly, the methods used
are based on local constraint propagation based on
qualitative composition, in the manner of the PC1n

algorithm and the PC2n algorithm described in the
previous section.

5.4.Additional packages

In addition to these three main packages, the QAT
contains other less fundamental and more applicative
packages. We can mention the Campaign package
which implements tools to realize benchmarks to eval-
uate new solving methods or new heuristics. As an
illustration, we can also mention the Merging package
which contains classes allowing to merge the temporal
or spatial information represented by several QCNs,
similarly to the merging operations used for proposi-
tional knowledge bases [20], [12].

6.Conclusions

In this paper we proposed and studied a general
formal definition of qualitative calculi based on basic
relations of any arity. This unifying definition allows
us to capture the algebraic structure of all qualita-
tive calculi in the literature. The main elements of
the algebraic structure are diagonal elements, and
the operations of permutation, rotation and quali-
tative composition. In a second part we described
the QAT (Qualitative Algebra Toolkit), a JAVA con-
straint programming library allowing to handle con-
straint networks defined on arbitrary n-ary quali-
tative calculi. This toolkit provides algorithms for
solving the consistency problem and related prob-
lems, as well as most of the heuristics used in the
domain. Since the QAT is implemented using the
object oriented technology, it is an open platform,
and its functionalities are easily extendable. New
heuristics (resp. methods) can be defined and tested.
Among the tools it provides are classes allowing to
generate and to use benchmarks of qualitative net-
works. Hence new heuristics or new solving algo-
rithms can be conveniently evaluated. The documen-
tation and the source of the QAT library can be found
at http://www.cril.univ-artois.fr/~saade/QAT.

7.References

[1] J. F. Allen. An interval-based representation of
temporal knowledge. In Proc. of the Seventh
Int. Joint Conf. on Artificial Intelligence (IJ-
CAI’81), pages 221–226, 1981.

[2] J. F. Allen. Maintaining Knowledge about Tem-
poral Intervals. Communications of the ACM,
26(11):832–843, 1983.

[3] K. R. Apt. Principles of Constraint Program-
ming. Cambridge University Press, 2003.

[4] P. Balbiani and A. Osmani. A model for rea-
soning about topologic relations between cyclic

intervals. In Proceedings of the Seventh Inter-
national Conference on Principles of Knowledge
Representation and Reasoning (KR’00), 2000.

[5] P. Balbiani, J.-F. Condotta, and G. Ligozat.
Reasoning about cyclic space: Axiomatic and
computational aspects. In Proceedings of Spa-
tial Cognition 2003, LNCS 2685, pages 348–371,
2003.

[6] P. Balbiani, J.-F. Condotta, and L. Fariñas del
Cerro. A new tractable subclass of the rectangle
algebra. In T. Dean, editor, Proceedings of the
Sixteenth International Joint Conference on Ar-
tificial Intelligence (IJCAI’99), pages 442–447,
1999.

[7] P. Balbiani, J.-F. Condotta, and L. Fariñas del
Cerro. Spatial reasoning about points in a mul-
tidimensional setting. In Proceedings of the
workshop on temporal and spatial reasoning (IJ-
CAI’99), pages 105–113, 1999.

[8] P. van Beek. Reasoning About Qualitative Tem-
poral Information. Artificial Intelligence, 58(1-
3):297–326, 1992.

[9] P. van Beek and D. W. Manchak. The design
and experimental analysis of algorithms for tem-
poral reasoning. Journal of Artificial Intelligence
Research, 4:1–18, 1996.

[10] C. Bessière. A Simple Way to Improve Path
Consistency Processing in Interval Algebra Net-
works. In Proceedings of the Thirteenth National
Conference on Artificial Intelligence (AAAI’96),
volume 1, pages 375–380, 1996.

[11] A. Isli and A. G. Cohn. A new approach to
cyclic ordering of 2D orientations using ternary
relation algebras. Artificial Intelligence, 122(1–
2):137–187, 2000.

[12] S. Konieczny and R. Pino Pérez. On the logic
of merging. In Proceedings of the Sixth Inter-
national Conference on Principles of Knowledge
Representation and Reasoning (KR’98), Trento,
pages 488–498, 1998.

[13] P. B. Ladkin and A. Reinefeld. Effective solu-
tion of qualitative interval constraint problems.
Artificial Intelligence, 57(1):105–124, 1992.

[14] G. Ligozat. Reasoning about cardinal direc-
tions. Journal of Visual Languages and Com-
puting, 1(9):23–44, 1998.

[15] A. K. Mackworth. Consistency in networks of
relations. Artificial Intelligence, 1977, 8:99–118,
1977.

[16] A. K. Mackworth and E. C. Freuder. The
Complexity of Some Polynomial Network Con-
sistency Algorithms for Constraint Satisfaction
Problem. Artificial Intelligence, 25(1):65–74,
1985.

[17] U. Montanari. Networks of constraints: Fun-
damental properties and application to picture
processing. Information Sciences, 7(2):95–132,
1974.

[18] A. K. Pujari, G. Vijaya Kumari, and A. Sat-
tar. INDU: An interval and duration network.

In Australian Joint Conference on Artificial In-
telligence, pages 291–303, 1999.

[19] D. A. Randell, Z. Cui, and A. G. Cohn. A spatial
logic based on regions and connection. In Proc.
of the 3rd Conf. on Principles of Knowledge Rep-
resentation and Reasoning (KR’92), pages 165–
176, 1992.

[20] P. Z. Revesz. On the semantics of theory change:
arbitration between old and new information. In
12th ACM SIGACT-SIGMOD-SIGART Sympo-
sium on Principles of Databases, pages 71–92,
1993.

[21] M. Vilain and H. Kautz. Constraint Propagation
Algorithms for Temporal Reasoning. In Proc.
of the Fifth Nat. Conf. on Art. Int. (AAAI’86),
pages 377–382, 1986.

