
HAL Id: hal-01433069
https://hal.science/hal-01433069

Submitted on 12 Mar 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

On the usefulness of ownership metrics in open-source
software projects

Matthieu Foucault, Cédric Teyton, David Lo, Xavier Blanc, Jean-Rémy Falleri

To cite this version:
Matthieu Foucault, Cédric Teyton, David Lo, Xavier Blanc, Jean-Rémy Falleri. On the usefulness of
ownership metrics in open-source software projects. Information and Software Technology, 2015, 64,
pp.102-112. �10.1016/j.infsof.2015.01.013�. �hal-01433069�

https://hal.science/hal-01433069
https://hal.archives-ouvertes.fr

On the Usefulness of Ownership Metrics in Open-Source Software Projects

Matthieu Foucaulta, Cédric Teytona, David Lob, Xavier Blanca, Jean-Rémy Falleria

a University of Bordeaux
LaBRI, UMR 5800

F-33400, Talence, France
{mfoucaul,cteyton,xblanc,falleri}@labri.fr

bSchool of Information Systems
Singapore Management University

davidlo@smu.edu.sg

Abstract

Context: Code ownership metrics were recently defined in order to distinguish major and minor contributors
of a software module, and to assess whether the ownership of such a module is strong or shared between
developers. Objective: The relationship between these metrics and software quality was initially validated
on proprietary software projects. Our objective in this paper is to evaluate such relationship in open-source
software projects, and to compare these metrics to other code and process metrics. Method: On a newly
crafted dataset of seven open-source software projects, we perform, using inferential statistics, an analysis
of code ownership metrics and their relationship with software quality. Results: We confirm the existence
of a relationship between code ownership and software quality, but the relative importance of ownership
metrics in multiple linear regression models is low compared to metrics such as the number of lines of code,
the number of modifications performed over the last release, or the number of developers of a module.
Conclusion: Although we do find a relationship between code ownership and software quality, the added
value of ownership metrics compared to other metrics is still to be proven.

Keywords: Software Engineering, Empirical Study, Process Metrics

1. Introduction

Process metrics, which measure developer’s ac-
tivity, were shown to have a strong relationship
with software quality and, to be more useful than
code metrics when it comes to defect prediction [1].
Among process metrics, the ones introduced by
Bird et al. that measure code ownership (CO) are
of a particular interest [2]. These metrics, called CO
metrics in this paper, quantify the level to which
developers own modules of a software project, by
measuring the ratio of contributions they make to
such modules. CO metrics split developers of a
module into two distinct groups: major and minor
developers, who perform more and less than 5% of
the contributions, respectively.

The usefulness of these metrics was validated on
Microsoft software projects, showing that they have
a strong relationship with the number of bugs of a
module, and that adding code ownership metrics to
a regression model (with the number of bugs as the

dependent variable) improves its quality [2]. Bird
et al. also observed that the more minor developers
contribute to a software module, the more bugs it
contains. A possible explanation comes from the
fact that minor developers have less knowledge of
the modules they contribute to, and therefore may
introduce more bugs. Moreover, Bird et al. also ob-
served that for a given software module two other
metrics are related to its number of bugs: the num-
ber of major developers, and the ratio of contribu-
tions preformed by the main developer of a module
to the total amount of contributions on such mod-
ule. Contrary to minor developers, major devel-
opers have more insight on the modules they con-
tribute to, and therefore may introduce less bugs.

Such a finding has two main consequences. First,
development team should be reorganized with the
objective to increase code ownership by limiting the
number of minor developers, or if it is not possible,
to have major developers reviewing the contribu-

Preprint submitted to Elsevier March 12, 2020

tions of the minor ones. Second, CO metrics should
be used when predicting the number of bugs of soft-
ware modules, as adding them to a model signifi-
cantly improves its quality.

As these results were observed solely on two Mi-
crosoft projects, we therefore replicated the Bird
et al. study but with open-source software sys-
tems [3]. However, our replication, made on seven
open-source Java software projects, did not yield
the same observations. In particular, we did not
observe any significant correlations between the CO
metrics and the number of post-release bugs. So
far, our replication was not complete as we only
observed Java open-source software projects.

We therefore propose in this paper a deeper study
that goes further and that aims to generally ques-
tion the usefulness of the CO metrics for open-
source software systems.

First of all, to overcome the limitation of our
previous study, we propose in this study a new
dataset of open-source software projects developed
in several programming languages. Another essen-
tial point strengthening the validity of our study
is the technique used to collect bug-related infor-
mation: based on previous research, we concluded
that automatic techniques developed to measure
the number of bugs per module are not accurate
nor precise enough [4, 5, 6], and therefore relied
only on manually crafted data.

Further, we push our investigation toward the rel-
ative importance of the CO metrics for estimating
the number of bugs. Our previous study only tries
to observe a correlation between CO metrics and
number of bugs, and does not investigate on the
importance of these metrics in a model accounting
for several variables. In this study we check their
relative importance as compared to metrics that are
frequently used to measure the quality of a soft-
ware module, using an automatic technique called
PMVD [7], which evaluates the importance of each
metric in a multiple linear regression model, with
the number of bugs as the dependent variable.

In comparison to our previous study, we therefore
propose the new following contributions:

• a completely new dataset that contains open-
source projects developed in different program-
ming languages, and manually crafted bug-
related data.

• new results of correlation between CO metrics
and post release bugs.

• an investigation on the relative importance of
CO metrics

This paper is structured as follows: Section 2
presents the foundations of code ownership and the
metrics related to it. Section 3 presents the detailed
methodology of our study, including the construc-
tion of the dataset. Section 4 presents the main re-
sults of our study which shows that the usefulness
of CO metrics is debatable in case of open-source
software systems. Section 5 presents the threats to
the validity of our study. Finally, Section 6 pro-
vides an overview of the related work and Section 7
concludes this paper.

2. Background and Theory

This section starts by presenting the code owner-
ship (CO) metrics that have been defined to mea-
sure to which extent developers own software mod-
ules.

2.1. Ownership Metrics

Before explaining how CO metrics are measured,
we need to define the model we use to represent a
software development project and define the perti-
nent concepts, such as software module and devel-
oper contribution.

We assume that a software project is composed of
a finite set of software modules that are developed
by a finite set of developers who submit their code
modifications by sending commits to a shared code
repository.

Each module is defined by a finite set of source
code files. When a developer modifies one of the
files of a software module by committing her work,
she is contributing to that module. The weight of
the contribution made by a developer to a given
module can be measured with different metrics.
Bird et al. [2] chose to measure it by counting the
number of files touched by the developer. For ex-
ample, if Alice contributes to a module by modify-
ing three files in a first commit and five files after-
wards, she is contributing with a weight of eight.
Another possibility is to measure the weight of a
developer contribution by counting the number of
line changes performed by the developer, also called
code churn [8].

In our formal definitions, we use D as the set
of developers that contribute to the project. For
a given module, we define wd as the weight of a
developer d.

2

CO metrics mainly measure the ratio of contribu-
tions made by one developer compared to the rest
of the team. More formally, for a given module, the
ownership of a developer d is:

ownd =
wd∑

d′∈D

(wd′)

Bird et al. [2] proposed three ownership-based
metrics that are computed for each software mod-
ule:

Most Valued Owner1 This score is the highest
value of the ratio of contributions performed
by all developers. More formally, for a given
software module, its Most valued owner value
(MVO) is

max({ownd | d ∈ D})

Minor This score counts how many developers
have a ratio of contributions that is lower than
5%. Such developers are considered to be mi-
nor contributors of the software module. More
formally, for a given software module, its Mi-
nor value is

|{0 < ownd ≤ 5% | d ∈ D}|

Major This score counts how many developers
have a ratio of contributions that is bigger than
5%. Such developers are considered to be ma-
jor contributors of the software module. More
formally, for a given software module, its Ma-
jor value is

|{ownd > 5% | d ∈ D}|

Bird et al. showed that varying the 5% thresh-
old used by the metrics Minor and Major to other
values from 2% to 10% did not impact the results
they obtained regarding the relationship between
code ownership and software quality.

2.2. Code Ownership and Software Quality

When the amount of developers of a software sys-
tem rises, work must be divided between contrib-
utors. Whether a shared or strong ownership is
preferable is a matter of debate where two theories

1This metric originally called ownership has been re-
named here for sake of clarity.

come face to face. On the one hand the XP move-
ment [9] and Raymond [10] advocate shared owner-
ship, and the latter introduced “Linus’ Law”, which
states that “given enough eyeballs, all bugs are shal-
low”, i.e., increasing the number of contributors ac-
celerates the detection and correction of bugs. On
the other hand Bird et al [2]. advocate for a strong
ownership, and aim to confirm the “too many cooks
spoil the broth” theory stating that when the num-
ber of developers increases, coordination in the de-
velopment efforts becomes too complex to ensure.
Further, both theories are backed by empirical find-
ings: Rahman and Devanbu [11], considered own-
ership at the level of individual lines of code, and
found that code implicated in bugs was strongly
associated to a single developer’s contribution.

In this paper we focus on the second theory, and
deeply investigate on the Bird et al. CO metrics.
As these metrics were only validated on Microsoft
software system, we here check their usefulness for
open-source software systems. Bird et al. validate
their claim by observing relationships between CO
metrics and Software Quality, which is measured by
counting the number of bugs. In particular, they
base their claim on the following hypotheses:

Most Valued Owner This metric measures the
highest percentage of contributions that a de-
veloper made to a software module. If the
MVO of a software module is close to 100%,
this means that one developer performed al-
most all the changes made to that module. If
the MVO is low that means that the greater
contributor makes few contributions and there-
fore that the module is shared between sev-
eral developers that all perform few contribu-
tions. A high value therefore reveals that the
software module has strong ownership while a
low value reveals that it has shared ownership.
Therefore, the impact of ownership on Soft-
ware Quality is formulated by the following hy-
pothesis:
HMVO: The MVO metric is negatively corre-
lated to the number of bugs.

Minor If there are lots of minor contributors, this
implicitly means that many contributions are
made by minor contributors and therefore the
software module is shared between many devel-
opers. Work is thus fragmented between many
developers with little knowledge of the mod-
ule they are working on, and therefore oversee-
ing all these contributions becomes an obsta-

3

cle. Thus, the impact of ownership on Software
Quality is formulated by the following hypoth-
esis:
Hminor: The Minor metric is positively corre-
lated to the number of bugs.

Major If there are lots of major contributors,
this means that they all perform a significant
amount of contributions and therefore that the
software module has a shared ownership, and
therefore that coordinating the work of devel-
opers is more difficult. Hence, the hypothesis
regarding the Major metric is:
HMajor: The Major metric is positively corre-
lated to the number of bugs.

Our objective is therefore to check these hypothe-
ses for open source system but also to detect the
relative importance of CO metrics, as it is clearly
expressed in the next section.

3. Design of the methodology

We design our methodology around the two fol-
lowing research questions:

RQ1 Does code ownership, measured via the CO
metrics MVO, Minor, and Major, have a re-
lationship with software modules quality, mea-
sured with their number of post-release bugs?

RQ2 If so, do these metrics provide an added value
(compared to other state-of-the-art metrics)
for predicting the number of post-release bugs
of a software module?

We propose to answering these two research ques-
tions using statistical inference on a dataset drawn
from open-source software projects. This section
then presents the methodology we designed to ob-
tain and to measure such a dataset. It presents the
corpus of software projects we used to perform our
study, the approach we defined for identifying soft-
ware modules within software projects, and how we
compute the different metrics. The computation of
the tests as well as their interpretation is presented
in the Section 4.

To ease the replication of our own study, the arti-
facts we used and the data we measured is available
online.2

3.1. Corpus of software projects

Performing our study requires a corpus of soft-
ware projects with clearly identified software mod-
ules, contributions made by developers to the mod-
ules, and, for each module, the number of bugs it
contains.

3.1.1. Reliability of Existing Datasets

Such a corpus is available in public datasets such
as the PROMISE repository [12], on which we re-
lied on in our previous study [3]. However, these
datasets have two main issues regarding the design
of our study.

First, they lack in clearly identifying authors
of commits. Most projects included in these
datasets use Subversion as a centralized version
control system (VCS), which is not adequate for
computing ownership metrics as Subversion does
not make any distinction between the author and
the committer of a change.3 This is an issue in
open-source projects hosted with centralized VCSs
such as Subversion, as only the developers hav-
ing “write” access to the repository appear as au-
thors. Other developers thus contribute by sending
patches, who are applied by the core developers of
the project [13]. Although techniques to retrieve
the submission and acceptance of such patches ex-
ist [14], this information is difficult to extract and
much reliable than the one provided by decentral-
ized VCSs such as Git.

Second, they lack in providing accurate bug-
related information. The state-of-the-art tech-
nique used in these datasets consists in parsing
the commit messages, looking for a bug identi-
fier in the bugtracker (e.g. ”Bug #42”) [15, 16].
This technique assumes that developers reference
bugs in commit messages, which is not always the
case [4, 5]. Therefore, there are probably many bugs
missing from the dataset. Moreover, Herzig et al.
showed that a large proportion of issues available in
bugtrackers are misclassified: many issues are clas-
sified as bugs although they are in fact features or
improvements [6]. As a consequence, there is prob-
ably a substantial amount of false bugs are in such
datasets.

3.1.2. Software Projects Selection Criteria

We therefore decide to build a new dataset ded-
icated to our study, and that covers these two is-

2http://se.labri.fr/data/articles/IST-2014
3http://subversion.apache.org/

4

http://se.labri.fr/data/articles/IST-2014
http://subversion.apache.org/

Table 1: The FLOSS projects included in our dataset.

Project Language Release Previous release #Commits #Modules #Bugfixes #LoC

Angular.js JavaScript 1.0.0 0.10.0 783 26 147 11,041
Ansible Python 1.5.0 1.4.0 1241 29 62 50,553
Jenkins Java 1.509 1.480 1341 60 74 79,774
JQuery Javascript 1.8.0 1.7.0 567 23 46 5,306

PHPUnit PHP 3.6.0 3.5.0 500 16 46 11,885
Rails Ruby 2.3.2 2.2.0 1072 46 390 33,919
Mono C# 2.10.0 2.8.0 2800 184 351 1,777,719

sues. Regarding the first issue, our dataset must
contain projects that use a VCS which is able to
make the distinction between the author and the
committer of a change. Regarding the second issue,
the bug-related information should be as accurate
as possible. In other words, only true bugs must be
included within it (no false positive).

Identification of authors. To cover the first con-
straint we simply choose to rely on Git that natively
distinguish authors from committers.4

Identification of Bugs. The second constraint is
much more complex to address. The objective is to
identify bug-fixing commits stored in a VCS with
the intent to be as precise as possible. We assume
that the number of bug-fixing commits is a fair rep-
resentation of the actual number of bugs within a
software module.

As we were not able to find an automatic ap-
proach which would not introduce a bias in our
study, we decided to manually analyze commits to
constitute our dataset. For instance, among the
best automatic approaches, the one developed by
Tian et al. has a precision of only 0.53 in the tested
project (the Linux kernel), which in our case would
increase the number of bug-fixing commits identi-
fied, and would be a bias to our study [17].

Our manual approach therefore aims to identify
commits that are true bugfixes. We choose to fo-
cus on post-release bugfixes, as it is the case for
the study of Bird et al. [2]. Identifying post-release
bug fixes can be eased by the development pro-
cess of a software project. In particular, in some
projects, a maintenance branch is created for each
release of a software. These maintenance branches
differ from development branches in the fact that

4http://git-scm.com/

they usually do not contain new features. Fur-
ther, the operations performed in such branches are
usually bug-fixing, documentation, optimizations,
or compatibility updates related to third party de-
pendencies (e.g., the 2.3.x maintenance branch of
Rails contains updates related to new versions of
the Ruby programming language). Therefore, to
ease our manual analysis, we choose to integrate in
our dataset only software projects where the cho-
sen release has a maintenance branch associated to
it. Moreover, we restrict our search to maintenance
branches where no commit was performed for the
past six months, in order to have branches where
most of the bugs were fixed.

Our definition of a bug-fixing commit includes
any semantic changes to the source code which fixes
an unwanted behavior. The type of bugs considered
includes any arithmetic or logic bug (e.g., division
by zero, infinite loops, etc.), resource bugs (e.g., null
pointer exceptions, buffer overflows, etc.), multi-
threading issues such as deadlocks or race condi-
tions, interfacing bugs (e.g., wrong usage of a par-
ticular API, incorrect protocol implementation or
assumptions of a particular platform, etc), security
vulnerabilities, as well as misunderstood require-
ments and design flaws.

Practically, the identification of bug-fixing com-
mits is performed manually, discarding commits
where new features are implemented. We choose
to ignore commits where performance optimizations
are performed, as we consider performance issues
as a different aspect of code quality. Moreover, we
also ignore commits that resolve compatibility is-
sues due to the evolution of a third-party depen-
dency (although, we consider OS or hardware com-
patibility issues as bug), as these bugfixes are not
due to the lack of quality of the changed code, but
to the modification of an external requirement. Fi-
nally, it occurs that bug-fixing commits are lated

5

http://git-scm.com/

discarded by the developers due to a regression in-
troduced by the bugfix. In such cases, the develop-
ers perform a “revert” operation of such commits,
and we ignore both the “revert” and the “reverted”
commits.

We consider that bug-fixing commits are atomic,
in the way that we do not consider the possibility
that a bug-fixing commit may in fact include two
bug-fixes. Moreover, if a bug-fixing commits affects
two modules, the number of bug-fixing commits will
be incremented in both modules.

3.1.3. Selected Corpus of Projects

According to these requirements, we manually
select seven open-source projects. These projects,
summarized in Table 1, are written in six different
programming languages: JavaScript, Java, PHP,
Python, Ruby and C#. The developers contribu-
tions we considered are the ones performed between
the “Release” and the “Previous Release” shown in
the table5. The “#Commits” column in the table
corresponds to the number of commits performed
between the two releases.

The main criterion for the choice of these releases,
besides the availability of a maintenance branch, is
the fact that Git was indeed the VCS used when
they were developed, as in many of the projects se-
lected here, the older part of the development his-
tory was done with Subversion, and then imported
to Git. The selected releases are minor releases (i.e.,
no breaking changes have been performed in the
selected development period) in Ansible, JQuery,
PHPUnit and Rails. They are major release in An-
gular.JS, Jenkins and Mono.

The selected releases are, with the exception of
the one in Ansible, considered to be long term sup-
ported (LTS) releases. For these LTS releases, bug-
fixing commits are backported from the main de-
velopment branch even after these new releases are
available. In Ansible, although the maintenance of
the 1.5.x releases stopped a couple of week before
the availability of the 1.6.0 release, it was performed
simultaneously with the development of the 1.6.0
release.

3.2. Modules Definition
The metrics used in our study all target software

modules. In order to perform our analysis we there-
fore have to decompose each project in a finite set of

5In the case of Mono, the 2.10.0 release in on a different
branch than the 2.8.0, so we considered the commits since
the common ancestor of these two releases instead.

software modules, which is well known to be a hard
task that requires some subjective choices [18].

We therefore chose to use a manual process that
aims to decompose a project into a finite set of soft-
ware modules. We asked three members of our re-
search group to provide, for each of the six projects
in the corpus, a list of software modules. After
comparing the resulting decompositions, we ended
up with two distinct lists of modules (two mem-
bers returned quite the same list), one slightly finer
grained than the other. The results provided in this
paper are the ones obtained with the finer decompo-
sition of modules, which is the one generated by two
members. As the results obtained with the coarser
decomposition are similar, they are available in the
appendix of this paper.

The manual process used by the three partici-
pants is a quite simple approach that looks at the
directory tree of a given project. We consider that
a software module is either a file or a directory, with
the possibility to include or not its subdirectories.

3.3. Metrics Computation

To reach our objective, which is to state whether
the code ownership has an influence on the software
quality, we need to measure CO metrics, as well as
other process and code metrics, such as the number
of lines of code (LoC) of a module, its number of
touches, its code churn, and the total number of
developers who edited such a module.

As defined in Section 2, CO metrics require to
weigh the contributions of the developers. For the
sake of completeness, we chose to compute two al-
ternatives of such weight. The first alternative con-
sists in counting the number files touched by a de-
veloper (Touch). The second alternative consists
in counting the number of lines changed by a devel-
oper (Churn). Section 4 only present the numbers
using the Touch to compute the weight, and the re-
sults computed using Churn, which are similar, are
available in the appendix.

4. Analysis

This section presents the results of our analysis,
and then answer the two research questions that
aim to question the usefulness of code ownership
metrics.

6

Table 2: Spearman correlation coefficients between metrics and the number of post-release bugfixes.

Spearman Correlation

Project LoC NumDevs Touches Churn MVO Major Minor

Angular 0.56 ** 0.77 *** 0.78 *** 0.71 *** -0.46 * 0.68 *** 0.63 ***
Ansible 0.77 *** 0.79 *** 0.84 *** 0.81 *** -0.25 0.16 0.8 ***
Jenkins 0.72 *** 0.73 *** 0.67 *** 0.58 *** -0.54 *** 0.63 *** 0.64 ***
JQuery 0.79 *** 0.85 *** 0.83 *** 0.87 *** -0.52 ** 0.64 *** 0.71 ***
Rails 0.71 *** 0.76 *** 0.69 *** 0.68 *** -0.62 *** 0.62 *** 0.63 ***
PHPUnit 0.8 *** 0.42 0.61 * 0.52 * -0.02 0.04 0.79 ***
Mono 0.5 *** 0.47 *** 0.42 *** 0.37 *** -0.38 *** 0.34 ** 0.56 ***

p-value: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 ’ ’ 1

4.1. RQ1: Is there any relationship between Code
Ownership and Software Quality?

To answer this question, we perform a correlation
test (Spearman) between code ownership metrics
and the number of post-release bug-fixing commits
for each of the project of our corpus. The results of
the correlation tests are summarized in Table 2.

The correlations we obtain clearly exhibit the ex-
pected effects of code ownership as we describe in
Section 2. There is a negative correlation between
MVO and the number of bugs, confirming the the-
ory that modules with stronger ownership have less
bugs. There are positive correlations between both
Minor and Major and the number of bugs, meaning
that the more minor and major owners, the more
bugs.

Based on these results, we can conclude that
there is a significant relationship between CO met-
rics and the number of bugs. However, as in our
previous study [3], other metrics are also correlated
with the number of bugs, without having a single
metric that outperforms the others. The fact that
Minor is not the metric with the strongest corre-
lation is a difference with the results obtained by
Bird et al. [2].

4.2. RQ2: What is the importance of Code Owner-
ship metrics for predicting bugs?

Although CO metrics have a relationship with
the number of bugs, other metrics exhibit such a
relationship. Our intent here is to determine if CO
metrics provide an added valued compared to other
metrics, and to find whether splitting developers
into major and minor contributors is useful or not.

To answer this question, we propose to use multi-
ple linear regression with the objective to measure

the importance of each metric regarding the esti-
mation of the number of bugs.

Using multiple linear regression, one can assess
the relative importance of metrics, by evaluating
how the R2 of the regression model improves when
adding each variable to the model. The R2 mea-
sures the proportion of variation in the dependent
variable (i.e., in our case the number of bugs) ex-
plained by the regressors (i.e., the software metrics)
in the model. However, this technique is effective
only when the regressors are uncorrelated, which is
not the case with software metrics. When metrics
are correlated, the order in which the regressors are
added to the model may have a strong impact on
the R2 added to the model, which would be mis-
leading regarding the importance of the metrics.

To assess the relative importance of regressors
in a multiple linear regression model, we use the
PMVD technique, developed by Feldman [7], and
implemented in the R package relimpo [19]. To
overcome the issue of the ordering of regressors,
PMVD automatically computes all possible permu-
tations of the regressors, and performs an average of
the R2 of each regressor over all possible orderings.

To answer our second research question we then
run PMVD for each of the project by considering
not only code ownership metrics as regressors, but
also the LoC, Touch, Churn and NumDevs metrics.

Before applying the PMVD technique, we ob-
served that NumDevs and Minor are collinear.
These two metrics have a Pearson correlation co-
efficient ranging from 0.896 to 0.996, depending on
the project. Two metrics with such a high degree
of collinearity can be considered identical, which
means that, with the current dataset, Minor is re-
dundant with the simple metric that is the number
of developers.

7

We still need to determine the relative impor-
tance of MVO and Major compared to the sim-
ple metrics that are LoC, Touches, Churn and
NumDevs. Therefore, we build a multiple linear
regression model including the aforementioned met-
rics as the regressors, and the number of bug-
fixing commits as the dependent variable. For each
project, we use PMVD to decompose the R2 of the
model into non-negative contributions that sum to
the total R2. Figure 1 presents the result of PMVD
for each project, where each bar shows the contri-
bution of each metric to the total R2 of the model.

In all seven projects, the best metric (in terms
of relative importance) is either LoC, Touches, or
NumDevs. Churn has a relatively small contribu-
tion to the total R2 of the models in six out of
seven projects, whereas MVO and Major have even
smaller contributions, with negligible contributions
in five and four out of seven projects, respectively.

Based on these observations, the benefits of com-
puting code ownership metrics is highly debatable
in open-source software projects. Although our pre-
vious findings [3] were relatively moderate — we
observed that code ownership metrics were not bet-
ter than simple metrics — the conclusions of this
experiment seem much more radical: Minor is re-
dundant with the number of developers, and cases
where MVO and Major contribute significantly to
the precision of multiple linear regression models
seem incidental.

5. Threats to validity

In this section we cover the different factors that
may affect the validity of our study. We empha-
size on three main categories of threats to validity:
internal, construct and external validity.

5.1. Internal Validity

The internal validity of our study can be threat-
ened by confounding factors, i.e. additional vari-
ables that may explain our results, or the differ-
ences between them and the results obtained by
Bird et al. [2]. In this section we uncover possible
confounding factors.

5.1.1. Minor and Major Contributors

In the Windows projects, most developers were
major contributors of at least one module, and few
developers were exclusively minor contributors [2].
Open-source projects follow a different model, with

a part of the contributors being the core developers
of the project, and another part being incidental
contributors, who perform a small amount of con-
tributions. In the projects of our corpus, the pro-
portion of developers being only minor contributors
vary between 50% and 79%. Ownership metrics, as
defined in this paper, do not make the difference
between minor contributors who belong to the core
team of developers, i.e., who are major contributors
of another module, and developers who are only mi-
nor contributors. We defined two simple metrics
to take into account this difference, which are the
number of minor contributors who are also major
contributors of another module, and the number of
developers who are only minor contributors. How-
ever, correlations between these metrics and the
number of bug-fixing commits are either not statis-
tically significant or have a smaller effect size than
existing ownership metrics.

5.1.2. Volunteers and Paid Contributors

Another difference between developers is the fact
that many open-source projects are industry-led or
industry-involved [20], meaning that some develop-
ers are being paid to contribute to the projects,
while others are volunteers. This could be a con-
founding factor as the motivations of both cate-
gories of developers are different, and may impact
the quality of the code they produce. Although
we do not compare in this paper the quality of the
code performed by paid and volunteer developers,
we do have some insight of the proportion of de-
velopers in each category, based on public informa-
tion we could retrieve from social media and de-
velopers and projects websites (i.e. GitHub, Twit-
ter, LinkedIn). First, all the projects in our corpus
are at least industry-involved, and projects such as
Mono (Novell/Xamarin) and Ansible (Ansible, inc.)
are clearly industry-led. Second, for the developers
with the most commits in each project (10 commits
or more in the studied period) we sought evidences
of employment by one of the companies involved
in the project: in all the projects with the excep-
tion of PHP Unit where the involvement of compa-
nies seems to be less strong, most developers who
performed more than 10 commits were paid by a
company involved in the project.

5.1.3. Code Ownership Guidelines

Each project defines its development guidelines,
which indicate to developers the rules to follow
when contributing. These rules include the patch

8

Angular

%
 o

f r
es

po
ns

e
va

ria
nc

e

0
5

10
15

20
25

Lo
C

Tou
ch

es

Chu
rn

M
VO

M
ajo

r

Num
Dev

s

R2 = 60.78%

Ansible

%
 o

f r
es

po
ns

e
va

ria
nc

e

0
20

40
60

80

Lo
C

Tou
ch

es

Chu
rn

M
VO

M
ajo

r

Num
Dev

s

R2 = 96.66%

Jenkins

%
 o

f r
es

po
ns

e
va

ria
nc

e

0
10

20
30

40
50

Lo
C

Tou
ch

es

Chu
rn

M
VO

M
ajo

r

Num
Dev

s

R2 = 91.35%

JQuery

%
 o

f r
es

po
ns

e
va

ria
nc

e

0
5

10
15

20
25

Lo
C

Tou
ch

es

Chu
rn

M
VO

M
ajo

r

Num
Dev

s

R2 = 83.17%

Rails

%
 o

f r
es

po
ns

e
va

ria
nc

e

0
20

40
60

80

Lo
C

Tou
ch

es

Chu
rn

M
VO

M
ajo

r

Num
Dev

s

R2 = 95.61%

PHPUnit

%
 o

f r
es

po
ns

e
va

ria
nc

e

0
20

40
60

Lo
C

Tou
ch

es

Chu
rn

M
VO

M
ajo

r

Num
Dev

s

R2 = 93.7%

Mono

%
 o

f r
es

po
ns

e
va

ria
nc

e

0
10

20
30

40
50

Lo
C

Tou
ch

es

Chu
rn

M
VO

M
ajo

r

Num
Dev

s

R2 = 62.58%

Figure 1: Relative importance of metrics in regression models with the number of bugfixes as the dependent variable.

9

submission process, code style, etc. As pointed
out by Mockus et al. [21], development guidelines
may include indications relative to code ownership,
which can be enforced. In that case, module own-
ers are defined by the project core team, and have
more responsibilities than other developers, such as
reviewing patch submissions, fielding bug reports,
etc.

We sought for such guidelines in our dataset. In
most projects, there was no mention of code own-
ership in the guidelines. In Jenkins, development
guidelines advocate shared ownership, and there is
no assigned tasks to core developers: the Jenkins
governance document states that “Core committers
generally use their own judgment to decide what to
work on”. In Mono, the guidelines are more in fa-
vor of strong ownership, and state that the author
of a piece of source code automatically becomes its
owner, and that further modifications to this source
code must be discussed with such owner. However,
we did not find strong ownership enforcement such
as the one described by Mockus et al. [21].

5.2. Construct Validity

The construct validity of a study refers to
whether the measurements performed are consis-
tent with the theory. We now reveal the threats
encountered in our empirical study.

With Git, developers can submit pull requests, so
that the project leaders, who have written permis-
sion on the repository, can add their contributions
to the project. As the identity of the initial au-
thor is maintained through the pull operation, she
is identifiable even though she does not have access
to the main repository. However, it may happen
that a developer exchanged with a pull request au-
thor to agree on its acceptance. Even though this
developer spent time to fix or improve the pull re-
quest content, all the credits will go to the pull re-
quest author. This may also introduce a bias in the
results.

The modules listed from the selected project re-
lease may have evolved through the period of time
in which the CO metrics have been computed. In
case they underwent refactoring operations such as
renames or moves, information about developers
contributions could be lost. In order to avoid such
cases, we used Git’s rename detection to follow files
that were renamed during the studied period.

We deliberatively did not rely on the information
provided by bugtrackers, as several studies showed
that their use can introduce an important bias [4, 6].

The drawback of our technique is that the number
of bug-fixing commits may not reveal the actual
number of bugs that appeared in the software mod-
ules. There may exist bugs that are tedious to fix
and remain to be resolved. In addition, the man-
ual analysis has some limits due to the subjective
evaluation to decide whether or not a commit is a
bug-fixing commit. Finally, we only went through
a maintenance branch to collect such commits for
each project. However, it there may exists bug-
fixing commits from the main development branch
that have not been backported to the maintenance
branch.

5.3. External Validity

The external validity of a study concerns the ex-
tent to which the findings are generalizable to other
subjects and settings.

As we targeted different languages, we are con-
fident of the generalization of the findings across
languages. The only concern we have regarding the
external validity of our study is that the projects
included in our corpus were not selected using ran-
dom sampling. Although the results regarding own-
ership metrics corroborate the ones we found in our
previous study [3], they might not be generalizable
to all kinds of projects as we only analyze a few
projects in this study (14 projects in total, includ-
ing our previous study).

6. Related Work

In the late 2000s, several studies have shown
evidence of a relationship between the number
of developers of a software artifact and its fault-
proneness. Illes-Seifert and Paech [22, 23] found a
correlation between the number of faults identified
on a file and its number of authors. Later, they
explored the relationship between several process
metrics and fault-proneness, and did not find a met-
ric where the relationship with fault-proneness ex-
isted in all projects. However, they found that the
number of distinct authors of a file was correlated
to the number of faults in almost every project.
Weyuker et al. [24] found that adding the number
of developers who edited a file to their prediction
model provides a slight improvement to the model’s
precision.

Many studies used fault prediction models to val-
idate the relevance of process metrics for measur-
ing software quality. Moser et al. [25] compared

10

the predictive power of two sets of software metrics
— code and process metrics — on several Eclipse
projects. They found that process metrics are bet-
ter indicators of software quality than code metrics.
Similar results have been found by other researchers
who also used fault prediction as a quality indica-
tors for their metrics, such as in [26, 1].

D’Ambros et al. [16] evaluated different sets of
metrics in a thorough study on fault prediction.
They compared the process metrics introduced by
Moser et al. [25] to other metrics, such as the clas-
sical source code metrics by Chidamber and Ke-
merer [27], the measure of entropy of changes intro-
duced by Hassan [28], the churn of source code met-
rics and the entropy of source code metrics. They
found that the process metrics, the churn metrics,
and the entropy of source code metrics are the best
performers for fault prediction. However, the au-
thors expressed concerns with the external validity
of their study (i.e., whether the results are gener-
alizable), which calls for more empirical studies on
that matter.

As the number of developers is not always the
process metric that shows the highest correlation,
ownership metrics rely on other information such
as the proportion of contributions made by the de-
velopers. Using this information it is possible to
classify developers as major and minor contribu-
tors. The relationship between measures of code
ownership and faults was studied by Bird et al. [2]
on Windows Vista and Windows 7 binaries. Their
study showed that the number of minor contribu-
tors of a binary is strongly correlated to the number
of pre- and post-release faults of Windows binaries.

Mockus et al. [21] observed two code ownership
patterns in open-source projects: In the Apache
project, they found that almost every source code
file with more than 30 changes had several contrib-
utors who authored more than 10% of the changes.
In the Mozilla project they found that code own-
ership was enforced by the development guidelines,
which stated that all contributions should be re-
viewed and approved by the module owner. Al-
though the focus of their work was FLOSS projects
and ownership was also investigated, the authors
did not attempt to examine the connection between
the ownership patterns and fault-proneness.

In a previous study, we examined the relationship
between ownership metrics and fault proneness in
open-source projects [3]. Although the results of
both studies confirm each other, the dataset of our
current study was more carefully constructed than

in the previous study, which strengthens the impor-
tance of our new findings.

7. Conclusion and Future Work

The study presented in this paper, in which we
aimed to improve the methodology presented in our
previous paper [3], reaches similar conclusions with
a different dataset of projects. First, we confirm
that there is a relationship between ownership met-
rics and software quality. However, the usefulness
of code ownership is very debatable: The Minor
metric is highly collinear with the number of de-
velopers, making its computation redundant with
a simpler metric. This result is mainly due to the
intrinsic characteristics of the open-source projects:
they have many contributors but most of them are
minor developers. Overall, simple metrics perform
better or as well as code ownership metrics, which
not only confirm our previous findings, but ques-
tions the point of computing ownership metrics.

Other code ownership metrics, such as MVO
and Major may however help to improve regression
models for some projects, although not in a drastic
way. To confirm that these metrics do improve the
quality of regression models, and that they should
be used for bug prediction, we plan to perform a
study including a larger set of software metrics. As
the method we used to measure quality, i.e. man-
ually counting the number of bugfixes in a mainte-
nance branch, has not been validated yet in terms
of accuracy, further studies are required to confirm
these results.

We also plan to increase the amount of projects in
subsequent studies, in order to improve the gener-
alization of our findings. Another trail would be to
run a large scale experiment with the goal to select
projects where Minor and the number of develop-
ers are not collinear, which would allow to compare
both metrics.

Finally, we would like to stress that, in this study,
we only discard the use of the Minor metric. We
did not explore the application of major and minor
contributors to social network metrics, as Bird et
al. did in their study of code ownership [2].

8. Acknowledgments

The authors would like to thank Alan Charpen-
tier for his help in the realization of several manual
tasks performed in this study, as well as for his help-
ful comments regarding the methodology we used.

11

The authors also thank the anonymous reviewers
for their comments which helped to improve the
quality of this contribution.

9. References

[1] F. Rahman, P. Devanbu, How, and why, process metrics
are better, in: Proceedings of the 2013 International
Conference on Software Engineering, 2013, p. 432–441.

[2] C. Bird, N. Nagappan, B. Murphy, H. Gall, P. De-
vanbu, Don’t touch my code!: examining the effects
of ownership on software quality, in: Proceedings of
the 19th ACM SIGSOFT symposium and the 13th
European conference on Foundations of software engi-
neering, ESEC/FSE ’11, ACM, 2011, p. 4–14. doi:

10.1145/2025113.2025119.
[3] M. Foucault, J.-R. Falleri, X. Blanc, Code ownership in

open-source software, in: Proceedings of the 18th In-
ternational Conference on Evaluation and Assessment
in Software Engineering, EASE ’14, ACM, 2014, p.
39:1–39:9. doi:10.1145/2601248.2601283.

[4] C. Bird, A. Bachmann, E. Aune, J. Duffy, A. Bernstein,
V. Filkov, P. Devanbu, Fair and balanced?: bias in bug-
fix datasets, in: Proceedings of the the 7th joint meeting
of the European software engineering conference and
the ACM SIGSOFT symposium on The foundations of
software engineering, 2009, p. 121–130.

[5] T. F. Bissyandé, F. Thung, S. Wang, D. Lo, L. Jiang,
L. Réveillère, Empirical evaluation of bug linking, in:
Proceedings of the 17th European Conference on Soft-
ware Maintenance and Reengineering (CSMR 2013),
2013, pp. 1–10.

[6] K. Herzig, S. Just, A. Zeller, It’s not a bug, it’s a fea-
ture: how misclassification impacts bug prediction, in:
Proceedings of the 2013 International Conference on
Software Engineering, 2013, p. 392–401.

[7] B. Feldman, Relative importance and value, Available
at SSRN 2255827.

[8] J. C. Munson, S. G. Elbaum, Code churn: A measure
for estimating the impact of code change, in: Software
Maintenance, 1998. Proceedings. International Confer-
ence on, 1998, p. 24–31.

[9] K. Beck, Embracing change with extreme program-
ming, Computer 32 (10) (1999) 70–77. doi:10.1109/

2.796139.
[10] E. Raymond, The cathedral and the bazaar, Knowl-

edge, Technology & Policy 12 (3) (1999) 23–49.
[11] F. Rahman, P. Devanbu, Ownership, experience and de-

fects: a fine-grained study of authorship, in: Proceed-
ings of the 33rd International Conference on Software
Engineering, 2011, p. 491–500.

[12] T. Menzies, B. Caglayan, Z. He, E. Kocaguneli, J. Krall,
F. Peters, B. Turhan, The PROMISE repository of em-
pirical software engineering data (Jun. 2012).

[13] C. Bird, A. Gourley, P. Devanbu, A. Swaminathan,
G. Hsu, Open borders? immigration in open source
projects, in: Mining Software Repositories, 2007. ICSE
Workshops MSR’07. Fourth International Workshop on,
IEEE, 2007, p. 6–6.

[14] C. Bird, A. Gourley, P. Devanbu, Detecting patch sub-
mission and acceptance in OSS projects, in: Proceed-
ings of the Fourth International Workshop on Mining
Software Repositories, MSR ’07, IEEE Computer Soci-
ety, 2007, p. 26–. doi:10.1109/MSR.2007.6.

[15] T. Zimmermann, R. Premraj, A. Zeller, Predict-
ing defects for eclipse, in: International Workshop
on Predictor Models in Software Engineering, 2007.
PROMISE’07: ICSE Workshops 2007, 2007, p. 9. doi:

10.1109/PROMISE.2007.10.
[16] M. D’Ambros, M. Lanza, R. Robbes, Evaluating defect

prediction approaches: a benchmark and an extensive
comparison, Empirical Software Engineering 17 (4-5)
(2012) 531–577.

[17] Y. Tian, J. Lawall, D. Lo, Identifying linux bug fixing
patches, in: Software Engineering (ICSE), 2012 34th
International Conference on, 2012, p. 386–396.

[18] D. L. Parnas, On the criteria to be used in decompos-
ing systems into modules, Communications of the ACM
15 (12) (1972) 1053–1058.

[19] U. Groemping, Relative importance for linear regres-
sion in r: The package relaimpo, Journal of Statistical
Software 17 (1) (2006) 1–27.

[20] A. Capiluppi, K.-J. Stol, C. Boldyreff, Exploring the
role of commercial stakeholders in open source software
evolution, in: Open Source Systems: Long-Term Sus-
tainability, no. 378 in IFIP Advances in Information
and Communication Technology, Springer Berlin Hei-
delberg, 2012, pp. 178–200.

[21] A. Mockus, R. T. Fielding, J. D. Herbsleb, Two case
studies of open source software development: Apache
and mozilla, ACM Transactions on Software Engineer-
ing and Methodology (TOSEM) 11 (3) (2002) 309–346.

[22] T. Illes-Seifert, B. Paech, Exploring the relationship of
history characteristics and defect count: an empirical
study, in: Proceedings of the 2008 workshop on Defects
in large software systems, 2008, p. 11–15.

[23] T. Illes-Seifert, B. Paech, Exploring the relationship of
a file’s history and its fault-proneness: An empirical
method and its application to open source programs, In-
formation and Software Technology 52 (5) (2010) 539–
558. doi:10.1016/j.infsof.2009.11.010.

[24] E. J. Weyuker, T. J. Ostrand, R. M. Bell, Using de-
veloper information as a factor for fault prediction, in:
Proceedings of the Third International Workshop on
Predictor Models in Software Engineering, 2007, p. 8.

[25] R. Moser, W. Pedrycz, G. Succi, A comparative analysis
of the efficiency of change metrics and static code at-
tributes for defect prediction, in: ACM/IEEE 30th In-
ternational Conference on Software Engineering, 2008,
p. 181–190.

[26] S. Matsumoto, Y. Kamei, A. Monden, K.-i. Matsumoto,
M. Nakamura, An analysis of developer metrics for fault
prediction, in: Proceedings of the 6th International
Conference on Predictive Models in Software Engineer-
ing, 2010, p. 18.

[27] S. R. Chidamber, C. F. Kemerer, A metrics suite for
object oriented design, IEEE Trans. Softw. Eng. 20 (6)
(1994) 476–493. doi:10.1109/32.295895.

[28] A. E. Hassan, Predicting faults using the complexity of
code changes, in: Proceedings of the 31st International
Conference on Software Engineering, 2009, p. 78–88.

Appendix A. Results with different settings

Section 4 only presents the results obtained with
the finer granularity of modules, and with owner-
ship weights computed using the Touches metric.

12

http://dx.doi.org/10.1145/2025113.2025119
http://dx.doi.org/10.1145/2025113.2025119
http://dx.doi.org/10.1145/2601248.2601283
http://dx.doi.org/10.1109/2.796139
http://dx.doi.org/10.1109/2.796139
http://dx.doi.org/10.1109/MSR.2007.6
http://dx.doi.org/10.1109/PROMISE.2007.10
http://dx.doi.org/10.1109/PROMISE.2007.10
http://dx.doi.org/10.1016/j.infsof.2009.11.010
http://dx.doi.org/10.1109/32.295895

Table A.3: Spearman correlation coefficients between met-
rics and the number and density of post-release bug-fixes,
using the finer granularity of modules, and ownership
weights computed using the Churn metric

Spearman Correlation

Project MVO Major Minor

Number of bug-fixes

Angular -0.52 ** 0.69 *** 0.57 **
Ansible -0.53 * 0.48 * 0.81 ***
Jenkins -0.52 *** 0.55 *** 0.73 ***
JQuery -0.57 ** 0.58 ** 0.84 ***
Rails -0.54 *** 0.55 *** 0.74 ***
PHPUnit -0.21 0.37 0.66 **
Mono -0.33 ** 0.3 ** 0.47 ***

Density of bug-fixes

Angular -0.44 * 0.69 *** 0.42 *
Ansible -0.34 0.42 . 0.28
Jenkins -0.34 * 0.32 * 0.55 ***
JQuery -0.4 . 0.39 . 0.45 *
Rails -0.14 0.18 0.29 *
PHPUnit -0.05 0.22 0.54 *
Mono -0.18 0.18 0.3 **

p-value: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 ’ ’ 1

For the sake of completeness, we present here the
results obtained with the larger granularity of mod-
ules, and the ones obtained with ownership weights
computed using the Churn metric.

We also show correlations obtained with the den-
sity of bug-fixing commits, rather than with the ab-
solute number of bug-fixing commits.

13

Angular

%
 o

f r
es

po
ns

e
va

ria
nc

e

0
5

10
20

30

Lo
C

Tou
ch

es

Chu
rn

M
VO

M
ajo

r

Num
Dev

s

R2 = 67.16%

Ansible

%
 o

f r
es

po
ns

e
va

ria
nc

e

0
20

40
60

80

Lo
C

Tou
ch

es

Chu
rn

M
VO

M
ajo

r

Num
Dev

s

R2 = 97.85%

Jenkins

%
 o

f r
es

po
ns

e
va

ria
nc

e

0
10

20
30

40
50

Lo
C

Tou
ch

es

Chu
rn

M
VO

M
ajo

r

Num
Dev

s

R2 = 92.56%

JQuery

%
 o

f r
es

po
ns

e
va

ria
nc

e

0
5

15
25

35

Lo
C

Tou
ch

es

Chu
rn

M
VO

M
ajo

r

Num
Dev

s

R2 = 81.79%

Rails

%
 o

f r
es

po
ns

e
va

ria
nc

e

0
20

40
60

80

Lo
C

Tou
ch

es

Chu
rn

M
VO

M
ajo

r

Num
Dev

s

R2 = 96.28%

PHPUnit

%
 o

f r
es

po
ns

e
va

ria
nc

e

0
20

40
60

Lo
C

Tou
ch

es

Chu
rn

M
VO

M
ajo

r

Num
Dev

s

R2 = 91.61%

Mono

%
 o

f r
es

po
ns

e
va

ria
nc

e

0
10

20
30

40
50

Lo
C

Tou
ch

es

Chu
rn

M
VO

M
ajo

r

Num
Dev

s

R2 = 62.62%

Figure A.2: Relative importance of metrics, using the finer granularity of modules, using Churn to weigh developers’
ownership.

14

Table A.4: Spearman correlation coefficients between metrics and the density of post-release bug-fixes, using the finer
granularity of modules, and ownership weights computed using the Touches metric.

Spearman Correlation

Project LoC NumDevs Touches Churn MVO Major Minor

Angular 0.11 0.65 *** 0.45 * 0.39 * -0.57 ** 0.73 *** 0.4 *
Ansible 0.13 0.37 0.24 0.25 -0.02 0.16 0.23
Jenkins 0.45 ** 0.53 *** 0.48 ** 0.4 ** -0.36 * 0.47 ** 0.41 **
JQuery 0.3 0.51 * 0.5 * 0.65 *** -0.27 0.53 ** 0.25
Rails 0.09 0.31 * 0.31 * 0.33 * -0.21 0.29 . 0.16
PHPUnit 0.73 ** 0.26 0.5 * 0.42 0.08 -0.07 0.64 **
Mono 0.23 * 0.29 * 0.27 * 0.26 * -0.23 * 0.19 . 0.38 ***

p-value: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 ’ ’ 1

Angular

%
 o

f r
es

po
ns

e
va

ria
nc

e

0
10

30
50

Lo
C

Tou
ch

es

Chu
rn

M
VO

M
ajo

r

Num
Dev

s

R2 = 87.87%

Jenkins

%
 o

f r
es

po
ns

e
va

ria
nc

e

0
5

15
25

35

Lo
C

Tou
ch

es

Chu
rn

M
VO

M
ajo

r

Num
Dev

s

R2 = 93.07%

Rails

%
 o

f r
es

po
ns

e
va

ria
nc

e

0
20

40
60

Lo
C

Tou
ch

es

Chu
rn

M
VO

M
ajo

r

Num
Dev

s

R2 = 95.46%

PHPUnit

%
 o

f r
es

po
ns

e
va

ria
nc

e

0
10

20
30

40
50

Lo
C

Tou
ch

es

Chu
rn

M
VO

M
ajo

r

Num
Dev

s

R2 = 92.18%

Figure A.3: Relative importance of metrics, using the larger granularity of modules, using Touches to weigh developers’
ownership.

15

Angular
%

 o
f r

es
po

ns
e

va
ria

nc
e

0
10

30
50

Lo
C

Tou
ch

es

Chu
rn

M
VO

M
ajo

r

Num
Dev

s

R2 = 83.31%

Jenkins

%
 o

f r
es

po
ns

e
va

ria
nc

e

0
10

20
30

Lo
C

Tou
ch

es

Chu
rn

M
VO

M
ajo

r

Num
Dev

s

R2 = 93.68%

Rails

%
 o

f r
es

po
ns

e
va

ria
nc

e

0
10

30
50

Lo
C

Tou
ch

es

Chu
rn

M
VO

M
ajo

r

Num
Dev

s

R2 = 96.06%

PHPUnit

%
 o

f r
es

po
ns

e
va

ria
nc

e

0
10

20
30

40
50

Lo
C

Tou
ch

es

Chu
rn

M
VO

M
ajo

r

Num
Dev

s

R2 = 98.11%

Figure A.4: Relative importance of metrics, using the larger granularity of modules, using Churn to weigh developers’
ownership.

Table A.5: Spearman correlation coefficients between met-
rics and the number and density of post-release bug-fixes,
using the larger granularity of modules, and ownership
weights computed using the Churn metric

Spearman Correlation

Project MVO Major Minor

Number of bug-fixes

Angular -0.51 * 0.6 ** 0.57 *
Jenkins -0.52 * 0.52 * 0.77 ***
Rails -0.69 ** 0.64 ** 0.89 ***
PHPUnit -0.36 0.49 0.62 *

Density of bug-fixes

Angular -0.36 0.59 ** 0.62 **
Jenkins -0.36 . 0.36 . 0.42 *
Rails -0.02 0.08 0.22
PHPUnit -0.06 0.24 0.36

p-value: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 ’ ’ 1

16

Table A.6: Spearman correlation coefficients between metrics and the number and density of post-release bug-fixes, using the
larger granularity of modules, and ownership weights computed using the Touches metric.

Spearman Correlation

Project LoC NumDevs Touches Churn MVO Major Minor

Number of bug-fixes

Angular 0.16 0.74 *** 0.55 * 0.44 . -0.52 * 0.59 * 0.56 *
Jenkins 0.82 *** 0.77 *** 0.73 *** 0.67 *** -0.53 ** 0.55 ** 0.77 ***
Rails 0.88 *** 0.89 *** 0.87 *** 0.88 *** -0.75 *** 0.58 ** 0.83 ***
PHPUnit 0.78 ** 0.49 0.55 . 0.53 . -0.12 -0.07 0.81 **

Density of bug-fixes

Angular -0.2 0.75 *** 0.31 0.31 -0.6 ** 0.66 ** 0.52 *
Jenkins 0.5 * 0.47 * 0.42 * 0.33 -0.35 . 0.37 . 0.4 .
Rails 0.1 0.18 0.12 0.21 -0.14 0.14 0.15
PHPUnit 0.58 . 0.2 0.29 0.29 0.09 -0.27 0.55 .

p-value: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 ’ ’ 1

17

	Introduction
	Background and Theory
	Ownership Metrics
	Code Ownership and Software Quality

	Design of the methodology
	Corpus of software projects
	Reliability of Existing Datasets
	Software Projects Selection Criteria
	Selected Corpus of Projects

	Modules Definition
	Metrics Computation

	Analysis
	RQ1: Is there any relationship between Code Ownership and Software Quality?
	RQ2: What is the importance of Code Ownership metrics for predicting bugs?

	Threats to validity
	Internal Validity
	Minor and Major Contributors
	Volunteers and Paid Contributors
	Code Ownership Guidelines

	Construct Validity
	External Validity

	Related Work
	Conclusion and Future Work
	Acknowledgments
	References
	Results with different settings

