When Does Output Feedback Enlarge the Capacity of the Interference Channel?
Victor Quintero, Samir Perlaza, Iñaki Esnaola, Jean-Marie Gorce

To cite this version:

HAL Id: hal-01432525
https://hal.archives-ouvertes.fr/hal-01432525v3
Submitted on 14 Sep 2017

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
When Does Output Feedback Enlarge the Capacity of the Interference Channel?

Victor Quintero, Samir M. Perlaza, Iñaki Esnaola, Jean-Marie Gorce

Abstract—In this paper, the benefits of channel-output feedback in the Gaussian interference channel (G-IC) are studied under the effect of additive Gaussian noise. Using a linear deterministic (LD) model, the signal to noise ratios (SNRs) in the feedback links beyond which feedback plays a significant role in terms of increasing the individual rates or the sum-rate are approximated. The relevance of this work lies on the fact that it identifies the feedback SNRs for which in any G-IC one of the following statements is true: (a) feedback does not enlarge the capacity region; (b) feedback enlarges the capacity region and the sum-rate is greater than the largest sum-rate without feedback; and (c) feedback enlarges the capacity region but no significant improvement is observed in the sum-rate.

Index Terms—Interference Channel, Noisy Channel-Output Feedback, Capacity Region.

I. INTRODUCTION

The two-user Gaussian interference channel (G-IC) is the simplest channel model that captures the impairments brought by mutual interference into point-to-point communications subject to additive Gaussian noise. The interference channel (IC), in its most general form, was first proposed by Claude E. Shannon in [2]. The G-IC is a particular case that has been studied by several authors, see for instance [3]–[13] and references therein. However, despite this active research, the capacity region of the G-IC is characterized only in some special cases [4]. In general, the capacity region is not known exactly and only approximations to within a constant number of bits per channel-use per user are known [9].

On the other hand, channel-output feedback, which consists in letting a transmitter observe the channel-output at its intended receiver, was one of the first models for studying two-way point-to-point communications [14]. A G-IC with channel-output feedback is a model in which the backward direction (from receivers to transmitters) is exclusively used to let the transmitters observe the channel-output at the receivers with the goal of increasing the information rate or the reliability in the forward direction (from transmitters to receivers). Note that the backward direction may also be an IC since the point-to-point feedback links might be subject to mutual interference. There are several special cases of channel-output feedback in the G-IC. First, the case in which the observation of the channel-output from the intended receiver is noiseless corresponds to perfect channel-output feedback (POF) [15]. Second, the case in which such observation is noisy corresponds to noisy channel-output feedback (NOF) [16], [17]. Third, the case in which such observation is a linear combination of the channel-outputs from both receivers subject to additive noise corresponds to wireless channel-output feedback (WOF) [18]. The most general formulation is referred to as general channel-output feedback (GOF) [19]–[22]. Other types of feedback, including a channel-output processing, e.g., signal decoding, are known as rate-limited feedback (RLF) [23].

This work focuses in the case of G-IC with NOF (G-IC-NOF). One of the main motivations to focus on the G-IC-NOF stems from the recent findings regarding the impact of additive noise in the feedback links. In particular, in [16] and [17], it is shown that additive noise in the feedback links can dramatically change the number of generalized degrees of freedom (G-DoF) of the G-IC. In particular, one of the main benefits of feedback is that the number of G-DoF with perfect feedback increases monotonically with the interference to noise ratio (INR) in the very strong interference regime. However, in the presence of additive Gaussian noise in the feedback links, the number of G-DoF is bounded [16], [17].

A. Contributions

From the discussion above a relevant question arises: "When does channel-output feedback enlarge the capacity region of the G-IC?" This paper provides the answer when feedback links are impaired by noise and free of mutual interference, i.e., G-IC-NOF. The desired answer is of the form: "Implementing channel-output feedback in transmitter-receiver i enlarges the capacity region if the feedback SNR is greater than SNR_i^*", with $i \in \{1, 2\}$ and fixed SNRs and INRs in the forward G-IC. Note that the description of the capacity region of the G-IC-NOF in [17] does not provide an answer to the question posed above. An answer in the desired form requires some calculations that, despite the conceptual simplicity of this analysis, are long and tedious. More specifically, the value SNR_i^* is obtained by comparing the capacity region of the linear deterministic IC (LD-IC) in [9] and the capacity region of the LD-IC with noisy channel-output feedback (LD-IC-NOF) in [17] to identify the feedback parameters that ensure...
strict inclusion of the former into the latter. After, using the fact that the capacity region of the LD-IC-NOF approximates the capacity region of the G-IC-NOF, an approximation of SNR_i is obtained. Solving this problem leads to a handful of equally relevant byproducts to determine whether or not implementing feedback in one of the transmitter-receiver pairs increases any of the individual rates or the sum-rate. That is, answers to the following questions: When does feedback in transmitter-receiver i allow achieving a rate R_i, such that for at least one R_2, all rate pairs (R_i, R_2) achievable without feedback satisfy R_i > R'_i?; When does feedback in transmitter-receiver i allow achieving a rate R_2, such that for at least one R_1, all rate pairs (R_1, R_2) achievable without feedback satisfy R_2 > R'_2?; or When does feedback in transmitter-receiver i allow achieving a greater sum-rate than the maximum sum-rate achievable without feedback?, with i ∈ {1, 2} and fixed SNRs and INRs in the forward G-IC.

The answers to the questions above provide consequential engineering insights about the benefits of feedback in the G-IC. For instance, all the cases in which feedback, even perfect channel-output feedback, is useless for increasing an individual rate or the sum-rate are identified. Similarly, this work provides guidelines for choosing in which of the point-to-point links feedback should be implemented for increasing either an individual rate or the sum-rate. For instance, in some cases, implementing feedback in only one of the transmitter-receiver pairs, despite the additive noise, turns out to be as beneficial as perfect channel-output feedback in both links.

B. Organization of the Paper

Section II introduces the G-IC and the linear deterministic IC (LD-IC). The capacity region of the G-IC is shown to be approximated by the capacity region of an LD-IC, with a particular choice of parameters. Section III presents the answers to the questions described above for the LD-IC. Section IV presents some LD-IC examples. Section V presents the implications of the conclusions obtained from the LD-IC (Section III) on the G-IC. The examples in Section IV are revisited in the context of the G-IC. The paper closes with the conclusions in Section VI.

II. Channel Models

A. Gaussian Interference Channels

Consider the two-user G-IC-NOF depicted in Figure 1. Transmitter i, with i ∈ {1, 2}, communicates with receiver i subject to the interference produced by transmitter j, with j ∈ {1, 2} \ {i}. There are two independent and uniformly distributed messages, W_i ∈ W_i, with W_i = {1, 2, ..., 2^N_i}, where N_i denotes the fixed block-length in channel uses and R_i is the transmission rate in bits per channel use. At each block, transmitter i sends the codeword X_i = (X_{i,1}, X_{i,2}, ..., X_{i,N_i})^T ∈ C_i ⊆ X_i^N_i, where X_i and C_i are respectively the channel-input alphabet and the codebook of transmitter i.

The channel coefficient from transmitter i to receiver i is denoted by h_{ii}, the channel coefficient from transmitter j to receiver i is denoted by h_{ij}; and the channel coefficient from transmitter i to transmitter i is denoted by h_{ii}. All channel coefficients are assumed to be non-negative real numbers. At a given channel use n, the channel output at receiver i is denoted by Y_{i,n}. During channel use n, the input-output relation of the channel model is given by

\[\overline{Y}_{i,n} = \overline{h}_{ii} X_{i,n} + \overline{h}_{ij} X_{j,n} + \overline{Z}_{i,n}, \quad (1) \]

where Z_{i,n} is a real Gaussian random variable with zero mean and unit variance that represents the noise at the input of receiver i. Let d > 0 be the finite feedback delay measured in channel uses. At the end of channel use n, transmitter i observes Y_{i,n-d}, which consists of a scaled and noisy version of Y_{i,n}. More specifically,

\[\overline{Y}_{i,n} = \begin{cases} \overline{Z}_{i,n} & \text{for } n \in \{1,2,\ldots,d\} \\ \overline{h}_{ii} \overline{Y}_{i,n-d} + \overline{Z}_{i,n} & \text{for } n \in \{d+1,d+2,\ldots,N\}, \end{cases} \quad (2) \]

where Z_{i,n} is a real Gaussian random variable with zero mean and unit variance that represents the noise in the feedback link of transmitter-receiver pair i. The random variables Z_{i,n} and Z_{i,n} are independent and identically distributed. In the following, without loss of generality, the feedback delay is assumed to be one channel use, i.e., d = 1. The encoder of transmitter i is defined by a set of deterministic functions \{f_i^{(1)}, f_i^{(2)}, \ldots, f_i^{(N_i)}\}, with \[f_i^{(1)} : W_i \rightarrow X_i \] and for all \[n \in \{2,3,\ldots,N\}, f_i^{(n)} : W_i \times \mathbb{R}^{n-1} \rightarrow X_i, \] such that

\[X_{i,n} = f_i^{(1)} (W_i), \quad (3a) \]

and for all \[n \in \{2,3,\ldots,N\}, \]

\[X_{i,n} = f_i^{(n)} (W_i, \overline{Y}_{i,1}, \overline{Y}_{i,2}, \ldots, \overline{Y}_{i,n-1}). \quad (3b) \]

The components of the input vector X_i are real numbers subject to an average power constraint:

\[\frac{1}{N} \sum_{n=1}^{N} \mathbb{E} (X_{i,n}^2) \leq 1, \quad (4) \]

where the expectation is taken over the joint distribution of the message indices W_1, W_2, and the noise terms, i.e., Z_1, Z_2, Z_1, and Z_2. The dependence of X_{i,n} on W_1, W_2, and

![Gaussian interference channel with noisy channel-output feedback at channel use n.](image)

Fig. 1. Gaussian interference channel with noisy channel-output feedback.
the previously observed noise realizations is due to the effect of feedback as shown in (2) and (3).

Hence, the decoder of receiver \(i\) is defined by the deterministic function \(\psi_i : \mathbb{R}^N \rightarrow \mathcal{W}_i\). At the end of the communication, receiver \(i\) uses the vector \((\vec{Y}_{i,1}, \vec{Y}_{i,2}, \ldots, \vec{Y}_{i,N})\) to obtain an estimate of the message index:

\[
\hat{W}_i = \psi_i \left(\vec{Y}_{i,1}, \vec{Y}_{i,2}, \ldots, \vec{Y}_{i,N} \right),
\]

where \(\hat{W}_i\) is an estimate of the message index. The decoding error probability in the two-user G-IC-NOF, denoted by \(P_e(N)\), is given by

\[
P_e(N) = \max \left(\Pr \left(\hat{W}_1 \neq W_1 \right), \Pr \left(\hat{W}_2 \neq W_2 \right) \right).
\]

The definition of an achievable rate pair \((R_1, R_2) \in \mathbb{R}_+^2\) follows:

Definition 1 (Achievable Rate Pairs): A rate pair \((R_1, R_2) \in \mathbb{R}_+^2\) is achievable if there exists at least one pair of codebooks in \(X^N_1\) and \(X^N_2\) with codewords of length \(N\), the corresponding encoding functions \(f_1^{(1)}, f_2^{(1)}\), \ldots, \(f_1^{(N)}, f_2^{(N)}\), and the decoding functions \(\psi_1\) and \(\psi_2\), such that the decoding error probability can be made arbitrarily small by letting the block-length \(N\) grow to infinity. The set of all achievable information rate pairs \((R_1, R_2)\) is known as the information capacity region. The capacity region of a G-IC-NOF is described by six parameters: \(SNR_i\), \(INR_{ij}\), and \(\overline{SNR}_i\), with \(i \in \{1, 2\}\) and \(j \in \{1, 2\} \setminus \{i\}\), which are defined as follows:

\[
SNR_i = h_{ii}^2,
\]

\[
INR_{ij} = h_{ij}^2,
\]

\[
\overline{SNR}_i = \frac{h_{ii}^2 + 2h_{ij}h_{ji} + h_{jj}^2 + 1}{h_{ij}^2}.
\]

Given fixed parameters \(\overline{SNR}_1\), \(\overline{SNR}_2\), \(INR_{12}\), \(INR_{21}\), \(SNR_1\), and \(SNR_2\), the capacity region of the G-IC-NOF is approximated to within a constant number of bits by Theorem 4 in [17].

B. Linear Deterministic Interference Channels

Consider the two-user LD-IC-NOF with parameters \(\overrightarrow{n}_{11}, \overrightarrow{n}_{22}, n_{12}, n_{21}, \overrightarrow{n}_{11}\) and \(\overrightarrow{n}_{22}\) depicted in Fig. 2. Parameter \(\overrightarrow{n}_{ii}\) represents the number of bit-pipes between transmitter \(i\) and receiver \(i\); parameter \(n_{ij}\) represents the number of bit-pipes between transmitter \(j\) and receiver \(i\); and parameter \(\overrightarrow{n}_{ij}\) represents the number of bit-pipes between receiver \(i\) and transmitter \(i\) (feedback).

At transmitter \(i\), the channel-input \(X_{i,n}\) during channel use \(n\), with \(n \in \{1, 2, \ldots, N\}\), is a \(q\)-dimensional binary vector \(X_{i,n} = (X_{i,1}^{(1)}, X_{i,1}^{(2)}, \ldots, X_{i,1}^{(q)})^T\), where

\[
q = \max \left(\overrightarrow{n}_{11}, \overrightarrow{n}_{22}, n_{12}, n_{21} \right),
\]

and \(N\) is the block-length. At receiver \(i\), the channel-output \(\vec{Y}_{i,n}\) during channel use \(n\) is also a \(q\)-dimensional binary vector \(\vec{Y}_{i,n} = (\vec{Y}_{i,1}^{(1)}, \vec{Y}_{i,1}^{(2)}, \ldots, \vec{Y}_{i,1}^{(q)})^T\). Let \(S\) be a \(q \times q\) lower shift matrix of the form:

\[
S = \begin{bmatrix}
0 & 0 & 0 & \cdots & 0 \\
1 & 0 & 0 & \cdots & 0 \\
\vdots & \ddots & \ddots & \ddots & \vdots \\
0 & \cdots & 0 & 0 & 1
\end{bmatrix},
\]

and the feedback signal \(\vec{Y}_{i,n}\) available at transmitter \(i\) at the end of channel use \(n\) satisfies

\[
\vec{Y}_{i,n} = S^{\left(\text{FCS}_{i,N} - n_{i} \right)} X_{i,n} + S^{\left(\text{FCS}_{i,N} - n_{i} - 1\right)} X_{j,n},
\]

where \(d\) is a finite delay, additions and multiplications are defined over the Galois Field of two elements \(GF(2)\), and the positive part operator. Without any loss of generality, the feedback delay is assumed to be equal to one channel use. Let \(\mathcal{W}_i\) be the set of message indices of transmitter \(i\). Transmitter \(i\) sends the message index \(W_i \in \mathcal{W}_i\) by sending the codeword \(X_i = (X_{i,1}, X_{i,2}, \ldots, X_{i,N})\), which is a binary \(q \times N\) matrix. The encoder of transmitter \(i\) can be modeled as a set of deterministic mappings \(\left\{ f_i^{(1)}, f_i^{(2)}, \ldots, f_i^{(N)} \right\}\), with \(f_i^{(1)} : \mathcal{W}_i \rightarrow \{0, 1\}^q\) and for all \(n \in \{2, 3, \ldots, N\}\), \(f_i^{(n)} : \mathcal{W}_i \times \{0, 1\}^{q \times (n-1)} \rightarrow \{0, 1\}^q\), such that

\[
X_{i,1} = f_i^{(1)} (W_i)
\]

and for all \(n \in \{2, 3, \ldots, N\}\),

\[
X_{i,n} = f_i^{(n)} (W_i, \vec{Y}_{i,1}^{(1)}, \vec{Y}_{i,1}^{(2)}, \ldots, \vec{Y}_{i,n-1}).
\]

The decoder of receiver \(i\) is defined by a deterministic function \(\psi_i : \{0, 1\}^{q \times N} \rightarrow \mathcal{W}_i\). At the end of the communication,
receiver i uses the sequence $\{\hat{Y}_{i,1}, \hat{Y}_{i,2}, \ldots, \hat{Y}_{i,N}\}$ to obtain an estimate \hat{W}_i of the message index W_i. The decoding error probability in the two-user LD-IC-NOF, denoted by $P_e(N)$, is given by (6).

A rate pair $(R_1, R_2) \in \mathbb{R}_+^2$ is said to be achievable if it satisfies Definition 1. The set of all achievable information rate pairs (R_1, R_2) is known as the information capacity region and it is characterized by Theorem 1 in [17].

C. Connections between Linear Deterministic and Gaussian Interference Channels

The capacity region of the G-IC-NOF with parameters \overline{SNR}_1, \overline{SNR}_2, SNR_{12}, INR_{21}, \overline{SNR}_1 and \overline{SNR}_2 can be approximated by the capacity region of an LD-IC-NOF with parameters $\overline{SNR}_{ij} = \left[\frac{1}{2} \log_2(\overline{SNR}_{ij})\right]$; $\overline{SNR}_{ii} = \left[\frac{1}{2} \log_2(SNR_{ii})\right]$, with $i \in \{1, 2\}$ and $j \in \{1, 2\} \setminus \{i\}$. For instance, in the case without feedback, the capacity region of any G-IC with parameters $\overline{SNR}_1 > 1$, $\overline{SNR}_2 > 1$, $\overline{SNR}_{12} > 1$ and $\overline{SNR}_{21} > 1$ is within 18.6 bits per channel use per user of the capacity of an LD-IC with parameters $\overline{SNR}_{11} = \left[\frac{1}{2} \log_2(\overline{SNR}_{11})\right]$, $\overline{SNR}_{22} = \left[\frac{1}{2} \log_2(\overline{SNR}_{22})\right]$, $n_{12} = \left[\frac{1}{2} \log_2(INR_{12})\right]$, and $n_{21} = \left[\frac{1}{2} \log_2(INR_{21})\right]$ (Theorem 2 in [24]). More specifically, if the capacity region of the G-IC and the LD-IC without feedback are denoted by C_G and C_{LD}, respectively, the following holds:

$$C_{LD} \subseteq C_G + (5, 5), \quad (15a)$$

$$C_G \subseteq C_{LD} + (13.6, 13.6). \quad (15b)$$

In a more general setting, for instance in the case with noisy channel-output feedback, the LD-IC is known to be a close approximation of the G-IC [17]. In Section V, this approximation is used to simplify the identification of the cases in which channel-output feedback, even subject to additive noise, enlarges the capacity region of the G-IC.

III. MAIN RESULTS

A. Preliminaries

Let $\alpha_i \in \mathbb{Q}$, with $i \in \{1, 2\}$ and $j \in \{1, 2\} \setminus \{i\}$ be defined as

$$\alpha_i = \frac{n_{ij}}{n_{ii}}, \quad (16)$$

For each transmitter-receiver pair i, there exist five possible interference regimes (IRs), as suggested in [9]: the very weak IR (VWIR), i.e., $\alpha_i \leq \frac{1}{2}$; the weak IR (WR), i.e., $\frac{1}{2} < \alpha_i \leq \frac{1}{3}$; the moderate IR (MIR), i.e., $\frac{1}{3} < \alpha_i < 1$, the strong IR (SIR), i.e., $1 \leq \alpha_i \leq 2$; and the very strong IR (VSIR), i.e., $\alpha_i > 2$. The scenarios in which the desired signal is stronger than the interference ($\alpha_i < 1$), namely the VWIR, the WR, and the MIR, are referred to as the low-interference regimes (LIRs). Conversely, the scenarios in which the desired signal is weaker than or equal to the interference ($\alpha_i \geq 1$), namely the SIR and the VSIR, are referred to as the high-interference regimes (HIRs).

The main results of this paper are presented using a set of events (Boolean variables) that are determined by the parameters $\overline{n}_{11}, \overline{n}_{22}, n_{12}$, and n_{21}. Given a fixed tuple $(\overline{n}_{11}, \overline{n}_{22}, n_{12}, n_{21})$, the events of interest are defined below:

$$E_1 : \alpha_1 < 1 \land \alpha_2 < 1, \quad (17)$$

$$E_{2,i} : \alpha_i \leq \frac{1}{2} \land 1 \leq \alpha_i \leq 2, \quad (18)$$

$$E_{3,i} : \alpha_i \leq \frac{1}{2} \land \alpha_j > 2, \quad (19)$$

$$E_{4,i} : \frac{1}{2} < \alpha_i \leq \frac{2}{3} \land \alpha_j \geq 1, \quad (20)$$

$$E_{5,i} : \frac{2}{3} < \alpha_i < 1 \land \alpha_j \geq 1, \quad (21)$$

$$E_{6,i} : \frac{1}{2} < \alpha_i \leq 1 \land \alpha_j > 1, \quad (22)$$

$$E_{7,i} : \alpha_i \geq 1 \land \alpha_j \leq 1, \quad (23)$$

$$E_{8,i} : \overline{n}_{ii} > n_{jj}, \quad (24)$$

$$E_{9} : \overline{n}_{11} + \overline{n}_{22} > n_{12} + n_{21}, \quad (25)$$

$$E_{10,i} : \overline{n}_{ii} + \overline{n}_{jj} > n_{ij} + 2n_{ji}, \quad (26)$$

$$E_{11,i} : \overline{n}_{ii} + \overline{n}_{jj} < n_{ij}, \quad (27)$$

In the following, in the case of $E_{4,i}$; $\overline{n}_{ii} > n_{jj}$, the notation $\overline{E}_{8,i}$ indicates $\overline{n}_{ii} < n_{jj}$; the notation $\overline{E}_{8,i}$ indicates $\overline{n}_{ii} \leq n_{jj}$ (logical complement); and the notation $\overline{E}_{8,i}$ indicates $\overline{n}_{ii} \geq n_{jj}$. In the case of E_{1}; $\alpha_1 < 1 \land \alpha_2 < 1$, the notation \overline{E}_1 indicates $\alpha_1 > 1 \land \alpha_2 > 1$; and the notation \overline{E}_1 indicates $\alpha_1 \geq 1 \land \alpha_2 \geq 1$. In the case of E_{9}; $\overline{n}_{11} + \overline{n}_{22} > n_{12} + n_{21}$, the notation the notation \overline{E}_9 indicates $\overline{n}_{11} + \overline{n}_{22} \leq n_{12} + n_{21}$.

Combining the events (17)-(27), five main scenarios are identified:

$$S_{1,i} : (E_1 \land E_{5,i}) \lor (E_{2,i} \land E_{8,i}) \lor (E_{3,i} \land E_{8,i} \land E_9) \lor (E_{4,i} \land E_{8,i} \land E_9), \quad (28)$$

$$S_{2,i} : (E_{3,i} \land \overline{E}_{8,j} \land \overline{E}_9) \lor (E_{6,i} \land \overline{E}_{8,j} \land \overline{E}_9) \lor (\overline{E}_1 \land \overline{E}_{8,j}), \quad (29)$$

$$S_{3,i} : (E_1 \land \overline{E}_{8,i}) \lor (E_{2,i} \land \overline{E}_{8,i}) \lor (E_{3,i} \land \overline{E}_{8,j} \land \overline{E}_9) \lor (E_{4,i} \land \overline{E}_{8,j} \land \overline{E}_9) \lor (\overline{E}_1 \land \overline{E}_{8,j}) \lor (\overline{E}_7,i), \quad (30)$$

$$S_{4} : E_1 \land E_{8,1} \land E_{8,2} \land E_{10,1} \lor E_{10,2}, \quad (31)$$

$$S_{5} : \overline{E}_1 \land E_{11,1} \land E_{11,2}. \quad (32)$$

For all $i \in \{1, 2\}$, the events $S_{1,i}$, $S_{2,i}$, $S_{3,i}$, S_{4} and S_{5} exhibit the properties stated by the following corollaries.

Corollary 1: For all $(\overline{n}_{11}, \overline{n}_{22}, n_{12}, n_{21}) \in \mathbb{N}_4$, given a fixed $i \in \{1, 2\}$, only one of the events $S_{1,i}$, $S_{2,i}$ and $S_{3,i}$ holds true.

Corollary 2: For all $(\overline{n}_{11}, \overline{n}_{22}, n_{12}, n_{21}) \in \mathbb{N}_4$, when one of the events S_{4} or S_{5} holds true, then the other necessarily holds false.

Note that Corollary 2 does not exclude the case in which both S_{4} and S_{5} simultaneously fail.

Corollary 3: For all $(\overline{n}_{11}, \overline{n}_{22}, n_{12}, n_{21}) \in \mathbb{N}_4$, when S_{4} holds true, then both $S_{1,i}$ and $S_{1,2}$ hold true; and when S_{5} holds true, then both $S_{2,1}$ and $S_{2,2}$ hold true.

B. Rate Improvement Metrics

Given a fixed tuple $(\overline{n}_{11}, \overline{n}_{22}, n_{12}, n_{21})$, let $C(\overline{n}_{11}, \overline{n}_{22})$ be the capacity region of an LD-IC with noisy channel-
output feedback with parameters $\hat{\nu}_{11}$ and $\hat{\nu}_{22}$. The maximum improvement of the individual rates R_1 and R_2, denoted by $\Delta_i(\hat{\nu}_{11}, \hat{\nu}_{22})$ and $\Delta_2(\hat{\nu}_{11}, \hat{\nu}_{22})$, due to the effect of channel-output feedback with respect to the case without feedback is:

$$\Delta_i(\hat{\nu}_{11}, \hat{\nu}_{22}) = \max_{0 < R_2 < R_2'} \left\{ \sup \left\{ R_1 : (R_1, R_2) \in C(\hat{\nu}_{11}, \hat{\nu}_{22}) \right\} - \sup \left\{ R_1 : (R_1, R_2) \in C(0, 0) \right\} \right\}$$

(33)

with

$$R_1' = \sup \left\{ r_1 : (r_1, r_2) \in C(0, 0) \right\}$$

(35)

$$R_2' = \sup \left\{ r_2 : (r_1, r_2) \in C(0, 0) \right\}$$

(36)

Note that for a fixed $i \in \{1, 2\}$, $\Delta_i(\hat{\nu}_{11}, \hat{\nu}_{22}) > 0$ if and only if it is possible to achieve a rate pair $(R_1, R_2) \in \mathbb{R}^2_+$ with channel-output feedback such that R_i is greater than the maximum rate achievable by transmitter-receiver i without feedback when the rate of transmitter-receiver pair j is fixed at R_j. In the following, given fixed parameters $\hat{\nu}_{11}$ and $\hat{\nu}_{22}$, the statement “the rate R_i is improved by using feedback” is used to indicate that $\Delta_i(\hat{\nu}_{11}, \hat{\nu}_{22}) > 0$.

Alternatively, the maximum improvement of the sum-rate $\Sigma(\hat{\nu}_{11}, \hat{\nu}_{22})$ with respect to the case without feedback is:

$$\Sigma(\hat{\nu}_{11}, \hat{\nu}_{22}) = \sup \left\{ R_1 + R_2 : (R_1, R_2) \in C(\hat{\nu}_{11}, \hat{\nu}_{22}) \right\} - \sup \left\{ R_1' + R_2' : (R_1, R_2) \in C(0, 0) \right\}$$

(37)

Note that $\Sigma(\hat{\nu}_{11}, \hat{\nu}_{22}) > 0$ if and only if there exists a rate pair with feedback whose sum is greater than the maximum sum-rate achievable without feedback. In the following, given fixed parameters $\hat{\nu}_{11}$ and $\hat{\nu}_{22}$, the statement “the sum-rate is improved by using feedback” is used to imply that $\Sigma(\hat{\nu}_{11}, \hat{\nu}_{22}) > 0$.

In the following, when feedback is exclusively used by transmitter-receiver pair i, i.e., $\hat{\nu}_{ii} > 0$ and $\hat{\nu}_{jj} = 0$, then the maximum improvement of the individual rate of transmitter-receiver k, with $k \in \{1, 2\}$, and the maximum improvement of the sum-rate are denoted by $\Delta_k(\hat{\nu}_{ii})$ and $\Sigma(\hat{\nu}_{ii})$, respectively. Hence, this notation $\Delta_k(\hat{\nu}_{ii})$ replaces either $\Delta_i(\hat{\nu}_{11}, 0)$ or $\Delta_2(0, \hat{\nu}_{22})$, when $i = 1$ or $i = 2$, respectively. The same holds for the notation $\Sigma(\hat{\nu}_{ii})$ that replaces $\Sigma(\hat{\nu}_{11}, 0)$ or $\Sigma(0, \hat{\nu}_{22})$, when $i = 1$ or $i = 2$, respectively.

C. Enlargement of the Capacity Region

Given fixed parameters $(\hat{\nu}_{11}, \hat{\nu}_{22}, n_{12}, n_{21})$, $i \in \{1, 2\}$, and $j \in \{1, 2\} \setminus \{i\}$, the capacity region of a two-user LD-IC, when feedback is available only at transmitter-receiver pair i, i.e., $\hat{\nu}_{ii} > 0$ and $\hat{\nu}_{jj} = 0$, is denoted by $C(\hat{\nu}_{ii})$ instead of $C(\hat{\nu}_{11}, 0)$ or $C(0, \hat{\nu}_{22})$, when $i = 1$ or $i = 2$, respectively. Following this notation, Theorem 1 identifies the exact values of $\hat{\nu}_{ii}$ for which the strict inclusion $C(0, 0) \subset C(\hat{\nu}_{ii})$ holds for $i \in \{1, 2\}$.

Theorem 1: Let $(\hat{\nu}_{11}, \hat{\nu}_{22}, n_{12}, n_{21}) \in \mathbb{N}^4$ be a fixed tuple. Let also $i \in \{1, 2\}$, $j \in \{1, 2\} \setminus \{i\}$ and $\hat{\nu}_{ii} \in \mathbb{N}$ be fixed integers, with

$$\hat{\nu}_{ii}^* = \max \left\{ n_{ji} \left(\hat{\nu}_{ii} - n_{ij} \right)^+ \right\}$$

if $S_{1,i}$ holds true

$$\hat{\nu}_{ii}^* = \max \left\{ n_{jj} \left(\hat{\nu}_{ii} - n_{ij} \right)^+ \right\}$$

if $S_{2,i}$ holds true.

Assume that $S_{3,i}$ holds true. Then, for all $\hat{\nu}_{ii} \in \mathbb{N}$, $C(0, 0) = C(\hat{\nu}_{ii})$. Assume that either $S_{1,i}$ holds true or $S_{2,i}$ holds true. Then, for all $\hat{\nu}_{ii} \in \mathbb{N}$, $C(0, 0) = C(\hat{\nu}_{ii})$ and for all $\hat{\nu}_{ii} > \hat{\nu}_{ii}^*, C(0, 0) \subset C(\hat{\nu}_{ii})$.

Proof: The proof of Theorem 1 is presented in Appendix A.

Theorem 1 shows that under event $S_{3,i}$ in (30), implementing feedback in transmitter-receiver pair i, with any $\hat{\nu}_{ii} > 0$ and $\hat{\nu}_{jj} = 0$, does not enlarge the capacity region. Note that when both $E_{8,i}$ and $E_{8,j}$ hold false, then both $S_{1,i}$ and $S_{2,i}$ hold false, which implies that $S_{3,i}$ holds true (Corollary 1). The following remark is a consequence of this observation.

Remark 1: A necessary but not sufficient condition for enlarging the capacity region by using feedback in transmitter-receiver pair i is: there exists at least one transmitter able to send more information bits to receiver i than to receiver j, i.e., $\hat{\nu}_{ii} > n_{ji}$ (Event $E_{8,i}$) or $n_{jj} > n_{ij}$ (Event $E_{8,j}$).

Alternatively, under events $S_{1,i}$ in (28) and $S_{2,i}$ in (29), the capacity region can be enlarged when $\hat{\nu}_{ii} > \hat{\nu}_{ii}^*$. It is important to highlight that in the cases in which feedback enlarges the capacity region of the two-user LD-IC-NOF, that is, in events $S_{1,1}, S_{2,1}, S_{1,2}$ or $S_{2,2}$, for all $i \in \{1, 2\}$ and $j \in \{1, 2\} \setminus \{i\}$, the following always holds true:

$$\hat{\nu}_{ii}^* > \left(\hat{\nu}_{ii} - n_{ij} \right)^+.$$.

Essentially, the inequality in (39) unveils a necessary but not sufficient condition to enlarge the capacity region using channel-output feedback. This condition is that for at least one $i \in \{1, 2\}$, with $j \in \{1, 2\} \setminus \{i\}$, transmitter i decodes a subset of the information bits sent by transmitter j at each channel use.

Another interesting observation is that the threshold $\hat{\nu}_{ii}^*$ beyond which feedback is useful is different under event $S_{1,i}$ in (28) and event $S_{2,i}$ in (29). In general when $S_{1,i}$ holds true, the enlargement of the capacity region is due to the fact that feedback allows using interference as side information [25]. Alternatively, when $S_{2,i}$ in (29) holds true, the enlargement of the capacity region occurs as a consequence of the fact that some of the bits that cannot be transmitted directly from transmitter j to receiver j, can arrive to receiver j via an alternative path: transmitter j - receiver i - transmitter i - receiver j. Both scenarios, interference as side information and alternative path, are extensively discussed in [15], [16], and [17].
D. Improvement of the Individual Rate R_i by Using Feedback in Link i

Given fixed parameters $(\overline{n}_{11}, \overline{n}_{22}, n_{12}, n_{21})$, and $i \in \{1, 2\}$, implementing channel-output feedback in transmitter-receiver pair i increases the individual rate R_i, i.e., $\Delta_i(\overline{n}_{ii}) > 0$ for some values of \overline{n}_{ii}. Theorem 2 identifies the exact values of \overline{n}_{ii} for which $\Delta_i(\overline{n}_{ii}) > 0$.

Theorem 2: Let $(\overline{n}_{11}, \overline{n}_{22}, n_{12}, n_{21}) \in \mathbb{N}^4$ be a fixed tuple. Let also $i \in \{1, 2\}, j \in \{1, 2\} \setminus \{i\}$ and $\overline{n}_{jj} \in \mathbb{N}$ be fixed integers, with

$$\overline{n}_{ii} = \max \left(n_{ji}, (\overline{n}_{ii} - n_{ij})^+ \right). \quad (40)$$

Assume that either $S_{2,i}$ holds true or $S_{3,i}$ holds true. Then, for all $\overline{n}_{ii} \in \mathbb{N}$, $\Delta_i(\overline{n}_{ii}) = 0$. Assume that $S_{1,i}$ holds true. Then, when $\overline{n}_{ii} \leq \overline{n}_{ii}$, it holds that $\Delta_i(\overline{n}_{ii}) = 0$; and when $\overline{n}_{ii} > \overline{n}_{ii}$, it holds that $\Delta_i(\overline{n}_{ii}) > 0$.

Proof: The proof of Theorem 2 is presented in Appendix B.

Theorem 2 highlights that under events $S_{2,i}$ in (29) and $S_{3,i}$ in (30), the individual rate R_i cannot be improved by using feedback in transmitter-receiver pair i, i.e., $\Delta_i(\overline{n}_{ii}) = 0$. Alternatively, under event $S_{1,i}$ in (28), the individual rate R_i can be improved, i.e., $\Delta_i(\overline{n}_{ii}) > 0$, whenever $\overline{n}_{ii} > \max \left(n_{ji}, (\overline{n}_{ii} - n_{ij})^+ \right)$. Hence, given the definition of $S_{1,i}$, the following remark is relevant.

Remark 2: A necessary but not sufficient condition for $\Delta_i(\overline{n}_{ii}) > 0$ is: the number of bit-pipes from transmitter i to receiver i is greater than the number of bit-pipes from transmitter i to receiver j, i.e., $\overline{n}_{ii} > n_{ij}$ (Event $E_{8,i}$).

E. Improvement of the Individual Rate R_j by Using Feedback in Link i

Given fixed parameters $(\overline{n}_{11}, \overline{n}_{22}, n_{12}, n_{21})$, $i \in \{1, 2\}$, and $j \in \{1, 2\} \setminus \{i\}$, implementing channel-output feedback in transmitter-receiver pair i increases the individual rate R_j, i.e., $\Delta_j(\overline{n}_{ii}) > 0$ for some values of \overline{n}_{ii}. Theorem 3 identifies the exact values of \overline{n}_{ii} for which $\Delta_j(\overline{n}_{ii}) > 0$.

Theorem 3: Let $(\overline{n}_{11}, \overline{n}_{22}, n_{12}, n_{21}) \in \mathbb{N}^4$ be a fixed tuple. Let also $i \in \{1, 2\}, j \in \{1, 2\} \setminus \{i\}$ and $\overline{n}_{ii} \in \mathbb{N}$ given in (38), be fixed integers. Assume that $S_{1,j}$ holds true. Then, for all $\overline{n}_{ii} \in \mathbb{N}$, $\Delta_j(\overline{n}_{ii}) = 0$. Assume that either $S_{1,j}$ holds true or $S_{2,j}$ holds true. Then, when $\overline{n}_{ii} \leq \overline{n}_{ii}$, it holds that $\Delta_j(\overline{n}_{ii}) = 0$; and when $\overline{n}_{ii} > \overline{n}_{ii}$, it holds that $\Delta_j(\overline{n}_{ii}) > 0$.

Proof: The proof of Theorem 3 follows along the same lines of the proof of Theorem 2 in Appendix B.

Theorem 3 shows that under event $S_{3,j}$ in (30), implementing feedback in transmitter-receiver pair i does not bring any improvement on the rate R_j. This is in line with the results of Theorem 1. In contrast, under events $S_{1,j}$ in (28) and $S_{2,j}$ in (29), the individual rate R_j can be improved, i.e., $\Delta_j(\overline{n}_{ii}) > 0$ for all $\overline{n}_{ii} > \overline{n}_{ii}$. From the definition of events $S_{1,j}$ and $S_{2,j}$, the following remark holds:

Remark 3: A necessary but not sufficient condition for $\Delta_j(\overline{n}_{ii}) > 0$ is: there exists at least one transmitter able to send more information bits to receiver i than to receiver j, i.e., $\overline{n}_{ii} > n_{ji}$ (Event $E_{9,j}$) or $n_{ij} > \overline{n}_{jj}$ (Event $E_{9,j}$).

It is important to highlight that under event $S_{1,i}$, the threshold on \overline{n}_{ii} for increasing the individual rate R_i, i.e., \overline{n}_{ii}, and R_j, i.e., \overline{n}_{jj}, are identical, see Theorem 2 and Theorem 3. This implies that in this case, the use of feedback in transmitter-receiver pair i, with $\overline{n}_{ii} > \overline{n}_{ii} = \overline{n}_{ii}$, benefits both transmitter-receiver pairs, i.e., $\Delta_i(\overline{n}_{ii}) > 0$ and $\Delta_j(\overline{n}_{ii}) > 0$. Under event $S_{2,i}$, using feedback in transmitter-receiver pair i, with $\overline{n}_{ii} > \overline{n}_{ii}$, exclusively benefits transmitter-receiver pair j, i.e., $\Delta_i(\overline{n}_{ii}) = 0$ and $\Delta_j(\overline{n}_{ii}) > 0$.

F. Improvement of the Sum-Rate

Given fixed parameters $(\overline{n}_{11}, \overline{n}_{22}, n_{12}, n_{21})$, and $i \in \{1, 2\}$, implementing channel-output feedback in transmitter-receiver pair i increases the sum-rate, i.e., $\Sigma(\overline{n}_{ii}) > 0$ for some values of \overline{n}_{ii}. Theorem 4 identifies the exact values of \overline{n}_{ii} for which $\Sigma(\overline{n}_{ii}) > 0$.

Theorem 4: Let $(\overline{n}_{11}, \overline{n}_{22}, n_{12}, n_{21}) \in \mathbb{N}^4$ be a fixed tuple. Let also $i \in \{1, 2\}, j \in \{1, 2\} \setminus \{i\}$ and $\overline{n}_{ii} \in \mathbb{N}$ be fixed integers, with

$$\overline{n}_{ii} = \left\{ \begin{array}{ll} \max (n_{ji}, (\overline{n}_{ii} - n_{ij})^+) & \text{if } S_{4} \text{ holds true} \\ \overline{n}_{jj} + (\overline{n}_{ii} - n_{ij})^+ & \text{if } S_{5} \text{ holds true} \end{array} \right. \quad (41)$$

Assume that S_{4} holds false and S_{5} holds false. Then, $\Sigma(\overline{n}_{ii}) = 0$ for all $\overline{n}_{ii} \in \mathbb{N}$. Assume that S_{4} holds true or S_{5} holds true. Then, when $\overline{n}_{ii} \leq \overline{n}_{ii}$, it holds that $\Sigma(\overline{n}_{ii}) = 0$; and when $\overline{n}_{ii} > \overline{n}_{ii}$, it holds that $\Sigma(\overline{n}_{ii}) > 0$.

Proof: The proof of Theorem 4 is presented in Appendix C.

Theorem 4 introduces a necessary but not sufficient condition for improving the sum-rate by implementing feedback in transmitter-receiver pair i.

Remark 4: A necessary but not sufficient condition for observing $\Sigma(\overline{n}_{ii}) > 0$ is to satisfy one of the following conditions: (a) both transmitter-receiver pairs are in LIR (Event E_{1}); or (b) both transmitter-receiver pairs are in HIR (Event E_{1}).

Finally, it follows from Corollary 3 that when S_{4} or S_{5} holds true, with $i \in \{1, 2\}$ and $\overline{n}_{ii} > \overline{n}_{ii}^+$, in addition to $\Sigma(\overline{n}_{ii}) > 0$, it also holds that $\Delta_1(\overline{n}_{ii}) > 0$ and $\Delta_2(\overline{n}_{ii}) > 0$.

IV. Examples

Example 1: Consider an LD-IC-NOF with parameters $\overline{n}_{11} = 7$, $\overline{n}_{22} = 7$, $n_{12} = 3$, and $n_{21} = 5$.

In Example 1, both $S_{1,i}$ and $S_{2,2}$ hold true. Hence, from Theorem 1, when $\overline{n}_{11} > 5$ or $\overline{n}_{22} > 3$, there always exists an enlargement of the capacity region. More specifically, it follows from Theorem 2 and Theorem 3 that using feedback in transmitter-receiver pair 1, with $\overline{n}_{11} > 5$ or using feedback in transmitter-receiver pair 2, with $\overline{n}_{22} > 3$, both individual rates can be simultaneously improved, i.e., $\Delta_1(\overline{n}_{11}) > 0$ and $\Delta_2(\overline{n}_{11}) > 0$ with $i = 1$ or $i = 2$, respectively. Alternatively, note that S_{4} holds true. Hence, it follows from
Theorem 4 that using feedback in transmitter-receiver pair 1, with \(n_{11} > 5 \) or using feedback in transmitter-receiver pair 2, with \(n_{22} > 3 \), improves the sum-rate, i.e., \(\Sigma(\bar{R}_{ii}) > 0 \) with \(i = 1 \) or \(i = 2 \) respectively. These conclusions are observed in Figure 3, for the case \(n_{11} = 6 \) and \(n_{22} = 0 \), where the capacity regions \(C(0,0) \) (thick red line) and \(C(6,0) \) (thin blue line) are plotted. Note that, when \(n_{11} = 6 \), there always exist a rate pair \((R_1', R_2') \in C(0,0) \) and a rate pair \((R_1, R_2) \in C(6,0) \setminus C(0,0) \) such that \(R_1' < R_1 \) and \(R_2' = R_2 \) (Theorem 2). Simultaneously, there always exist a rate pair \((R_1', R_2') \in C(0,0) \) and a rate pair \((R_1, R_2) \in C(6,0) \setminus C(0,0) \) such that \(R_2' < R_2 \) and \(R_1' = R_1 \) (Theorem 3). Finally, note that for all rate pairs \((R_1', R_2') \in C(0,0) \) there always exists a rate pair \((R_1, R_2) \in C(6,0) \), for which \(R_1 + R_2 > R_1' + R_2' \) (Theorem 4).

Example 2: Consider an LD-IC-NOF with parameters \(n_{11} = 7, n_{22} = 8, n_{12} = 6, \) and \(n_{21} = 5 \).

In Example 2, the events \(S_{1,1} \) and \(S_{1,2} \) hold true; and the events \(S_4 \) and \(S_5 \) hold false. Hence, it follows from Theorem 4 that using feedback in either transmitter-receiver pair does not improve the sum-rate, i.e., \(\Sigma(\bar{R}_{ii}) > 0 \) but \(\Sigma(\bar{R}_{ii}) = 0 \) for all \(i \in \{1,2\} \). These conclusions are observed in Figure 4, for the case \(n_{11} = 0 \) and \(n_{22} = 7 \), where the capacity regions \(C(0,0) \) (thick red line) and \(C(0,7) \) (thin blue line) are plotted. From Example 2, it becomes evident that when \(S_{1,1} \) and \(S_{1,2} \) hold true, \(S_4 \) and \(S_5 \) do not necessarily hold true. That is, the improvements on the individual rates, despite that they can be observed simultaneously, are not enough to improve the sum-rate beyond what is already achievable without feedback.

Example 3: Consider an LD-IC-NOF with parameters \(n_{11} = 5, n_{22} = 1, n_{12} = 3, \) and \(n_{21} = 4 \).

In Example 3, both \(S_{2,1} \) in (29) and \(S_{1,2} \) in (30) hold true. Hence, it follows from Theorem 1 that the capacity region can be enlarged by using feedback in transmitter-receiver pair 1 when \(n_{11} > 3 \), whereas using feedback in transmitter-receiver pair 2 does not enlarge the capacity region. More specifically, it follows from Theorem 2 and Theorem 3 that using feedback in transmitter-receiver pair 1 does not improve the individual rate \(R_1 \) but \(R_2 \), i.e., \(\Delta_1(\bar{R}_{11}) = 0 \) and \(\Delta_2(\bar{R}_{11}) > 0 \). Note also that \(S_3 \) and \(S_5 \) hold false. Hence, it follows from Theorem 4 that using feedback in either transmitter-receiver pair does not improve the sum-rate, i.e., \(\Sigma(\bar{R}_{11}) = 0 \) and \(\Sigma(\bar{R}_{22}) = 0 \). These conclusions are observed in Figure 5, for the case \(n_{11} = 4 \) and \(n_{22} = 0 \), where the capacity regions \(C(0,0) \) (thick red line) and \(C(4,0) \) (thin blue line) are plotted.

V. IMPLICATIONS ON THE GAUSSIAN INTERFERENCE CHANNEL

Given a fixed tuple \((\bar{\text{SNR}}_{11}, \bar{\text{SNR}}_{12}, \bar{\text{INR}}_{12}, \bar{\text{INR}}_{2}) \), let \(\bar{R}(\bar{\text{SNR}}_{11}, \bar{\text{SNR}}_{2}) \) be the achievable region of the G-IC-NOF described by Theorem 2 in [17] with parameters \(\bar{\text{SNR}}_{11} \) and \(\bar{\text{SNR}}_{2} \); let \(\bar{R}(\bar{\text{SNR}}_{11}, \bar{\text{SNR}}_{2}) \) be the converse region of the G-IC-NOF described by Theorem 3 in [17] with parameters \(\bar{\text{SNR}}_{11} \) and \(\bar{\text{SNR}}_{2} \); and let also \(C(\bar{\text{SNR}}_{11}, \bar{\text{SNR}}_{2}) \) be the capacity region of the G-IC-NOF with parameters \(\bar{\text{SNR}}_{11} \) and \(\bar{\text{SNR}}_{2} \). These regions satisfy the following inclusions:

\[
\{\bar{\text{SNR}}_{11}, \bar{\text{SNR}}_{2}\} \subseteq C(\bar{\text{SNR}}_{11}, \bar{\text{SNR}}_{2}) \subseteq \bar{R}(\bar{\text{SNR}}_{11}, \bar{\text{SNR}}_{2}).
\]

A. Improvement Metrics

In order to quantify the benefits of channel-output feedback in enlarging the achievable region \(\bar{R}(\bar{\text{SNR}}_{11}, \bar{\text{SNR}}_{2}) \) or the converse region \(\bar{R}(\bar{\text{SNR}}_{11}, \bar{\text{SNR}}_{2}) \), consider the following improvement metrics, which are similar to those defined in Sec. III-B for the LD-IC-NOF. The improvement metrics on the individual rates are defined as

\[
\Delta_{i}(\bar{\text{SNR}}_{11}, \bar{\text{SNR}}_{2}) = \max_{0 < R_2 < R_2^*} \left\{ \sup \left\{ R_1 : (R_1, R_2) \in \bar{R}(\bar{\text{SNR}}_{11}, \bar{\text{SNR}}_{2}) \right\} - \sup \left\{ R_1' : (R_1', R_2) \in \bar{R}(0,0) \right\} \right\},
\]

where \(i \in \{1,2\} \) and \(R_1 \) is the rate in transmitter-receiver pair \(i \).
Fig. 5. Capacity regions $C(0, 0)$ (thick red line) and $C(4, 0)$ (thin blue line), with $\bar{n}_{11} = 5$, $\bar{n}_{22} = 1$, $n_{12} = 3$, $n_{21} = 4$.

$$\Delta^A_\text{SNR} = \max_{0 < R_1 < R_1^*} \left\{ \sup \left\{ R_2 : (R_1, R_2) \in \mathcal{R}(\text{SNR}_1, \text{SNR}_2) \right\} - \sup \left\{ R_2^1 : (R_1^1, R_2) \in \mathcal{R}(0, 0) \right\} \right\}, \quad (44)$$

$$\Delta^C_\text{SNR} = \max_{0 < R_2 < R_2^*} \left\{ \sup \left\{ R_1 : (R_1, R_2) \in \mathcal{R}(\text{SNR}_1, \text{SNR}_2) \right\} - \sup \left\{ R_1^1 : (R_1^1, R_2) \in \mathcal{R}(0, 0) \right\} \right\}, \quad (45)$$

$$\Delta^A_\text{SNR} = \max_{0 < R_1 < R_1^*} \left\{ \sup \left\{ R_2 : (R_1, R_2) \in \mathcal{R}(\text{SNR}_1, \text{SNR}_2) \right\} - \sup \left\{ R_2^1 : (R_1^1, R_2) \in \mathcal{R}(0, 0) \right\} \right\}, \quad (46)$$

with

$$R_1^* = \sup \left\{ r_1 : (r_1, r_2) \in \mathcal{R}(0, 0) \right\}, \quad (47)$$

$$R_2^* = \sup \left\{ r_2 : (r_1, r_2) \in \mathcal{R}(0, 0) \right\}, \quad (48)$$

$$R_1^1 = \sup \left\{ r_1 : (r_1, r_2) \in \mathcal{R}(0, 0) \right\}, \quad (49)$$

$$R_2^1 = \sup \left\{ r_2 : (r_1, r_2) \in \mathcal{R}(0, 0) \right\}. \quad (50)$$

Alternatively, the maximum improvements of the sum-rate $\Sigma^A(\text{SNR}_1, \text{SNR}_2)$ and $\Sigma^C(\text{SNR}_1, \text{SNR}_2)$ with respect to the case without feedback are:

$$\Sigma^A(\text{SNR}_1, \text{SNR}_2) = \sup \left\{ R_1 + R_2 : (R_1, R_2) \in \mathcal{R}(\text{SNR}_1, \text{SNR}_2) \right\} - \sup \left\{ R_1^1 + R_2^1 : (R_1^1, R_2^1) \in \mathcal{R}(0, 0) \right\}, \quad (51)$$

$$\Sigma^C(\text{SNR}_1, \text{SNR}_2) = \sup \left\{ R_1 + R_2 : (R_1, R_2) \in \mathcal{R}(\text{SNR}_1, \text{SNR}_2) \right\} - \sup \left\{ R_1^1 + R_2^1 : (R_1^1, R_2^1) \in \mathcal{R}(0, 0) \right\}. \quad (52)$$

B. Approximate Thresholds on the Feedback SNRs

In Sec. II-C, the connections between the LD-IC-NOF and the G-IC-NOF were discussed. Using these connections, a G-IC with fixed parameters $(\text{SNR}_1, \text{SNR}_2, \text{INR}_{12}, \text{INR}_{21})$ is approximated by an LD-IC with parameters $\bar{\eta}_{11} = \frac{1}{2} \log_2(\text{SNR}_1)$, $\bar{\eta}_{22} = \frac{1}{2} \log_2(\text{SNR}_2)$, $n_{12} = \frac{1}{2} \log_2(\text{INR}_{12})$, and $n_{21} = \frac{1}{2} \log_2(\text{INR}_{21})$.

From this observation, the results from Theorem 1 - Theorem 4 can be used to determine the feedback SNR thresholds beyond which either an individual rate or the sum-rate is improved in the original G-IC-NOF. The procedure consists on using the equalities $\bar{\eta}_{ij} = \frac{1}{2} \log_2(\text{SNR}_i)$, with $i \in \{1, 2\}$. Hence, the corresponding thresholds in the G-IC can be approximated by:

$$\text{SNR}^\ast_i = 2^{2\bar{\eta}_{ii}} \quad (53a)$$

$$\text{SNR}^\dagger_i = 2^{\bar{\eta}_{ii}} \quad (53b)$$

$$\text{SNR}^\ast_i = 2^{2\bar{\eta}_{ii}} \quad (53c)$$

When the corresponding LD-IC-NOF is such that its capacity region can be improved when $\bar{\eta}_{ii} > \bar{\eta}_{ii}^\ast$ (Theorem 1), for a given $i \in \{1, 2\}$, it is expected that either the achievable or converse regions of the original G-IC-NOF become larger when $\text{SNR}_i > \text{SNR}_i^\ast$. Similarly, when the corresponding LD-IC-NOF is such that $\Delta_i(\bar{\eta}_{ii}) > 0$ or $\Delta_i(\bar{\eta}_{jj}) > 0$, it is expected to observe an improvement on the individual rate for R_i by either using feedback in transmitter-receiver pair i, with $\text{SNR}_i > \text{SNR}_i^\ast$ or by using feedback in transmitter-receiver pair j, with $\text{SNR}_j > \text{SNR}_j^\ast$. In the case of the sum-rate, when the corresponding LD-IC-NOF is such that $\Sigma(\bar{\eta}_{ii}) > 0$ using feedback in transmitter-receiver pair i, with $\bar{\eta}_{ii} > \bar{\eta}_{ii}^\ast$, (Theorem 4), it is expected to observe an improvement on the sum-rate by using feedback in transmitter-receiver pair i, with $\text{SNR}_i > \text{SNR}_i^\ast$. Finally, when no improvement in a given metric is observed in the LD-IC-NOF, i.e., $\Delta_1(\bar{\eta}_{11}) = 0$, $\Delta_1(\bar{\eta}_{22}) = 0$, $\Delta_2(\bar{\eta}_{11}) = 0$, $\Delta_2(\bar{\eta}_{22}) = 0$, $\Sigma(\bar{\eta}_{11}) = 0$, or $\Sigma(\bar{\eta}_{22}) = 0$, only a negligible improvement (if any) is observed in the corresponding metric of the G-IC-NOF. For instance, when $\Delta_1(\bar{\eta}_{11}) = 0$, it is expected that $\Delta^C_1(\text{SNR}_1, 0) < \epsilon$ and $\Delta^C_1(\text{SNR}_1, 0) < \epsilon$, with $\epsilon > 0$ small. Similarly, when $\Delta_2(\bar{\eta}_{11}) = 0$, it is expected that $\Delta^C_2(\text{SNR}_1, 0) < \epsilon$ and $\Delta^C_2(\text{SNR}_1, 0) < \epsilon$. Finally, when $\Sigma(\bar{\eta}_{11}) = 0$, it is expected that $\Sigma^C(\text{SNR}_1, 0) < \epsilon$ and $\Sigma^C(\text{SNR}_1, 0) < \epsilon$.

C. Examples

The following examples highlight the relevance of the approximations in (53).

Example 4: Consider a G-IC with parameters $\text{SNR}_1 = 44$dB, $\text{SNR}_2 = 44$dB, $\text{INR}_{12} = 20$dB, and $\text{INR}_{21} = 33$dB.

The linear deterministic approximation to the G-IC in Example 4 is the one presented in Example 1. Hence, $\bar{\eta}_{11} = \bar{\eta}_{11}^\ast = 5$ and $\bar{\eta}_{22} = \bar{\eta}_{22}^\ast = 3$. This implies that $\text{SNR}_1^\ast = \text{SNR}_1^\dagger = \text{SNR}_1^{\ast\dagger} = 30$dB and $\text{SNR}_2^\ast = \text{SNR}_2^\dagger = \text{SNR}_2^{\ast\dagger} = 18$dB.
Figure 6 shows that significant improvements on the metrics $\Delta_i^A(\text{SNR}_1, \text{SNR}_2)$, $\Delta_i^C(\text{SNR}_1, \text{SNR}_2)$, $\Sigma^A(\text{SNR}_1, \text{SNR}_2)$ and $\Sigma^C(\text{SNR}_1, \text{SNR}_2)$ are obtained when the feedback SNRs are beyond the corresponding thresholds. More importantly, negligible effects are observed when $\overline{\text{SNR}}_1 < \overline{\text{SNR}}_1^*$ and $\overline{\text{SNR}}_2 < \overline{\text{SNR}}_2^*$.

Example 5: Consider a G-IC with parameters $\text{SNR}_1 = 33\text{dB}$, $\text{SNR}_2 = 9\text{dB}$, $\text{INR}_{12} = 20\text{dB}$, and $\text{INR}_{21} = 27\text{dB}$.

Figure 6. Improvement metrics Δ_i^A, Δ_i^C, Σ^A, and Σ^C as functions of $\overline{\text{SNR}}_1$ and $\overline{\text{SNR}}_2$, with $i \in \{1, 2\}$, for Example 4.
The linear deterministic approximation to the G-IC in Example 5 is the one presented in Example 3. Hence, \(\frac{\hat{n}_{11}}{\hat{n}_{22}} = 3 \), which implies that \(\hat{\text{SNR}}^*_1 = 18\text{dB} \). It follows from the LD-IC that using feedback in transmitter-receiver pair 1 exclusively increases the individual rate \(R_2 \). This is observed in Figure 7c. Note that the improvement in the individual rate \(R_2 \) for all \(\hat{\text{SNR}}_1 < \hat{\text{SNR}}^*_1 \) is negligible. Significant improvement is observed only beyond the threshold \(\hat{\text{SNR}}^*_1 \).

Note also that using feedback in either transmitter-receiver pair does not improve the rate \(R_1 \) in the LD-IC-NOF, i.e., \(\Delta_1(\hat{n}_{11}) = \Delta_1(\hat{n}_{22}) = 0 \). This is also verified in the G-IC-NOF by Figure 7a, Figure 7b, and Figure 7d, where \(\Delta_1^A(-100\text{dB}, \hat{\text{SNR}}_2) < 0.15 \) and \(\Delta_1^C(-100\text{dB}, \hat{\text{SNR}}_2) < 0.1 \).

Finally, note that using feedback in either transmitter-receiver pair does not increase the sum-rate in the LD-IC-NOF, i.e., \(\Sigma(\hat{n}_{11}) = \Sigma(\hat{n}_{22}) = 0 \). This

Fig. 7. Improvement metrics \(\Delta^A_i, \Delta^C_i, \Sigma^A_i, \) and \(\Sigma^C_i \) as functions of \(\hat{\text{SNR}}_1 \) and \(\hat{\text{SNR}}_2 \), with \(i \in \{1, 2\} \), for Example 5.
is also verified in the G-IC-NOF by Figure 7e and Figure 7f, where $\Sigma^A(\overrightarrow{SNR_1},-100dB) < 0.15$, $\Sigma^C(\overrightarrow{SNR_1},-100dB) < 0.05$, $\Sigma^A(-100db,\overrightarrow{SNR_2}) < 0.15$, and $\Sigma^C(-100db,\overrightarrow{SNR_2}) < 0.05$.

VI. CONCLUSIONS
In this paper, for any 4-tuple $(\overrightarrow{n}_{11}, \overrightarrow{n}_{22}, n_{12}, n_{21}) \in \mathbb{N}^4$, the exact values of the feedback parameters \overrightarrow{n}_{11} and \overrightarrow{n}_{22} of the two-user LD-IC-NOF beyond which the capacity region enlarges are characterized. That is, the exact values of \overrightarrow{n}_{11} (resp. \overrightarrow{n}_{22}) for which $C(0,0) \subset C(\overrightarrow{n}_{11},0)$ (resp. $C(0,0) \subset C(0,\overrightarrow{n}_{22})$) holds with strict inclusion. The SNRs in the feedback links beyond which feedback plays a significant role in terms of increasing the individual rates or the sum rate in the G-IC are also identified. The relevance of this work lies on the fact that it allows identifying a number of scenarios in any G-IC for which one of the following statements is true: (a) feedback does not enlarge the capacity region; (b) feedback enlarges the capacity region and the sum rate is greater than the largest sum-rate without feedback; and (c) feedback enlarges the capacity region but no significant improvement is observed in the sum-rate.

APPENDIX A
PROOF OF THEOREM 1: ENLARGEMENT OF THE CAPACITY REGION BY USING FEEDBACK IN ONE TRANSMITTER-RECEIVER PAIR

The proof of Theorem 1 is obtained by comparing $C(\overrightarrow{n}_{11},0)$ (resp. $C(0,\overrightarrow{n}_{22})$) and $C(0,0)$, with fixed parameters $\overrightarrow{n}_{11}, \overrightarrow{n}_{22}, n_{12},$ and n_{21}. More specifically, for each tuple $(\overrightarrow{n}_{11}, \overrightarrow{n}_{22}, n_{12}, n_{21})$, the exact value $\overrightarrow{n}_{11}^*$ (resp. $\overrightarrow{n}_{22}^*$) for which any $\overrightarrow{n}_{11} > \overrightarrow{n}_{11}^*$ (resp. $\overrightarrow{n}_{22} > \overrightarrow{n}_{22}^*$) ensures $C(0,0) \subset C(\overrightarrow{n}_{11},0)$ (resp. $C(0,0) \subset C(0,\overrightarrow{n}_{22})$) is calculated. This procedure is tedious and repetitive, and thus, in this appendix only one combination of interference regimes is studied, namely, VWIR - VWIR.

Proof: Consider that both transmitter-receiver pairs are in VWIR, that is,
$$\alpha_1 = \frac{n_{12}}{\overrightarrow{n}_{11}} \leq \frac{1}{2} \quad \text{and} \quad \alpha_2 = \frac{n_{21}}{\overrightarrow{n}_{22}} \leq \frac{1}{2}.$$ (54)

Then the conditions in (54) are fulfilled, it follows from Theorem 1 in [17] that $C(0,0)$ is the set of non-negative rate pairs $(R_1, R_2) \in \mathbb{R}_+^2$ that satisfy:
$$R_1 \leq \overrightarrow{n}_{11} \triangleq \theta_1,$$ (55a)
$$R_2 \leq \overrightarrow{n}_{22} \triangleq \theta_2,$$ (55b)
$$R_1 + R_2 \leq \min \left(\max \left(\overrightarrow{n}_{22}, n_{12} \right) + \overrightarrow{n}_{11} - n_{12}, \right.$$ (55c)
$$\max \left(\overrightarrow{n}_{11}, n_{21} \right) + \overrightarrow{n}_{22} - n_{21} \right) \triangleq \theta_3,$$ (55d)
$$R_1 + R_2 \leq \max \left(\overrightarrow{n}_{11} - n_{12}, n_{21} \right) + \max \left(\overrightarrow{n}_{22} - n_{21}, n_{12} \right) \triangleq \theta_4,$$ (55e)
$$2R_1 + R_2 \leq \max \left(\overrightarrow{n}_{11}, n_{21} \right) + \overrightarrow{n}_{11} - n_{12} + \max \left(\overrightarrow{n}_{22} - n_{21}, n_{12} \right) \triangleq \theta_5,$$ (55f)
$$R_1 + 2R_2 \leq \max \left(\overrightarrow{n}_{22} - n_{21}, n_{21} \right) + \overrightarrow{n}_{11} - n_{12} + \max \left(\overrightarrow{n}_{22} - n_{21}, \overrightarrow{n}_{11} \right).$$ (55g)

Note that for all $(\overrightarrow{n}_{11}, \overrightarrow{n}_{22}, n_{12}, n_{21}, \overrightarrow{n}_{22}) \in \mathbb{N}^5$ and $\overrightarrow{n}_{11} > \max \left(\overrightarrow{n}_{11}, n_{12}, \overrightarrow{n}_{22} \right)$, it follows that $C(\overrightarrow{n}_{11},0) = C(\max \left(\overrightarrow{n}_{11}, n_{12}, \overrightarrow{n}_{22} \right)$. Hence, in the following, the analysis is restricted to the following condition:
$$\overrightarrow{n}_{11} \leq \max \left(\overrightarrow{n}_{11}, n_{12} \right).$$ (56)

Under conditions (54) and (56), it follows from Theorem 1 in [17] that $C(\overrightarrow{n}_{11},0)$ is the set of rate pairs $(R_1, R_2) \in \mathbb{R}_+^2$ that satisfy:
$$R_1 \leq \overrightarrow{n}_{11},$$ (57a)
$$R_2 \leq \overrightarrow{n}_{22},$$ (57b)
$$R_1 + R_2 \leq \min \left(\max \left(\overrightarrow{n}_{22}, n_{12} \right) + \overrightarrow{n}_{11} - n_{12}, \right.$$ (57c)
$$\max \left(\overrightarrow{n}_{11}, n_{21} \right) + \overrightarrow{n}_{22} - n_{21} \right),$$ (57d)
$$2R_1 + R_2 \leq \max \left(\overrightarrow{n}_{11} - n_{12}, n_{21}, \overrightarrow{n}_{11} \right) + \overrightarrow{n}_{11} - n_{12} + \max \left(\overrightarrow{n}_{22} - n_{21}, n_{12} \right),$$ (57e)
$$R_1 + 2R_2 \leq \max \left(\overrightarrow{n}_{22} - n_{21}, n_{21} \right) + \overrightarrow{n}_{11} - n_{12} + \max \left(\overrightarrow{n}_{22} - n_{21}, \overrightarrow{n}_{11} \right) \triangleq \theta_8.$$ (57f)

When comparing $C(0,0)$ and $C(\overrightarrow{n}_{11},0)$, note that (55a), (55b), (55c), and (55e) are equivalent to (57a), (57b), (57c), and (57e), respectively. That being the case, the region $C(\overrightarrow{n}_{11},0)$ is greater than the region $C(0,0)$ if at least one of the following conditions holds true:
$$\min(\theta_3, \theta_4, \theta_1 + \theta_2, \theta_5, \theta_6) < \theta_7 < \min(\theta_3, \theta_1 + \theta_2, \theta_5, \theta_8),$$ (58a)
$$\min(\theta_6, \theta_1 + 2\theta_2, \theta_3 + \theta_4 + \theta_2) < \theta_8 < \min(\theta_1 + 2\theta_2, \theta_2 + \theta_3, \theta_2 + \theta_7).$$ (58b)

Condition (58a) implies that the active sum-rate bound in $C(\overrightarrow{n}_{11},0)$ is greater than the active sum-rate bound in $C(0,0)$. Condition (58b) implies that the active weighted sum-rate bound on $R_1 + 2R_2$ in $C(\overrightarrow{n}_{11},0)$ is greater than the active weighted sum-rate bound on $R_1 + 2R_2$ in $C(0,0)$.

To simplify the inequalities containing the operator $\max(\cdot, \cdot)$ in (57) and (55), the following 4 cases are identified:

Case 1: $\overrightarrow{n}_{11} - n_{12} < n_{21}$ and $\overrightarrow{n}_{22} - n_{21} < n_{12}$; (59)
Case 2: $\overrightarrow{n}_{11} - n_{12} < n_{21}$ and $\overrightarrow{n}_{22} - n_{21} \geq n_{12}$; (60)
Case 3: $\overrightarrow{n}_{11} - n_{12} \geq n_{21}$ and $\overrightarrow{n}_{22} - n_{21} < n_{12}$; and (61)
Case 4: $\overrightarrow{n}_{11} - n_{12} \geq n_{21}$ and $\overrightarrow{n}_{22} - n_{21} \geq n_{12}$. (62)

Case 1: Under condition (54), the Case 1, i.e., (59), is not possible.

Case 2: Under condition (54), the case 2, i.e., (60), this case is possible.

Plugging (60) into (57) yields:
$$R_1 + R_2 \leq \min \left(\overrightarrow{n}_{22} + \overrightarrow{n}_{11} - n_{12}, \max \left(\overrightarrow{n}_{11}, n_{21} \right) \right.$$ (63a)
$$+ \overrightarrow{n}_{22} - n_{21} \right),$$ (63b)
$$R_1 + R_2 \leq \max (n_{21}, \overrightarrow{n}_{11}) + \overrightarrow{n}_{22} - n_{21},$$ (63c)
$$R_1 + 2R_2 \leq 2 \overrightarrow{n}_{22} - n_{21} + \max (n_{21}, \overrightarrow{n}_{11}).$$ (63d)
Plugging (66) into (55) yields:
\[R_1 + R_2 ^{\leq n_{22}}. \]
\[R_1 + 2R_2 ^{\leq 2n_{22}}. \]

To simplify the inequalities containing the operator \(\max(\cdot, \cdot) \) in (63), the following 2 cases are identified:

Case 2a: \(n_{11} > n_{21} \); and

Case 2b: \(n_{11} < n_{21} \).

Case 2a: Plugging (65) into (63) yields:
\[R_1 + R_2 ^{\leq n_{11} + n_{22} - n_{21}}, \]
\[R_1 + R_2 ^{\leq \max(n_{21}, n_{11}) + n_{22} - n_{21}}, \]
\[R_1 + 2R_2 ^{\leq 2n_{22} - n_{21} + \max(n_{21}, n_{11})}. \]

Comparing inequalities (67a) and (67b) with inequality (64a), it can be verified that \(\max(n_{21}, n_{11}) + n_{22} - n_{21} \geq n_{22} \), i.e., condition (58a) holds, when \(n_{11} > n_{21} \). Comparing inequalities (67c) and (67b), it can be verified that \(2n_{22} - n_{21} + \max(n_{21}, n_{11}) > n_{22} \), i.e., condition (58b) holds, when \(n_{11} > n_{21} \). Therefore, \(n_{11} = n_{21} \) under conditions (54), (56), (60), and (65).

Case 2b: Plugging (66) into (63) yields:
\[R_1 + R_2 ^{\leq n_{22}}, \]
\[R_1 + R_2 ^{\leq \max(n_{21}, n_{11}) + n_{22} - n_{21}}, \]
\[R_1 + 2R_2 ^{\leq 2n_{22} - n_{21} + \max(n_{21}, n_{11})}. \]

Comparing inequalities (68a) and (68b) with inequality (64a), it can be verified that \(\max(n_{21}, n_{11}) + n_{22} - n_{21} = n_{22} \), i.e., condition (58a) does not hold, for all \(n_{11} \in \mathbb{N} \). Comparing inequalities (68c) and (68b) it can be verified that \(2n_{22} - n_{21} + \max(n_{21}, n_{11}) > 2n_{22} \), when \(n_{11} > n_{21} \), which implies that \(n_{11} > \max(n_{11}, n_{12}) \). However, under the conditions (54), (56), (60), and (66), the bounds (64b) and (68c) are not active. Hence, condition (58b) does not hold. Therefore, for all \(n_{11} \in \mathbb{N} \), the capacity region cannot be enlarged under conditions (54), (56), (60), and (66).

Case 3: Under condition (54), the Case 3, i.e., (61), is possible. Plugging (61) into (57) yields:
\[R_1 + R_2 ^{\leq \min(n_{22} + n_{12}, n_{11} - n_{12})}, \]
\[R_1 + R_2 ^{\leq \max(n_{11} - n_{12}, n_{11}), n_{12}}, \]
\[R_1 + 2R_2 ^{\leq \max(n_{12}, n_{12}) + n_{22} - n_{21} + \max(n_{11} - n_{12}, n_{11})}. \]

Plugging (61) into (55) yields:
\[R_1 + R_2 ^{\leq n_{11}}, \]
\[R_1 + 2R_2 ^{\leq n_{22} + n_{12} + n_{11} - n_{21} - n_{12}}. \]

Comparing inequalities (70a) and (70b) with inequality (70a), it can be verified that \(n_{12} + n_{22} + n_{12} + n_{11} - n_{21} - n_{12} = n_{22} \), i.e., condition (58a) holds, when \(n_{11} > n_{12} \). Comparing inequalities (70c) and (70b), it can be verified that \(n_{22} + n_{12} + n_{11} - n_{21} - n_{12} = n_{22} + n_{12} + n_{11} - n_{21}, i.e., condition (58b) holds, when \(n_{11} > n_{12} \). Therefore, \(n_{11} = n_{12} \) under conditions (54), (56), (61), and (71).

Case 4: Under condition (54), Case 4, i.e., (62), is possible. Plugging (62) into (57) yields:
\[R_1 + R_2 ^{\leq \min(n_{22} + n_{11} - n_{12}, n_{11} - n_{21})}, \]
\[R_1 + R_2 ^{\leq \max(n_{11} - n_{12}, n_{11}), n_{12}}, \]
\[R_1 + 2R_2 ^{\leq 2n_{22} - n_{21} + \max(n_{11} - n_{12}, n_{11})}. \]

Plugging (62) into (55) yields:
\[R_1 + R_2 ^{\leq n_{11} - n_{12} + n_{22}}, \]
\[R_1 + 2R_2 ^{\leq 2n_{22} - n_{21} + n_{11} - n_{12}}. \]

Comparing inequalities (70a) and (70b) with inequality (70a), it can be verified that \(n_{12} + n_{22} + n_{11} - n_{21} - n_{12} = n_{22} + n_{11} - n_{21}, i.e., condition (58a) holds, when \(n_{11} > n_{12} \). Comparing inequalities (70c) and (70b), it can be verified that \(n_{22} + n_{12} + n_{11} - n_{21} - n_{12} = n_{22} + n_{12} + n_{11} - n_{21}, i.e., condition (58b) holds, when \(n_{11} > n_{12} \). Therefore, \(n_{11} = n_{12} \) under conditions (54), (56), (61), and (72).
Therefore, $\hat{w}_{11} = \hat{w}_{11} - n_{12}$ under conditions (54), (56), and (62).

From all the observations above, when both transmitter-receiver pairs are in VWIR (event E_1 in (17) holds true), it follows that when $\hat{w}_{11} > \hat{w}_{11} + \hat{w}_{11} > n_{21}$ (event $E_{8,1}$ in (24) with $i = 1$ holds true) with $\hat{w}_{11} = \max(\hat{w}_{11} - n_{12}, n_{21})$, then $C(0, 0) < C(\hat{w}_{11}, 0)$. Otherwise, $C(0, 0) = C(\hat{w}_{11}, 0)$. Note that when events E_1 and $E_{8,1}$ hold simultaneously true, then the event $S_{1,1}$ in (28) with $i = 1$ holds true, which verifies the statement of Theorem 1. The same procedure can be applied for all the other combinations of interference regimes. This completes the proof.

APPENDIX B

Proof of Theorem 2: Improvement of the Individual Rate R_i by Using Feedback in Link i

The proof of Theorem 2 is obtained by comparing $C(\hat{w}_{11}, 0)$ (resp. $C(0, \hat{w}_{22})$) and $C(0, 0)$, for all possible parameters \hat{w}_{11}, \hat{w}_{22}, n_{12}, n_{21}, and \hat{w}_{11} (resp. \hat{w}_{11}, \hat{w}_{22}, n_{12}, n_{21}, and \hat{w}_{11}). More specifically, for each tuple $(\hat{w}_{11}, \hat{w}_{22}, n_{12}, n_{21}, \hat{w}_{11})$, the exact value \hat{w}_{11} (resp \hat{w}_{22}) for which any $\hat{w}_{11} > \hat{w}_{11}$ (resp $\hat{w}_{22} > \hat{w}_{22}$) ensures an improvement on R_1 (resp. R_2), i.e., $\Delta_1(\hat{w}_{11}, 0) > 0$ (resp. $\Delta_2(0, \hat{w}_{22}) > 0$), is calculated. This procedure is tedious and repetitive, and thus, in this appendix only one combination of interference regimes is studied, namely, VWIR - VWIR.

Proof:

Consider that both transmitter-receiver pairs are in VWIR, i.e., conditions (54) hold. Under these conditions, the capacity regions $C(0, 0)$ and $C(\hat{w}_{11}, 0)$ are given by (55) and (57), respectively. When comparing $C(0, 0)$ and $C(\hat{w}_{11}, 0)$, note that (55a), (55b), (55c), and (55e) are equivalent to (57a), (57b), (57c), and (57e), respectively.

In this case, the proof is focused on any improvement on $R_1 + R_2$ (condition (58a)), and thus, the proof of Theorem 4 in these particular interference regimes follows exactly the same steps as in Theorem 1.

From the analysis presented in Appendix A, it follows that:

Case 2a: condition (58a) holds true, when $\hat{w}_{11} > n_{21}$ under conditions (54), (56), (60), and (65).

Case 2b: condition (58a) does not hold true, under conditions (54), (60), and (66).

Case 3a: condition (58a) holds true, when $\hat{w}_{11} > \hat{w}_{11} - n_{12}$ under conditions (54), (56), (61), and (71).

Case 3b: condition (58a) does not hold true, when $\hat{w}_{11} > \hat{w}_{11} - n_{12}$ under conditions (54), (56), (61), and (72).

Case 4: condition (58a) holds true, when $\hat{w}_{11} > \hat{w}_{11} - n_{12}$ under conditions (54), (56), and (62).

From all the observations above, when both transmitter-receiver pairs are in VWIR (event E_1 in (17) holds true), it follows that when $\hat{w}_{11} > \hat{w}_{11} + \hat{w}_{11} > n_{21}$ (event $E_{8,1}$ in (24) with $i = 1$ holds true), $\hat{w}_{22} > n_{21}$ (event $E_{8,2}$ in (24) with $i = 2$ holds true), $\hat{w}_{11} + \hat{w}_{22} > n_{12} + 2n_{21}$ (event $E_{10,1}$ in (26) with $i = 1$ holds true), and $\hat{w}_{11} + \hat{w}_{22} > n_{21} + 2n_{12}$ (event $E_{10,2}$ in (26) with $i = 2$ holds true) with $\hat{w}_{11} = \max(\hat{w}_{11} - n_{12}, n_{21})$, then $\Sigma(\hat{w}_{11}, 0) > 0$. Otherwise, $\Sigma(\hat{w}_{11}, 0) = 0$. Note that when events E_1, $E_{8,1}$, $E_{8,2}$, $E_{10,1}$, and $E_{10,2}$ hold simultaneously true, then the event S_1 in (31) holds true, which verifies the statement of Theorem 4. The same procedure can be applied for all the other combinations of interference regimes. This completes the proof.

REFERENCES

